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Abstract: The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between
the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore,
carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here,
we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the
Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited
SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity
indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and
DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and
also protected cells from infection and presented post-entry inhibition. The presence of mannose
resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers.
ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins
indicated molecular interactions with predicted binding energies of −85.4 and −72.0 Kcal/Mol,
respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-
CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing
potential candidates for the development of novel antiviral drugs.

Keywords: SARS-CoV-2; COVID-19; mannose-biding lectins; glycans; natural compounds; antivirals

1. Introduction

In late 2019, an acute respiratory disease (COVID-19) caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged and spread rapidly world-
wide [1]. The World Health Organization (WHO) declared COVID-19 as a pandemic in
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March 2020 [2], and, up to now, almost 770 million people have been infected with SARS-
CoV-2, and more than 7 million deaths have been caused by COVID-19 [3]. Although
the massive vaccination campaigns presented significant results on the ongoing outbreak,
antiviral drugs with direct action against SARS-CoV-2 are still essential [4,5]. The first
drug approved by the FDA for COVID-19 treatment was VEKLURY®, or Remdesivir,
which was initially developed against the Ebola virus [6]. LAGEVRIO® (Molnupiravir)
and PAXLOVID® (Nirmatrelvir + Ritonavir) were also repurposed for the treatment of
COVID-19 [7–9].

SARS-CoV-2, from the Coronaviridae family, is an enveloped, single-stranded positive
RNA virus [10]. The viral genome is translated into two main groups of proteins: structural
and non-structural proteins [10,11]. Structural proteins include the spike protein (S), matrix
protein (M), and envelope protein (E), whereas the non-structural include proteases and
RNA-dependent RNA polymerase (RdRP) [12]. On the outer surface of coronaviruses,
spike glycoproteins are projected as its homo-trimeric state, which represents a pivotal
recognition site used by the virus for attachment to and subsequent entry into the host
cells. It is a complex of two subunits: S1 and S2 [10,12,13] (Figure 1A). The S1 subunit
consists of the receptor binding domain (RBD) and N-terminal domain (NTD), which binds
to the cellular receptors on the host cell membrane [10,11]. The most well-characterized
SARS-CoV-2 receptor is the angiotensin-converting enzyme 2 (ACE-2) [10] (Figure 1B).
However, CD147 [14] and NRP1 [15] have also been identified as viral entry receptors [10].
Otherwise, the S2 subunit consists of a cytoplasmic tail (CT), a transmembrane domain
(TM), heptad repeat 2 (HR2), connector domain (CD), central helix (CH), heptad repeat
1 (HR1), and fusion peptide (FP) [16,17] (Figure 1A). The S1/S2 cleavage site is at the
border between the two subunits. It is cleaved by proteases in the host cells, mainly the
transmembrane protease serine 2 (TMPRSS2) [18], which activates the S protein, leading to
the fusion of the viral envelope with the cell membrane of the host cells [17,19,20].

Molecular analyses indicates the presence of 22 N-glycan sites per monomer in the
S protein [21] (Figure 1C). This carbohydrate–viral protein structure is critical for the mod-
ulation of SARS-CoV-2 membrane fusion [22], and the RBD-ACE-2 interactions (binding
affinity, association, and dissociation) are affected by the presence of N-linked glycans in
the complex [17]. Glycans are also important to SARS-CoV-2 evasion of the host immune
system, since they can shield S protein epitopes, interfering with neutralizing antibody
recognition [23]. There are two sites on the SARS-CoV-2 S protein where the glycosylation
is mainly oligomannose-type: N234 and N709 [21]. These N-Mannose glycan sites, rep-
resenting the NTD and FP regions of the spike (Figure 1A), respectively, can regulate the
conformational dynamics “up” and “down” of RBD, modulating the interaction with the
cell host receptor [24].

Lectins are proteins with a carbohydrate-binding domain possessing reversible bind-
ing capability to specific sugar moieties in glycoproteins or glycolipids, as well as free
monosaccharide and glycan structures [25]. These proteins can recognize and interact
with specific glycans present on the surface of viruses and other intracellular microorgan-
isms, and they can alter the potential of these microorganisms to infect a host cell [26].
The Canavalia brasiliensis lectin, called “ConBR”, was first purified in 1979 from seeds of
C. brasiliensis, also called Brazilian jackbean [27] (Figure 2A). Likewise, the lectin “DVL”, pu-
rified from Dioclea violacea seeds, a plant abundant in Brazilian cerrado vegetation (tropical
savanna ecoregion), exhibits mannose-binding specificity [28] (Figure 2B).
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Figure 1. SARS-CoV-2 spike crystallographic structure as seen by electron microscopy, interactions 
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N-glycan sites. (A) Top view and side view of the spike glycoprotein at closed conformation (PDB 
ID: 6VXX). (B) Side view of the spike glycoprotein at closed conformation and its interaction with 
ACE-2 cellular receptor (PDB ID: 6VYB; 7C8D). (C) Schematic representation of the glycoprotein 
highlighting the positions of N-glycan sites per monomer. 
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glucose and galactose) demonstrated activity against Coxsackievirus B3 and Rotavirus 
[34,35]; from Momordica charantia (specificity for galactose and N-Acetylgalactosamine) 
against HIV, HSV-1, H1N1, H3N2, and H5N1 [36–39]; from Mucuna pruriens (specificity 
for mannose) against HCV [40]; and from Senna tora (specificity for mannose and 
galactose) against SARS-CoV-2 [41,42]. Therefore, we hypothesized that the mannose-
biding lectins ConBR and DVL could present antiviral activity against SARS-CoV-2, 
potentially by interacting with the S protein to abrogate virus cell entry. Here, we 
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Figure 1. SARS-CoV-2 spike crystallographic structure as seen by electron microscopy, interactions
with ACE-2 receptor, and schematic representation of the glycoprotein highlighting the positions of
N-glycan sites. (A) Top view and side view of the spike glycoprotein at closed conformation (PDB
ID: 6VXX). (B) Side view of the spike glycoprotein at closed conformation and its interaction with
ACE-2 cellular receptor (PDB ID: 6VYB; 7C8D). (C) Schematic representation of the glycoprotein
highlighting the positions of N-glycan sites per monomer.
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Figure 2. Lectins ConBR and DVL: Origin and 3D structure. (A) Canavalia brasiliensis, denominated
“ConBR”, was first purified in 1979 from seeds of C. brasiliensis, also called Brazilian jackbean, and
the 3D structure of the ConBR lectin (PDB ID: 1AZD). (B) Lectin purified from Dioclea violacea seeds,
abundant in Brazilian vegetation, denominated “DVL”, exhibits mannose-binding specificity, and the
3D structure of DVL lectin (PDB ID: 2GDF).
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Lectins isolated from plants have been used as biotechnological tools against several
infectious diseases [29], demonstrating potent antibacterial and antiviral effects [30–33]. In
the antiviral context, lectins isolated from seeds of Bauhinia variegata (specificity for glucose
and galactose) demonstrated activity against Coxsackievirus B3 and Rotavirus [34,35]; from
Momordica charantia (specificity for galactose and N-Acetylgalactosamine) against HIV,
HSV-1, H1N1, H3N2, and H5N1 [36–39]; from Mucuna pruriens (specificity for mannose)
against HCV [40]; and from Senna tora (specificity for mannose and galactose) against SARS-
CoV-2 [41,42]. Therefore, we hypothesized that the mannose-biding lectins ConBR and
DVL could present antiviral activity against SARS-CoV-2, potentially by interacting with
the S protein to abrogate virus cell entry. Here, we evaluated the anti-SARS-CoV-2 effects
of mannose-biding lectins (ConBR and DVL) originating from Brazilian flora. First, the
anti-SARS-CoV-2 in vitro activity of these lectins was screened using a VSV-SARS-CoV-2
pseudotyped virus model. Then, the antiviral activity of ConBR and DVL was validated
against infectious SARS-CoV-2 Wuhan-Hu-1 (SARS-CoV-2WT) and the SARS-CoV-2 variants
Omicron and Gamma.

