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Abstract: Foodborne viruses are an important threat to food safety and public health. Globally, there
are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis
E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide,
while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe
have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption
of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis
worldwide currently. This review focuses on the latest findings on the foodborne transmission routes
of HAV and HEV and the methods for their detection in different food matrices.
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1. Introduction

The estimated number of cases caused by foodborne diseases is 600 million each
year, leading to 420,000 premature deaths worldwide [1]. Food can be unsafe for human
consumption due to the presence of pathogens such as bacteria, viruses besides parasites
and chemical or physical substances [2]. Human pathogenic viruses represent a frequent
causative agent of foodborne diseases, having a significant impact on human health and the
economy. Although numerous viruses may be foodborne transmitted, noroviruses and hep-
atitis A virus (HAV) are the major causative agents of foodborne viral outbreaks. Hepatitis
E virus (HEV) is a significant cause of acute viral hepatitis worldwide. Additionally, it is an
emerging pathogen in economically developed countries, and the foodborne transmission
of this zoonotic virus appears to be the major route in Europe (HEV-3) [3,4]. Both HAV and
HEV are small RNA viruses but differ in genomic organization and structure.

Hepatitis A virus is a positive-stranded RNA virus belonging to the genus Hepatovirus
of the Picornaviridae family [5,6]. HAV is a small virus with a 27–32 nm diameter virion.
Two different forms of this infectious virus can be found: the naked, non-enveloped HAV
virions which are excreted in the stool, and the quasi-enveloped virions (eHAV), which
are released non-lytically from infected cells. eHAV are found in the blood of infected
patients or in the supernatant of infected cell cultures [7,8]. HAV is a causative agent of
acute infection of the liver; the clinical course of infection ranges from mild to severe while
children (<6 years) are often asymptomatic. Symptoms can include fever, malaise, loss of
appetite, diarrhoea, nausea, abdominal discomfort, dark-coloured urine and jaundice (a
yellowing of the eyes and skin) [2]. Infection by HAV leads to lifelong immunity and does
not result in chronic infection or chronic liver disease [9]. The HAV infection is rarely fatal;
the WHO estimated that in 2016, 7134 people died from HAV worldwide (accounting for
0.5% of the mortality due to viral hepatitis [1]).
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HAV is classified into six genotypes; three genotypes infect humans (I, II and III) and
IV, V and VI infect simians. Genotypes I, II and III are divided into seven subtypes (IA, IB,
IC, IIA, IIB, IIIA and IIIB). Worldwide, genotype IA is the most reported, which is followed
by III, while genotype II has been rarely reported. For the latter, genomic information is
sparse [10,11].

Hepatitis E virus (HEV) is a small single-stranded RNA virus that belongs to the
Hepeviridae family in the Orthohepevirus genus [12]. Similar to HAV, two different HEV
particles exist: the non-enveloped particles that are mainly found in faeces and the quasi-
enveloped particles that can be found in serum and cell culture supernatant [13]. Non-
enveloped particles showed higher infectivity in cell culture and in uPA-SCID mice model
compared to enveloped particles [14,15].

HEV is classified into eight genotypes; HEV-1-4 and HEV-7 have been shown to infect
humans; HEV-5 and 6 have been shown to infect only wild boar. HEV-3 infects domestic pig
and wild boar, while HEV-7 and HEV-8 has been proposed as a zoonotic camel variant [16].
HEV-3 and HEV-4 are considered zoonotic [17,18]. HEV genotypes are further divided in
subtypes [19,20].

HEV-1 strains are endemic to Asia and most countries in sub-Saharan Africa, where
it is the main cause of recurrent epidemics. Moreover, HEV-1 is causing large outbreaks
in India [21]. HEV-2 is present in Mexico, Nigeria, Chad, Sudan, and the Central African
Republic [22]. HEV-3 has a worldwide distribution (Europe, the United States, and other
North American countries, Central and Southern Japan, New Zealand, and Australia)
while HEV-4 can be found predominantly in Asia (China, northern Japan, and India) [23].
HEV-5 and HEV-6 were detected in Japan [24]. So far, HEV-7 has been identified in the
United Arab Emirates, Somalia, Sudan, Egypt, Kenya, Pakistan, Israel, Saudi Arabia and
Djibouti [16]. HEV-8 was detected in China [25].