2. Materials and Methods
2.1. Extraction and Purification of ConBR and DVL

The C. brasiliensis and D. violacea seeds were collected from plants located at Crato, Ceará,
Brazil, and the ConBR and DVL lectins were purified as previously described [43,44]. Briefly,
the seeds from C. brasiliensis and D. violacea were milled to a fine powder. Subsequently,
5 g of each powder was incubated in 50 mL of 150 mM NaCl at 25 ◦C under continuous
stirring for 4 h. Afterwards, the solubilized proteins in the supernatant were separated by
centrifugation at 10,000× g at 4 ◦C for 20 min. Then, ConBR and DVL purifications were
carried out by affinity chromatography using a Sephadex-G50 column (Sigma, Saint Louis,
MO, USA) (2 × 20 cm) equilibrated with 100 mM NaCl. After the unbound proteins were
washed out with the same solution, ConBR or DVL was eluted from the column using 0.1 M
glycine at pH 2.6. The collected fractions containing ConBR or DVL were then analyzed by
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), as previously
published by our research group [43,44].

2.2. Cell Culture

Vero E6 cells (kidney tissue derived from a normal adult African green monkey, ATCC
E6) or A549 cells (human lung epithelial adenocarcinoma, ATCC CCL185) were cultured
BY N\J Bin Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, Saint Louis, MO,
USA) supplemented with 100 U/mL penicillin (Gibco Life Technologies, New York, NY,
USA), 100 mg/mL streptomycin (Gibco Life Technologies), 1% (v/v) non-essential amino
acids (Gibco Life Technologies), and 10% (v/v) fetal bovine serum (FBS; Hyclone, Logan,
UT, USA) at 37 ◦C in a humidified 5% CO2 incubator [45].

2.3. Cell Viability

Cell viability was measured by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl
tetrazolium bromide] (Sigma-Aldrich) method. Vero E6 and A549 cells were seeded in
a 96-well plate at a density of 1 × 104 cells per well and incubated overnight at 37 ◦C in
a humidified 5% CO2 incubator. Drug-containing media at concentrations of 50, 10, and
2 µq/mL were added to the cell culture. After 24 h at 37 ◦C, the media were removed and a
solution containing MTT at the final concentration of 1 mg/mL was added to each well
and incubated for 30 min at 37 ◦C in a humidified 5% CO2 incubator, after which the media
were replaced with 100 µL of DMSO to solubilize the formazan crystals. Absorbance was
measured by optical density (OD) of each well at 560 ηm, using the Glomax microplate
reader (PROMEGA). Cell viability was calculated according to the equation (T/C) × 100%,
where T and C represent the mean optical density of the treated group and vehicle control
group, respectively. The cytotoxic concentrations of 50% (CC50) and 90% (CC90) were
calculated using Graph Pad Prism 8.0 [46,47].
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2.4. Virus Rescue and Titration

A pseudotyped vesicular stomatitis virus (VSV) expressing eGFP as a marker of
infection, in which the glycoprotein gene (G) was replaced by the spike protein of SARS-
CoV-2 (VSV-eGFP-SARS-CoV-2-S), was used for infection assays [48]. The virus was
amplified employing Vero E6 cells in 175 cm2 flask. To determine viral titers, 1 × 104

Vero E6 cells were seeded in each of 96 wells plate 24 h prior to the infection. Cells were
infected with 10-fold serial dilutions of VSV-eGFP-SARS-CoV-2-S and supplemented with a
medium containing 1% penicillin, 1% streptomycin, 1% non-essential amino acids, and 2%
FBS. Infected cells were incubated for 24 h in a humidified 5% CO2 incubator at 37 ◦C. The
viral foci were counted using EVOs cell imaging systems fluorescence microscopy (Thermo
Fisher Scientific, Waltham, MA, USA) by detecting eGFP expression to determine viral
titers, which were expressed in focus formation unit per milliliters (ffu/mL) [48].

SARS-CoV-2 Wuhan-Hu-1 (SARS-CoV-2WT) and variants Gamma and Omicron were
amplified employing Vero E6 and A549 cells in a 175 cm2 flask. To determine viral titers,
1 × 105 Vero E6 and A549 cells were seeded in each of 24 wells plate 24 h prior to the
infection. Cells were infected with 10-fold serial dilutions of SARS-CoV-2 or variants
Gamma and Omicron and supplemented with a medium containing 1% penicillin, 1%
streptomycin, 1% non-essential amino acids, and 2% FBS. Infected cells were incubated for
48 h in a humidified 5% CO2 incubator at 37 ◦C. After incubation, the medium was removed,
and the cells were fixed and stained with 4% paraformaldehyde and 0.4% crystal violet
staining solution in order to visualize the formation of foci resulting from the cytopathic
effect due to the release of the viral particle. From the foci number, it was possible to
determine the viral titers of the supernatant in pfu/mL [49].

2.5. Antiviral Assays with VSV-SARS-CoV-2 and SARS-CoV-2WT

VSV-eGFP-SARS-CoV-2-S assays were carried out at a multiplicity of infection (MOI)
of 0.005. For this, Vero E6 cells were seeded at a density of 1× 104 cells per well into 96-well
plates 24 h prior to the infection. VSV-eGFP-SARS-CoV-2-S and the substance at non-toxic
concentration were incubated for 1 h at room temperature, prior to the infection of cells
with the inoculum for 2 h at 37 ◦C. The supernatant was removed, the cell monolayers
were gently washed with 100 µL PBS, and the wells were completed with DMEM 2%. At
24 h post-infection (h.p.i.), the assays were analyzed using EVOs cell imaging systems
fluorescence microscopy (Thermo Fisher Scientific) and the foci of infection were counted.
The antiviral activity was calculated according to the equation (T/C) × 100%, where
T and C represent the mean of the treated group and mean of the last concentration,
respectively [48]. To assess the effective concentration of 50% (EC50) and 90% (EC90) of
each lectin with the VSV-SARS-CoV-2 system, cells were infected with VSV-S and lectins
at concentrations ranging from 200 µg/mL to 0.10 µg/mL for ConBR and 10 µg/mL to
0.005 µg/mL for DVL using the same protocol of antiviral assay. The EC50 and EC90 were
calculated using GraphPad Prism software version 8.0.0. The values of CC50 and EC50 were
used to calculate the selectivity index (SI = CC50/EC50) [47,50].

Vero E6 cells were seeded at a density of 2.5 × 104 cells per well into 96-well plates
24 h prior to the infection. The infections of Vero cells with SARS-CoV-2WT were performed
at a multiplicity of infection (MOI) of 0.01 and lectins at non-toxic concentrations pre-
determined on cell viability assays for 48 h. SARS-CoV-2WT and lectins were incubated
for 1 h at room temperature. Cells were infected with the inoculum at 37 ◦C for 1 h. The
supernatant was removed, the cell monolayers were gently washed with PBS, and the
wells were completed with DMEM 2%. The infection rates were determined at 48 h.p.i. by
measuring cell death due to the infection using cellular viability assay. The antiviral effects
were calculated according to the equation:

[
(ODT)SCoV2–Σ

(
ODIn f ec.

)
SCoV2

]
[
Σ(ODCtrl.)Cell–Σ

(
ODIn f ec.

)
SCoV2

]
× 100%
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where “(ODT)SCoV2” represents the optical density of the treated group infected with SARS-
CoV-2; “Σ(ODInfec.)SCoV2” represents the mean optical density of the infected group with
SARS-CoV-2; and “Σ(ODCtrl.)Cell” represents the mean optical density of the cell control
(non-infected group) [51].

2.6. Antiviral Assays with SARS-CoV-2WT and Variants Gamma and Omicron Measured by
Quantitative PCR

For the dose–response curves and all the time of drug-addition assays, Vero E6 or
A549 cells were seeded at a density of 1 × 105 cells per well into 24-well plates overnight,
and infections were carried out with SARS-CoV-2WT or variants Gamma and Omicron at
an MOI of 0.01. The EC50 and EC90 of each lectin with SARS-CoV-2WT or variants Gamma
and Omicron were determined using the same protocol of VSV-eGFP-SARS-CoV-2-S, as
previously described. In the drug-addition assays, lectins were administrated at non-toxic
concentrations pre-determined on cell viability assays. In the pretreatment assay, cells
were treated for 1 h at 37 ◦C with lectins, washed with PBS for compound removal, and
then infected with the virus for 1 h at 37 ◦C. Then, cells were washed again to remove the
unbound virus and replaced with a fresh medium for 24 h. In entry inhibition assays, cells
were infected using a medium containing lectins and virus for 1 h at 37 ◦C, extensively
washed with PBS, and incubated with a fresh medium for 24 h. The virucidal activity was
evaluated using the same protocol of entry, with the exception of the inoculum containing
the compound and virus incubated for 1 h prior to the addition to the cells. In the post-entry
assay, Vero E6 and A549 cells were infected with SARS-CoV-2WT for 1 h, washed with
PBS, and immediately incubated in fresh media, with the addition of media containing
compound at 4, 8, or 12 h.p.i. For all these protocols, virus titers were measured 24 h.p.i.

A general assay was performed with SARS-CoV-2WT and its variants Omicron (HIAE-
W.A; GISAID: EPI_ISL_6901961) and Gamma (IMT-MAN87209; GISAID: EPI_ISL_1060981).
To this, Vero E6 and A549 cells were seeded at a density of 1× 105 cells per well into 24-well
plates prior to the infection with virus at a multiplicity of infection (MOI) of 0.01 in the
presence or absence of lectins at non-toxic concentrations for 24 h. The supernatant of all
assays were collected and frozen for carrying out the following steps of extraction of viral
RNA, cDNA synthesis, and real time PCR for viral titers quantification [52].

2.7. Mannose-Biding Lectins Blocking Assay

Vero E6 and A549 cells were seeded at a density of 1 × 105 cells per well into 24-well
plates 24 h prior to the infection. Cells were infected with SARS-CoV-2WT at a multiplicity of
infection (MOI) of 0.01 and treated with lectins at non-toxic concentrations in the presence
or absence of D-(+)-Mannose (Sigma-Aldrich) at the final concentration of 0.1 M (mol/L).
To evaluate a possible virucidal effect, inoculums containing compound and virus, in the
presence or absence of D-(+)-Mannose (Sigma-Aldrich), were incubated for 1 h prior to the
addition to the cells. The infection lasted 1 h at 37 ◦C, cells were extensively washed with
PBS, and incubated with a fresh medium. At 24 h.p.i., the supernatant was collected and
frozen for carrying out the following steps of extraction of viral RNA, cDNA synthesis, and
real time PCR for viral titers quantification.

2.8. RNA Extraction and cDNA Synthesis

The Trizol-based RNA extraction protocol was adapted from Toni and collabora-
tors [53]. For the volume of supernatant harvested from each well, a correspondent volume
of Trizol (Invitrogen, Waltham, MA, USA) was added and homogenized. Then, chloroform
(Merck KGaA, Darmstadt, Germany) was incubated with the samples for 3 min and cen-
trifugated at 13,200 rpm for 15 min at 4 ◦C. The RNA-containing upper aqueous phase was
collected, added to isopropanol (Merck KGaA) for 10 min at room temperature, and cen-
trifugated at 13,200 rpm for 15 min at 4 ◦C. The supernatant was removed. The pellet was
resuspended with ice-cold ethanol-depc 75% (Merck KGaA), centrifugated at 10,000 rpm
for 15 min at 4 ◦C, and the supernatant was discarded. The pellet was resuspended in a
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final volume of 20 µL of nuclease-free water. After the quantification of RNA extracted, the
samples should be frozen at −80 ◦C immediately [53].

Complementary DNA (cDNA) synthesis was performed using the High-Capacity
cDNA Archive® kit (Applied Biosystems, Waltham, MA, USA) according to the manufac-
turer’s instructions. The prepared reaction was composed of 10× RT Buffer, 25× dNTP Mix
(100 mM), 10× RT Random Primers, MultiScribe™ Reverse Transcriptase, RNase Inhibitor,
and Nuclease-free water, and the corresponding volume of viral RNA was extracted. The
microtubes were submitted to the Veriti Thermal Cycler (Applied Biosystems®), incubated
at 25 ◦C for 10 min, 37 ◦C for 120 min, and 85 ◦C for 5 min to generate complementary
DNA in a reverse transcriptase-polymerase chain reaction.

2.9. Determination of Viral Load by Real-Time PCR

The RT-qPCR reactions were performed using Taqman Universal PCR master mix kit
(Thermo Fisher Scientific, USA). The reactions consisted of 0.96 µM of each primer and
0.48 µM of probe specific to the viral nucleocapsid (N) gene (2019-nCoV_N1-F: 5′-GAC
CCC AAA ATC AGC GAA AT-3′; 2019-nCoV_N1-R: 5′-TCT GGT TAC TGC CAG TTG
AAT CTG-3′; and 2019-nCoV_N1-P: 5′-FAM-ACC CCG CAT TAC GTT TGG TGG ACC-
BHQ1-3′) (Integrated DNA Technologies, Leuven, Belgium) [54], along with 5 µL of 2×
Taqman Universal master mix (Thermo Fisher Scientific, USA) and 1.5 µL of cDNA in
DEPEC ultrapure water. Reactions were performed using the following conditions: 94 ◦C
for 10 min for enzyme activation; 45 cycles of denaturation at 95 ◦C for 15 s, annealing at
60 ◦C for 1 min. All amplifications were conducted on a QuantStudio 12 K Flex instrument
(Applied Biosystems, Foster City, CA, USA). Serial tenfold dilutions of the standard plasmid
of SARS-CoV-2 (2019-nCoV_N_Positive Control, 2 × 105 genome copies/µL (gc/µL) (105,
104, 103, 102, 101 and 100), obtained from IDT (Integrated DNA Technologies, Leuven,
Belgium), were used to produce standard curves to quantify the SARS-CoV-2 RNA copies.
The limit of detection (LOD) parameters were similar to SARS-CoV-2WT and the variants.
Every RT-qPCR assay was performed in triplicate and included negative (nuclease-free
water) and positive controls.

2.10. Protein Structures

The protein structures of ConBR (PDB: 3JU9) [55] with crystallographic resolution of
2.10 Å, DVL (PDB: 3AX4) [56] with 2.61 Å resolution, as well as the SARS-CoV-2 spike
glycoprotein [17] with resolution of 2.80 Å were downloaded from the Protein Data Bank
(https://www.rcsb.org/). For both structures of the lectins, we checked the amino acid
clash and removed water molecules, crystallographic artifacts, and bound ligands using
Pymol 2.3 program (Schrödinger 2023). In addition, we obtained a high-mannose molecule
(PDB: 5VYB [57] with 2.40 Å, which was bound to the amino acid Asn234 of the SARS-CoV-
2 spike protein for preparing this molecule for protein–protein docking; for this, we used
Pymol 2.3 for binding this sugar molecule in this specific position [58].