Most of the HEV infections are asymptomatic but HEV can cause symptomatic infec-
tion leading to a self-limited, acute hepatitis [26]. HEV can become chronic in immunosup-
pressed people [27,28]. HEV-1 and HEV-2 can cause severe disease and fulminant hepatitis;
pregnant women are affected primarily [29]. HEV infection in pregnant women shows rapid
virus replication and has a high incidence of developing fulminant hepatic failure (FHF) or
acute liver failure (ALF) [30]. The mortality rate in pregnant women is often 30% or higher
particularly in the third trimester [31]. Wang and colleagues identified two mutations in the
ORF1 of HEV-1 that enhanced viral replication and may be associated with FHF [32]. Rarely,
HEV can lead to ALF not only in pregnant women but also in elderly patients, patients with
leukaemia or coinfection with other hepatotropic viruses [33–35]. HEV-3 and HEV-4, on
the other hand, do not appear to cause fatal infections with fulminant hepatitis in pregnant
women, but this has to be confirmed in future studies [36]. However, HEV-4 was shown to
be associated with adverse pregnancy outcomes in pregnant women [37,38]. Rarely, acute
and chronic and otherwise symptomatic and asymptomatic HEV-3 infections can cause
neurological disorders (e.g., neuralgic amyotrophy and Guillain–Barré syndrome) [39].

2. Transmission Routes

The shedding of foodborne viruses originates from the human gastrointestinal tract,
and their presence in water and food is a result of contamination by sewage, poor hygiene,
or contamination by food handlers [40]. Food can be contaminated at any stage from farm
to table; however, often, foodborne viral infections can be traced back to infected food
handlers [41]. Foodborne viruses (including HAV and HEV) are typically highly resistant
to environmental factors, such as low pH (acidity) and heat [42,43]. They can remain
infectious for over a month in food and water [44,45].

2.1. Foodborne Transmission of HAV

The main route of HAV transmission is from person-to-person by the faecal–oral route.
HAV outbreaks occur from time to time in high-risk populations, such as men who have sex
with men (MSM, sexual transmission) and persons who use injection drugs (bloodborne
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transmission) [46,47]. Vertical transmission of HAV (from the mother to the foetus) is
uncommon, although there are few case reports published [48,49]. In addition, HAV can
be transmitted by the ingestion of contaminated food or water. Closed environments and
restaurant caterings results in the most common setting of HAV outbreaks. Most European
countries are considered as non-endemic or have low endemicity [50], so infection is often
related to recent travel to countries with higher rates of HAV. In addition to travelling, HAV
infections and outbreaks are frequently associated with imported food products (Table 1).

Berries, green-leaf salads and bivalve molluscan shellfish (BMS)—that are often eaten
unprocessed—are the most common food matrices implicated in HAV outbreaks. Ready-to-
eat meals contaminated by a food handler or using a contaminated ingredient (e.g., berries
on cakes) can cause outbreaks as well. A harmonised investigation in three European
countries demonstrated the presence of human enteric viruses in the leafy green vegetable
supply chain; however, HAV was only detected in samples from the primary production
phase [51]. Due to the complexity of food supply chains and the long incubation time
of HAV (with a mean of about 30 days) [52], it is often difficult to identify the actual
contaminated source. Table 1 summarises the lately published outbreak studies of HAV
containing the investigations in which the implicated food or food handler was confirmed
by PCR. In addition to dates and clams, the outbreaks were related to frozen berries (often
imported), lettuce and dried tomatoes (Table 1).

Table 1. HAV outbreaks associated to food published in the last 15 years.

Year Genotype Implicated Food Imported 1 No. of Cases Outbreak Location Reference

2021 IB medjool dates Y 31 England and Wales [53]
2021 IB medjool dates Y 6 Australia [54]

2019 IA jogaejeot (fermented
clams) N South Korea [55]

2019 IA blackberries Y 20 USA [56]
2018–2022 IB strawberries Y 65 Germany [57]

2018 IB strawberries Y 20 Sweden and Austria [58]
2018 IB frozen pomegranate Y 30 Australia [59]

2017 IB frozen
raspberry/blueberry Y 14 The Netherlands [60]

2016 IA raw scallop Y 292 Hawaii [61]

2016 IA frozen strawberries and
blackberries Y 7 New Zealand [62]

2015 IA mixed frozen berries
packed Y 67 Australia [63]

2014 IA kava drink N 4 Australia [64]

2013–2014 IA mixed frozen berries Y 1803

Italy, Germany, Ireland,
Norway, Austria, Poland,

Netherlands, Bulgaria,
Denmark

[65–67]

2013–2014 IA frozen berry mix cake Y 33 Norway [68]

2012–2013 IB frozen strawberries Y 103 Denmark, Finland,
Norway and Sweden [69]

2012 IB
pomegranate seeds, a
component of frozen

fruit blend
N 9 Canada [70]

2012 IA mussels N 9 The Netherlands [71]
2011 IB semi-dried tomatoes nd 8 The Netherlands [72]
2011 IB semi-dried tomatoes nd 7 England [73]
2010 IB semi-dried tomatoes 13 The Netherlands [74]
2010 IB semi-dried tomatoes Y 59 France [75]
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Table 1. Cont.