2.11. Protein–Protein Docking

HADDOCK 2.4 [59] was used for performing docking calculations independently
between ConBR and DVL structures with the modified SARS-CoV-2 spike protein. The
docking process was directed to the modified spike protein residue Asn234 with the ConBR
carbohydrate binding domain formed by the amino acids Leu99, Tyr100, Ser168, Ala207,
Asp208, Thr226, and Arg228 [55] and the carbohydrate binding site from DVL formed by the
amino acids Tyr12, Ans14, Leu99, Tyr100, Asp208, and Arg228 [56]. The five best docking
clusters were analyzed considering their binding energies, as well as if the carbohydrate
recognition binding sites from both proteins bound to the spike Asn234 modified amino
acid region. For this, we used Pymol 2.3 for analyzing the interactions between protein
chains [58].

https://www.rcsb.org/
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2.12. Attenuated Total Reflection (ATR) Coupled to Fourier Transform Infrared (FTIR) Analysis

The samples were recorded in an ATR-FTIR spectrometer (Agilent Cary 630 FTIR,
Agilent Technologies, Santa Clara, CA, USA). The diamond unit in the ATR platform
performs an internal-reflection element to record the fingerprint infrared signature at
the 1800 cm−1 to 800 cm−1 regions. The samples were prepared using lectins ConBR
and DVL at 8 mg/mL and 10 mg/mL, respectively, and the VSV-eGFP-SARS-CoV-2-S at
1.4 × 107 FFU/mL. A volume of 3 µL of each sample was inserted directly on the diamond
cell and dehydrated to remove water functional groups for 10 min using airflow until each
sample formed a thin dry layer on the ATR-crystal [60,61]. The spectra were then recorded
(2 cm−1 resolution, 64 scans). The second derivative spectra were created based on original
data plotted in the Origin Pro 9.8.0.200 (OriginLab, Northampton, MA, USA) software and
adjusted using the Savitzky–Golay algorithm with polynomial order 2 and 20 points of the
window [62,63].

2.13. Statistical Analysis

Individual experiments were performed in triplicate and all assays were performed
a minimum of three times to confirm the reproducibility of the results. GraphPad Prism
8 software was used to assess statistical differences in the means of the readings using
Student’s unpaired t-test or Mann–Whitney tests. p values < 0.05 were considered to be
statistically significant.

3. Results
3.1. ConBR and DVL Block SARS-CoV-2 Entry to the Host Cells

Aiming to assess the potential of plant lectins to block virus entry, ConBR (from
200 µg/mL to 0.10 µg/mL) and DVL (from 10 µg/mL to 0.005 µg/mL) were first incubated
with VSV-eGFP-SARS-CoV-2-S at an MOI of 0.005, and they were then used to infect Vero
E6 cells for 2 h. Then, the inoculum was removed and replaced by fresh media. The
effective concentration of 50% (EC50) and the cytotoxic concentration of 50% (CC50) were
evaluated 24 h post-infection (h.p.i.), and values were calculated employing GraphPad
Prism (Figure 3A). As a result, the treatment with both lectins strongly blocked VSV-
eGFP-SARS-CoV-2-S infection, presenting CC50 of 2134 µg/mL, EC50 of 2.1 µg/mL, and
a Selective Index (SI) of 1016.2 for ConBR (CC90 of 19,206.0 µg/mL, EC90 of 19.2 µg/mL)
(Figure 3B), and the results for DVL were CC50 of 3.68 µg/mL, EC50 of 0.04 µg/mL, and an
SI of 86.6 (CC90 of 33.12 µg/mL, EC90 of 0.36 µg/mL) (Figure 3C).

According to these data, the highest non-cytotoxic concentration (>80% cell viability)
of each lectin was selected to evaluate the effects of ConBR and DVL in the context of the
infection with SARS-CoV-2 Wuhan-Hu-1 (SARS-CoV-2WT). ConBR at 50 µg/mL or DVL at
2 µg/mL were incubated with SARS-CoV-2WT for 1 h, and then were used to infect naïve
Vero E6 cells for 1 h (MOI 0.01). Then, the inoculum was removed and replaced by fresh
media. The inhibition of the infection was determined 48 h.p.i. by measuring cell death
caused by the infection, using a cell viability assay (Figure 4A). The results demonstrated
that ConBR and DVL significantly inhibited 39 and 36% of cell death resulting from
SARS-CoV-2WT infection, respectively, corroborating the antiviral activity of these lectins
(Figure 4B).
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Figure 3. Lectins activity on infection of VSV-eGFP-SARS-CoV-2-S. (A) Schematic representation
of the performed antiviral assay. Vero cells were infected with VSV-eGFP-SARS-CoV-2-S at an
MOI of 0.005 and simultaneously treated with two-fold serial dilution of the compound, ranging
from 200 µg/mL to 0.10 µg/mL (ConBR) (B) or 10 µg/mL to 0 µg/mL (DVL) (C). Viral infectivity
and cell viability rates are indicated by black circles and gray squares, respectively. The effective
concentration of 50% (EC50) and the cytotoxic concentration of 50% (CC50) were calculated employing
GraphPad Prism. ConBR presented CC50 = 2134.0 µg/mL, EC50 = 2.1 µg/mL, and SI = 1016.2. DVL
presented CC50 = 3.86 µg/mL, EC50 = 0.04 µg/mL, and SI = 86.6. Mean values are from at least three
independent experiments, each measured in quadruplicate. Standard deviation is shown. Images
and statistics analysis were generated using GraphPad Prism 8.

3.2. ConBR and DVL Are Potent Inhibitors of SARS-CoV-2WT, but Also Variants Omicron
and Gamma

The effects of the lectins in the context of the SARS-CoV-2WT infection were further
evaluated by assessing the replication rates in a dose–response assay, in a cell line derived
from human lung epithelial adenocarcinoma (A549 cells), to better represent the infection
in the human respiratory tract. The antiviral activity was also evaluated in the infection
with Gamma and Omicron variants. A549 cells were treated with ConBR (from 200 µg/mL
to 1.56 µg/mL) and DVL (from 10 µg/mL to 0.08 µg/mL) in the presence of SARS-CoV-
2WT or Gamma and Omicron variants at an MOI of 0.1 for 24 h, when replication levels
were assessed. EC, CC, and SI were calculated. The results demonstrated that the lectins
strongly inhibited SARS-CoV-2WT and Gamma and Omicron variants infection (Figure 5).
However, the antiviral potency of ConBR (Figure 5A) and DVL (Figure 5B) was higher
against SARS-CoV-2WT and Omicron than they were against Gamma infection. Values of
EC50 and EC90, CC50 and CC90, and SI are shown in Figure 5C.



Viruses 2023, 15, 1886 10 of 26

Viruses 2023, 15, x FOR PEER REVIEW 11 of 29 
 

 

According to these data, the highest non-cytotoxic concentration (>80% cell viability) 
of each lectin was selected to evaluate the effects of ConBR and DVL in the context of the 
infection with SARS-CoV-2 Wuhan-Hu-1 (SARS-CoV-2WT). ConBR at 50 µg/mL or DVL at 
2 µg/mL were incubated with SARS-CoV-2WT for 1 h, and then were used to infect naïve 
Vero E6 cells for 1 h (MOI 0.01). Then, the inoculum was removed and replaced by fresh 
media. The inhibition of the infection was determined 48 h.p.i. by measuring cell death 
caused by the infection, using a cell viability assay (Figure 4A). The results demonstrated 
that ConBR and DVL significantly inhibited 39 and 36% of cell death resulting from SARS-
CoV-2WT infection, respectively, corroborating the antiviral activity of these lectins (Figure 
4B). 

 
Figure 4. Effect of isolated lectins on cell death caused by SARS-CoV-2 Wuhan-Hu-1 strain infection. 
(A) SARS-CoV-2 and lectins were incubated for 1 h, and the inoculum was incubated with cells at 
37 °C for 1 h. The supernatant was removed, and the cells were washed with PBS and replaced with 
DMEM 2%. At 48 h post-infection (h.p.i.), all the supernatants were removed, and the assays were 
analyzed according to the cell viability and the antiviral effect of each isolated lectin on reducing 
cell death. (B) A one-way ANOVA was performed to compare the effect of each lectin on SARS-CoV-

Figure 4. Effect of isolated lectins on cell death caused by SARS-CoV-2 Wuhan-Hu-1 strain infection.
(A) SARS-CoV-2 and lectins were incubated for 1 h, and the inoculum was incubated with cells at
37 ◦C for 1 h. The supernatant was removed, and the cells were washed with PBS and replaced with
DMEM 2%. At 48 h post-infection (h.p.i.), all the supernatants were removed, and the assays were
analyzed according to the cell viability and the antiviral effect of each isolated lectin on reducing cell
death. (B) A one-way ANOVA was performed to compare the effect of each lectin on SARS-CoV-2
Wuhan-Hu-1 strain infection. Mean values of three independent experiment each measured in
triplicate including the standard deviations are shown. p values < 0.05 were considered significant.
(****) p < 0.0001.
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Figure 5. Lectins activity on infection by SARS-CoV-2WT and Gamma and Omicron variants. A549
cells were infected with SARS-CoV-2WT, Gamma, and Omicron at an MOI of 0.1 and simultaneously
treated with two-fold serial dilution of the compound, ranging from 200 µg/mL to 1.56 µg/mL
(ConBR) or 10 µg/mL to 0.08 µg/mL (DVL). Viral infectivity rates are indicated by circles: black for
SARS-CoV-2WT, red for Gamma, and blue for Omicron. Cell viability rates are indicated by gray
squares. The effective concentration of 50% (EC50) and the cytotoxic concentration of 50% (CC50) were
calculated employing GraphPad Prism. Cell viability was calculated using an MTT assay. (A) ConBR
and SARS-CoV-2WT, Gamma, and Omicron infections. (B) DVL and SARS-CoV-2WT, Gamma, and
Omicron infections. Mean values are from at least three independent experiments, each measured in
quadruplicate. Standard deviation is shown. Images and statistics analysis were generated using
GraphPad Prism 8. (C) Table summarizing EC50, CC50, EC90, CC90, and SI rates of both lectins and
each variant.

3.3. Multiple Effects of ConBR and DVL on the Replicative Cycle of SARS-CoV-2WT

To further investigate the antiviral activity of both lectins, time of drug-addition assays
were performed to assess the effects of ConBR and DVL on different stages of the replicative
cycle of SARS-CoV-2WT, and viral titers were quantified by measuring SARS-CoV-2WT
RNA levels in the supernatant of infected and/or treated cells. For all the time of drug-
addition assays, Vero E6 cells were infected with SARS-CoV-2WT at an MOI of 0.01 and
virus titers were measured 24 h.p.i. In the pretreatment assay, cells were previously treated
for 1 h with lectins at 37 ◦C, washed for compound removal, and then infected with the
virus for 1 h at 37 ◦C. Then, cells were washed again to remove the unbound virus and
replaced with a fresh medium (Figure 6A). Alternatively, for the entry inhibition assays,
cells were infected using a medium containing lectins and virus for 1 h at 37 ◦C, extensively
washed to the inoculum removal, and incubated with fresh medium (Figure 6B). The
virucidal activity was evaluated using the same protocol of entry, except for the inoculum-
containing compound, and the virus was incubated for 1 h prior to addition to the cells
(Figure 6C). In the post-entry assay, cells were infected with SARS-CoV-2WT for 1 h, washed
to remove unbound virus, and incubated with a medium containing the compound at 37 ◦C
(Figure 6D). All the supernatants were collected for viral titer quantification by RT-qPCR.
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Figure 6. Effect of isolated lectins on different stages of SARS-CoV-2 Wuhan-Hu-1 strain replicative
cycle. (A) Pre-treatment assay: cells were incubated with the lectins for 1 h. Media was removed, and
cells were infected with SARS-CoV-2 for 1 h at 37 ◦C. The supernatant was removed, and cells were
washed with PBS and replaced with DMEM 2%; (B) Entry assay: cells were infected with SARS-CoV-2
and simultaneously treated with lectins for 1 h. The supernatant was removed, and cells were washed
with PBS and replaced with DMEM 2%; (C) Virucidal assay: SARS-CoV-2 and lectins were incubated
for 1 h, and then the inoculum was incubated with cells at 37 ◦C for 1 h. The supernatant was
removed, and cells were washed with PBS and replaced with DMEM 2%; (D) Post-entry assay: cells
were infected with SARS-CoV-2 for 1 h. The supernatant was removed, cells were washed with PBS,
and cells were treated with each lectin for 24 h. For all antiviral protocols, supernatants were collected
24 h post-infection (h.p.i.); viral RNA were extracted; complementary DNA was synthesized; and
a real time PCR for viral titer quantification was performed. Mean values of three independent
experiment, each measured in triplicate, including the standard deviation are shown. p values < 0.05
were considered as statistically significant. (****) p < 0.0001.

The results demonstrated that both lectins presented the highest rates of inhibition
in the early stages of SARS-CoV-2WT infection, mainly demonstrated in virucidal assay
(Figure 6C). ConBR and DVL reduced viral titers in 1.25× 105 (97.4%) and 1.28× 105 (99.9%)
RNA copies in the virucidal assay (Figure 6C), and in 1.23 × 105 (95%) and 1.29 × 105

(99.4%) in the entry assay (Figure 6B), respectively. Additionally, ConBR and DVL protected
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cells from infection at 88.4% (reduction of 2.3 × 105 RNA copies) and 78.8% (reduction
of 2 × 105 RNA copies), respectively (Figure 6A), and presented post-entry inhibition at
88% (reduction of 2.5 × 105 RNA copies) and 71.7% (reduction of 1.4 × 105 RNA copies),
respectively (Figure 6D). Altogether, these data suggest the ConBR and DVL may act by
different mechanisms of antiviral action, mainly affecting the early stages of the SARS-CoV-
2WT replicative cycle, potentially by interacting with virus particles.

To better understand if these lectins have any effect on late steps of the viral replication
cycle, we performed an extended post-treatment assay (Figure 7). Vero E6 cells were
infected with SARS-CoV-2WT for 1 h, when supernatant was removed and replaced by
fresh media. Treatments with ConBR and DVL were performed 4, 8, or 12 h.p.i., and
virus titers were measured 24 h.p.i. (Figure 7A). Based on the results, the treatment with
ConBR 4, 8 and 12 h.p.i. inhibited 79.1% (reduction of 1.3 × 106 RNA copies), 98.7%
(reduction of 1.6 × 106 RNA copies) and 99% (reduction of 1.6 × 106 RNA copies) of
infection, respectively (Figure 7B). The same protocols of treatments with DVL resulted in
viral inhibition of 79% (reduction of 1.3 × 106 RNA copies), 99.1% (reduction of 1.6 × 106

RNA copies) and 98.2% (reduction of 1.6 × 106 RNA copies) (Figure 7C). As observed from
these data, both lectins presented stronger effect from 8 h.p.i. (Figure 7B,C). Considering
the evidence that SARS-CoV-2 virions are released, on average, after 12–36 h.p.i. [64], these
data corroborate the effect of these lectins on viral particles that are being produced during
the late stages of life cycle. Therefore, ConBR and DVL might affect both the entry of virus
particles into naïve cells and the release of newly produced virions.
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Figure 7. Effect of lectins on SARS-CoV-2 Wuhan-Hu-1 infectivity at different times of post-entry
assays. (A) Schematic representation of this antiviral assay. Vero E6 cells were infected with SARS-
CoV-2 Wuhan-Hu-1 virus for 1 h, the supernatant was removed, and cells were washed with PBS
and replaced with fresh media. Treatments with ConBR at 50 µg/mL (B) and DVL at 2 µg/mL
(C) were performed 4, 8, or 12 h.p.i., and virus titers were measured 24 h.p.i. by q-RT-PCR. A one-way
ANOVA was performed to compare the effect of each lectin on SARS-CoV-2 Wuhan-Hu-1 infection.
Mean values of three independent experiment, each measured in triplicate, including the standard
deviation are shown. p values < 0.05 were considered significant. (****) p < 0.0001.
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3.4. Interactions of ConBR and DVL with VSV-eGFP-SARS-CoV-2-S

The infrared spectra of VSV-eGFP-SARS-CoV-2-S, lectins ConBR or DVL, and VSV-
eGFP-SARS-CoV-2-S plus lectins are represented in Figure 8. We found several molecular
changes in VSV-eGFP-SARS-CoV-2-S incubated with ConBR or incubated with DVL. These
changes in functional groups occurred in the biofingerprint region at 1800–800 cm−1,
suggesting interactions between VSV-eGFP-SARS-CoV-2-S with ConBR (A, B, C, D, and
E) and with DVL (F, G, H, I and J). As an outcome, the binding interactions between VSV-
eGFP-SARS-CoV-2-S and ConBR suggested 17 vibrational modes (Figure 8A–E; Table 1)
and 13 vibrational modes for VSV-eGFP-SARS-CoV-2-S plus DVL (Figure 8F–J; Table 1). We
noticed that the mode vibrational at 1689 cm−1 and 1629 cm−1 (Figure 8A,F) were detected
only after incubation in both lectins, suggesting interactions in the Amide I region (Table 1).
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Figure 8. Infrared spectroscopy indicates molecular interactions between VSV-eGFP-SARS-CoV-2-
S plus ConBR and VSV-eGFP-SARS-CoV-2-S plus DVL. Representative scheme of the ATR-FTIR
technology with VSV-eGFP-SARS-CoV-2-S (black line), ConBR or DVL (blue line), and VSV-eGFP-
SARS-CoV-2-S incubated with ConBR or DVL (red line). The VSV-eGFP-SARS-CoV-2-S and ConBR
spectra are depicted in panels (A–E) and VSV-eGFP-SARS-CoV-2-S and DVL spectra are depicted in
panels (F–J).

Table 1. Tentative assignments for vibrational modes indicating interaction in VSV-eGFP-SARS-CoV-
2-S with ConBR or DVL.

Lectins Peak Tentative Assignment Reference

ConBR

1781 Carbonyl C=O ester stretching region [65]
1724 C=O stretching band mode of the fatty acid ester [66]
1689 Amide I (disordered structure-non-hydrogen bonded) [67]
1629 Amide I region [68]
1564 Ring base [69]
1548 Amide II [70]
1530 Stretching C=N, C=C [69]
1514 Amide II [71]
1497 C=C, deformation C-H [69]
1385 Deformation C-H [69]
1360 Deformation C-H [69]
1330 CH2 wagging [70]
1312 Amide III band components of proteins [70]
1120 Mannose-6-phosphate [66]
1078 Phosphate I in RNA [72]
1038 Stretching C-O ribose [69]
1012 Stretching C-O deoxyribose [69]
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Table 1. Cont.

Lectins Peak Tentative Assignment Reference

DVL

1689 Amide I (disordered structure-non-hydrogen bonded) [67]
1680 Unordered random coils and turns of amide I [73]
1629 Amide I region [68]
1416 Deformation C-H, N-H, stretching C-N [69]
1406 CH3 asymmetric deformation [74]
1053 νC-O and δC-O of carbohydrates [75]
1038 Stretching C-O ribose [69]
1022 Glycogen [68]

1003 Carbohydrate residues attached to collagen and amide III
vibration [76]

973 OCH3 (polysaccharides, pectin) [67]
955 Phospholipids/carbohydrates [77]
876 (A-form helix) conformation [72]
806 (A-form helix) conformation [72]

3.5. Insights on the Role of Mannose-Biding Lectins against SARS-CoV-2 Infections

The S protein of SARS-CoV-2 has several glycans rich in mannose residues that are
essential for viral infection [24]. ConBR and DVL lectins are proteins that preferentially
interact with glycans that have these carbohydrates in their structures. Therefore, to
evaluate the involvement of the mannose–lectin interaction on SARS-CoV-2 infection, we
performed an antiviral assay in the presence or absence of D-(+)-mannose, using Vero E6
and A549 cells, in order to evaluate its role on the antiviral activity of lectins ConBR and
DVL, in a general infection and virucidal assays. To the general infection protocol, both
cell lines were infected with SARS-CoV-2WT (MOI = 0.01) and treated with lectins in the
presence or absence of D-(+)-mannose at the final concentration of 1 M (mol/L) (Figure 9A).
In the virucidal assay, lectins were previously incubated with the virus for 1 h in the
presence or absence of D-(+)-mannose, at the same final concentration. The inoculums were
then incubated with cells at 37 ◦C for 1 h. The supernatant was removed, and the cells were
washed with PBS and replaced with DMEM 2% (Figure 9B). Supernatants were collected
24 h.p.i., and viral titers were quantified by RT-qPCR. As a result, the presence of mannose
resulted in a lack of the antiviral activity by ConBR and DVL against SARS-CoV-2 infection
in both cells, completely restoring virus titers (Figure 9C–F).

Additionally, in silico binding interactions between SARS-CoV-2 protein and both
lectins were investigated, and the results indicated that ConBR interacted with the SARS-
CoV-2 S protein by its carbohydrate-binding domain facing with the modified spike Asn234-
high-mannose (Figure 10A). The HADDOCK docking cluster 2 presented the best binding
and ConBR-spike complex interactions, with a predicted binding energy of−85.4 Kcal/Mol
(±8.0) for its model 8. In addition, it is possible to verify, in this complex, that the high-
mannose molecule interacted with the whole ConBR domain, suggesting the possible
mechanism observed here in vitro. Furthermore, DVL carbohydrate binding site interac-
tions with SARS-CoV-2 spike Asn234-high-mannose showed its best docking position in
cluster 1 with a lower binding energy of −72.0 Kcal/Mol (±5.2) in comparison to ConBR
docking (Figure 10B). On the other hand, it is possible to verify that at least the amino
acids Leu99, Tyr100, and Asn14 are directly interacting with the high-mannose from the
modified Asn234 of the spike protein, suggesting its possible mechanism of action against
the SARS-CoV-2. The structural alignment between ConBR and DVL complexes with the
modified Asn234 spike protein, which revealed that both lectins docked similarly with the
viral glycoprotein, suggesting the same mechanism of action for both lectins on viral cell
entry impairment (Figure 10C).
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Figure 9. Effect of lectins on SARS-CoV-2 Wuhan-Hu-1 in the presence of D-(+)-Mannose.
(A) Schematic representation of general infection antiviral assay. (B) Schematic representation
of virucidal assay. Vero E6 (C) and A549 cells (E) were infected with SARS-CoV-2 Wuhan-Hu-1
virus and treated with ConBR at 50 µg/mL and DVL at 2 µg/mL, in the presence or absence of
D-(+)-Mannose. SARS-CoV-2 and lectins were incubated for 1 h, and the inoculum was incubated
with Vero E6 (D) and A549 cells (F) at 37 ◦C for 1 h. The supernatant was removed, and cells were
washed with PBS and replaced with DMEM 2%. For all protocols, the supernatants were collected
24 h.p.i.; viral data were quantified by p-RT-PCR. A one-way ANOVA was performed to compare
the effect of each lectin in the presence or absence of D-(+)-Mannose on SARS-CoV-2 Wuhan-Hu-1
infection. Mean values of three independent experiment, each measured in triplicate, including the
standard deviation are shown. p values < 0.05 were considered significant. (****) p < 0.0001.
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Figure 10. Protein docking between SARS-CoV-2 Spike glycoprotein and Lectins. (A) Protein docking
between SARS-CoV-2 spike glycoprotein (grey) and ConBR (hot pink). The spike active amino acid
Asn234 (orange) is bound to a high-mannose molecule (dark blue), and a docking interface is formed
with the ConBR carbohydrate domain (green). (B) Protein docking between SARS-CoV-2 spike
glycoprotein (grey) and DVL (Cyan). The spike active amino acid Asn234 (orange) is bound to a
high-mannose molecule (hot pink), and a docking interface is formed with the DVL carbohydrate
binding site formed by the amino acids Tyr12, Ans14, Leu99, Tyr100, Asp208, and Arg228 (green).
(C) The 3D structural alignment between both complexes formed by ConBR (wheat) and DVL (cyan)
with the SARS-CoV-2 spike glycoprotein (grey). The spike active amino acid Asn234 (orange) is bound
to a high-mannose molecule (hot pink). Both ConBR carbohydrate binding domain (marine blue)
and DVL carbohydrate binding site (green) are aligned and positioned similarly to the viral protein.

4. Discussion

Although a few antiviral drugs were approved by the FDA for COVID-19 treatment,
the search for compounds with anti-SARS-CoV-2 activity is still a main global purpose.
In this context, the lectins isolated from plants are proteins with broad applicability in
biotechnology [78], and they can be used against different infections, such as protozoa,
bacteria, and viruses [79–81]. These molecules act as carbohydrate-binding agents and are
able to bind to glycans on the surface of SARS-CoV-2, altering the viral glycoprotein spike
3D conformation and tricking the interaction with the ACE2 cell receptor [82]. In this sense,
the use of lectins has been hypothesized as a novel approach for the treatment of SARS-
CoV-2 [81–84]. Here, we first reported the strong antiviral activity of the mannose-biding
lectins ConBR and DVL against VSV-eGFP-SARS-CoV-2-S, SARS-CoV-2WT Wuhan-Hu-1
strain, and Gamma and Omicron variants.

By using VSV-eGFP-SARS-CoV-2-S, our results demonstrated that ConBR and DVL
strongly inhibited the viral entry to the host cells, suggesting potential interactions of the
lectins–spike glycoprotein, demonstrated by the high Selective Indexes (SI) of 1016.2 and
86.6, respectively. In the context of infection by SARS-CoV-2WT and the variants Gamma
and Omicron, ConBR presented SIs of 7, 1.7, and 6.5, respectively, and DVL presented SIs
of 25, 16.8, and 22.3 against these SARS-CoV-2 variants. For these later assays, SIs were
determined using a cell line derived from human lung epithelial adenocarcinoma (A549
cells) to better represent the infection in the human respiratory tract. Overall, the SI rates
of both lectins were lower in infections with variant Gamma when compared to Omicron
and SARS-CoV-2 Wuhan-Hu-1 strain infections. As reported by Spira, Gamma variant
infections can display high transmissibility and a high degree of virulence [85]. On the other
hand, McMahan and collaborators determined that Omicron infections decreased lung
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infectivity and pathogenic effects [86]. Wang and colleagues evaluated the anti-SARS-CoV-2
activity of 12 plant-derived lectins with different carbohydrate specificities and compared
the infections of SARS-CoV, MERS-CoV, SARS-CoV-2 Wuhan-Hu-1, and variants Alpha,
Beta, and Gamma [84]. According to their results, when compared with infection by the
variants, the IC50 rates of the lectins against variant Gamma were slightly bigger than in the
other variants, meaning that a higher concentration of the lectins was necessary to achieve
the inhibition of 50% of the infection [84].

A previous work investigated the antiviral potential of lectins against coronaviruses
and demonstrated that, from 14 mannose-specific agglutinins lectins, only a lectin derived
from Allium porrum presented an SI > 100 [87]. In a more recent perspective, other mannose-
biding lectins demonstrated anti-SARS-CoV-2 activity with SI rates lower than 100, as
reported by Ahmed and collaborators [32]. Even though there is no antiviral specifically
designed for SARS-CoV-2, Remdesivir was repurposed for the treatment of COVID-19 and,
according to Choi and collaborators, in vitro assays using Vero E6 cells demonstrated an SI
of 50 [88]. Cox and colleagues compared the activity of Remdesivir pro-drug GS-621763
against SARS-CoV-2 Wuhan-Hu-1 using VeroE6 or A549-ACE2 cells and obtained SIs of
>137 and >51, respectively [89]. Franco and co-workers tested the effects of EIDD-1931,
another licensed repurposed antiviral against SARS-CoV-2 (the active form of Molnupi-
ravir), and demonstrated an SI of 12.5 against Omicron infection in A549-ACE2 cells [90].
These works represent a great reference for the comparison with our data, presented here,
concerning the SI results of the treatments with ConBR and DVL.

The activities of ConBR and DVL were also investigated in different stages of the virus
replicative cycle. Both lectins presented a strong inhibition of the early and late stages of
viral infection, suggesting an effect of these lectins on viral particles, such as, for example,
the virucidal action. A similar inhibitory effect was also observed for a lectin isolated from
Triticum vulgaris (a type of “Wheat Germ Agglutinin”—WGA) against SARS-CoV-2 and its
variants of concern Alpha and Beta [81]. In this study, Auth and colleagues demonstrated
that WGA potently inhibits SARS-CoV-2 infection with an IC50 of <10 ng/mL, and it also
had antiviral activity against variants Alpha and Beta. Using the same method we used for
ConBR and DVL, Auth and co-workers indicated that WGA’s anti-SARS-CoV-2 activity
was more effective upon preincubation of the lectin with the virus or when added during
infection, and suggested that this lectin interacts with the spike glycoprotein, which is
heavily glycosylated [21], blocking the interaction between viral glycoprotein and host cell
receptors [81].

Since our data demonstrated a strong virucidal activity of ConBR and DVL, and
based on the previously reported interactions of lectins–spike glycoprotein [21], we aimed
to further investigate the role of the carbohydrate-binding site on the actions of these
lectins against SARS-CoV-2 infection. Therefore, we performed a blocking assay using
D-(+)-Mannose during the infection of SARS-CoV-2WT of cells and treatment with ConBR
and DVL. ConBR and DVL share the Carbohydrate Recognition Domain ligand (CRD-
ligand) with mannose [28,78]; however, the anti-SARS-CoV-2 potential activity of these
Brazilian lectins has not been explored yet. According to our data, the presence of mannose
completely abrogated the anti-SARS-CoV-2 activity of these lectins and had similar results
in both general infection and virucidal assays.

At the beginning of the COVID-19 pandemic, Watanabe and collaborators revealed,
through spectrometric analyses, the presence of mannose-glycan types associated with the
spike glycoprotein [21], which was, afterwards, confirmed by Lokhande and colleagues
through the use of molecular docking and simulation studies [91]. Wang and collaborators
used a pseudovirus-based neutralization assay to assess the antiviral activity of a lentil
lectin isolated from the Lens culinaris plant, along with 11 other plant-derived lectins with
different carbohydrate specificities [84]. According to their results, Lens culinaris-derived
lentil lectin, which specifically binds to oligomannose-type glycans, had the best antiviral
activity, showing an IC50 of 40 µg/mL using the VSV pseudovirus model [84]. Additionally,
a mannose-biding lectin isolated from Lablab purpureus seeds (FRIL), which is structurally
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similar to the plant lectin ConA, also exhibits effects against SARS-CoV-2 in vitro and
in vivo [82]. In this context, Cavada and coworkers showed that ConBR presents 99%
similarity to ConA [78]. Therefore, our data suggest that SARS-CoV-2 infection inhibition
may occur by lectin–spike interaction, especially in RBD mannose-glycans, leading to a
decrease in RBD-ACE2 binding, and, consequently, interfering in membrane cell fusion.

Gong and colleagues reported that recombinant SARS-CoV-2 glycoproteins expressed
in human cells, or from native S protein, presented high occupancy with oligomannose
glycan type at N234 of RBD [24]. A regular N-glycan occupancy on S protein subunits [92]
could be an opportunity for mannose-biding lectins to directly block the engagement of the
S protein to the receptor and inhibit viral infections of host cells.

We further investigated the potential binding interactions between SARS-CoV-2 S
and the mannose-biding lectins studied here. Our data demonstrated that ConBR and
DVL interacted with the SARS-CoV-2 S protein (binding energy of −85.4 Kcal/Mol and
−72.0 Kcal/Mol, respectively) through its carbohydrate binding domain facing with the
modified spike Asn234-high-mannose, suggesting the possible mechanism observed here
in vitro. Additionally, the structural alignment between ConBR and DVL complexes with
the modified Asn234 spike protein revealed that both lectins docked similarly with the
viral glycoprotein, suggesting the same mechanism of action for these lectins on viral cell
entry impairment. Previously, Lokhande and collaborators claimed that banana-derived
mannose-specific lectin (BanLec) was able to target N-glycans of the spike glycoproteins
to neutralize SARS-CoV-2 infectivity, and showed a biding energy of −219.8 Kcal/Mol
with the S–protein complex [91]. Chikhale and colleagues tested lectins isolated from the
medicinal plant Withania somnifera, also called Indian ginseng [93], and molecular dynamics
(MD) suggested that “Withanoside X”, one of the substances derived from W. somnifera,
presented binding free energy of −89.42 Kcal/Mol. Their results have also shown this
lectin's ability to inhibit SARS-CoV-2 host entry and replication [93]. The infrared analysis
confirmed the interaction with amide I, derived from protein structure and also from
carbohydrate binding, in both ConBR and DVL complexes with VSV-eGFP-SARS-CoV-2-S.

Interestingly, ConBR and DVL impaired post-entry replication of SARS-CoV-2WT
and also protected cells from infection. Although the main mechanism of action of other
mannose-binding lectins is in the early stages of viral infection, according to our data,
ConBR and DVL also inhibited up to 88% of SARS-CoV-2WT replication. The strong
antiviral activity during the post-entry stages implies that both lectins act not only by
preventing SARS-CoV-2WT entry to the host cells. Barton and co-workers, in a study of
anti-HIV activity of Griffithsin (GRFT), a red-alga-derived lectin, determined that it not
only interferes with virus entry, but also inhibits the viral protein production [94]. They also
proposed that GRFT inhibits viral replication of other viruses, such as the hepatitis C virus
and the Japanese encephalitis virus [94–97]. Additionally, in our data, ConBR and DVL
protected cells from infection at rates of up to 88%. Lan and colleagues demonstrated that
lectins possess the ability to agglutinate erythrocytes without altering the carbohydrates
properties, since they have a minimum of one non-catalytic domain that binds reversibly to
specific cellular monosaccharides or oligosaccharides [29]. These interactions with cellular
receptor glycans could prevent the interaction with the spike glycoprotein and, therefore,
suggest a mechanism of how it protects the cell from viral infection.

To further explore the effects of lectins on the late stage of the viral replication cycle, we
performed an extended post-treatment assay using Vero E6 cells. In the 4 h.p.i. treatment,
lectins prevented up to 79% of SARS-CoV-2WT infection. In the 12 h.p.i. treatment in
both cells, the lectins presented excellent inhibition rates, both over 98%. Considering the
evidence that SARS-CoV-2 virions are released, on average, after 12–36 h.p.i. [64], these
data corroborate the effect of these lectins on viral particles that are being produced during
the late stages of life cycle. Therefore, ConBR and DVL might affect both the entry of virus
particles into naïve cells and the release of newly produced virions. The presented findings,
however, are lacking information about the effect of these lectins on the production of
infectious viral progeny since our assays evaluated an incubation of 24 h post infection.
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We believe that these data would be fruitful in future works for assessing the full antiviral
potential of ConBR and DVL.

Regarding the SARS-CoV-2 antiviral research, the use of three-dimensional organoids
is emerging as a desirable approach for understanding the virus–host interactions and
for identifying novel therapeutic agents. The benefits of using 3D cell culture models to
study respiratory virus infections, including COVID-19, and to search for anti-SARS-CoV-2
agents using primary human epithelial respiratory cells have been reported [98,99]. In this
context, our data on the anti-SARS-CoV-2 activity of ConBR and DVL lectins support the
possibility of future assays using organoids to better represent the human respiratory tract
in vitro.

Mitchell and co-workers claimed that antiviral lectins are extensively being pursued
clinically as anti-HIV microbicides via mucosal administration in successful in vivo ro-
dent models [94,100]. Also, the mucosal via has been used in treatments with anti-H1N1
lectins [101] and anti-HSV-2 lectins [102]. Against SARS-CoV, an intranasal administration
of the lectin Griffithsin (GRFT), from red algae, was used in a mouse model of pulmonary
infection, which prevented weight loss, improved lung histopathology, and reduced lung
tissue virus titers [100,103,104]. The active agent GRFT was also formulated as a rectal
microbicide gel to prevent viral entry of HIV types 1 and 2, as well as HSV-2 and HCV,
and was successfully tested in in non-human primates [105]. Boger and collaborators
recently reported a phase I clinical trial evaluating the application of a topical rectal douche
product containing Q-Griffithsin (Q-GRFT), which effectively reduced HIV transmission
and did not disrupt the epithelial border or alter CD4+ cell distribution in the human rectal
mucosa [106]. Although there is little published data about pre-clinical antiviral-based
lectin drugs trials, based on these examples, it is possible to suggest that lectins are safe
and tolerable as possible antiviral compounds. Therefore, our in vitro ConBR and DVL
anti-SARS-CoV-2 data could be useful for future in vivo assays.

5. Conclusions

In summary, to the best of our knowledge, this study provides the first evidence of
the carbohydrate-binding antiviral action of ConBR and DVL. Our findings show that
mannose-biding plant lectins possess great potential as antiviral compounds and could be
useful as templates for the development of novel antiviral drugs against SARS-CoV-2.
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