Year Genotype Implicated Food Imported 1 No. of Cases Outbreak Location Reference

2009 IB semi-dried tomatoes Y and N 562 Australia [76]
2008 nd lettuce nd 22 California, USA [77]

2008 IB Raw clams
(Coquina clams) Y 100 Spain [78]

2008 IIIA lettuce or carrot N nd South Korea [79]
1 Y (yes)/N (no)/nd (not defined).

Bivalves are filter feeders and can therefore bio-accumulate and concentrate microor-
ganisms and viruses from water. Hepatitis A outbreaks are rarely reported in association
with the consumption of contaminated bivalve shellfish [80,81], which is possibly due to
the low and decreasing incidence of HAV in the European population [82] and due to the
long incubation time, making trace-back difficult. The presence of HAV in BMS varies over
time and place. Dirks and colleagues studied the presence of HAV (besides norovirus) in
bivalve molluscs in the Netherlands between 2013 and 2017. Among the total of 228 oyster
and 392 mussel samples, the presence of HAV RNA was detected in only one mussel
sample (0.3%, genotype IA) [83]. In the Campania region (Southwest Italy), 289 samples
from shellfish production areas and other locations were tested between 2015 and 2017;
8.9% of the samples tested positive for HAV [84]. Shellfish samples (108, fresh and frozen)
were collected from three harvesting areas and from restaurants, fish markets, and shellfish
markets in Sicily; 13% of the samples tested positive for HAV (14 HAV-positive samples,
one HAV 1A and 13 HAV 1B) [85].

In a study assessing the trend of HAV, after a contamination in BMS caused by a com-
munity outbreak, a minimum of 5 weeks was required to reduce viral loads to undetectable
levels. Moreover, according to their regression analysis, 2–3 months may be required to
ensure the removal of residual viral particles present in concentrations below the detection
limits of the analytical method [86].

Rarely, drinking water can be a source of HAV infection; several HAV outbreaks have
been documented and linked to faecally polluted drinking or recreational water [87].

2.2. Transmission of HEV

Unlike HAV, human-to-human transmission of HEV is uncommon. Secondary attack
rates among household contacts of HEV cases was shown to be very low (0.7–2.2%), while it
was 50–75% in the case of HAV infections, which is another enterically transmitted virus [88].
The most common sources of HEV infections that occur in humans are contaminated water
or food. However, the number of reported transfusion-transmitted HEV (TT-HEV) cases,
in blood donation recipients, is also on the rise [89]. In addition, the maternal–foetal
transmission of hepatitis E virus has also been reported [90,91].

2.2.1. Waterborne Transmission

HEV-1 and HEV-2 are human specific, and large HEV outbreaks occur due to con-
taminated water consumption in low-income countries [92–94]. An investigation of a
tap water-mediated HEV outbreak in China suggests that sporadic cases of waterborne
outbreaks of HEV-4 may occur in industrialised countries [95]. Sewage of human and
swine origin can be a potential transmission route for HEV, and few infected people can
contaminate municipal wastewater treatment plants (WWTP), increasing the potential
for further spread of the virus [96]. Coastal waters can become contaminated by human
sewage and manure runoff, and therefore, HEV can accumulate in shellfish produced
close to land [97–99]. The detection of HEV-3 in surface and drinking water indicates the
potential risk of HEV-3 transmission through drinking water [100–102].
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2.2.2. Zoonotic Transmission of HEV

Meat consumption as a source of HEV infection of humans was first described in
2005 [103]. Foodborne transmission in Europe is linked to the consumption of HEV-
contaminated pork meat products (liver sausages, salami), undercooked wild boar meat
and raw venison. Zoonotic transmission of HEV-3 (predominant in Europe and in America)
and HEV-4 occurs frequently, and pigs represent the main reservoir for zoonotic HEV [104].

The numerous contact points between humans and domestic and wild animals from
breeding to the food industry redound HEV transmission. The prevalence of HEV in pigs
varies between pig farms, farming systems and countries. Generally, both the between-herd
and within-herd prevalence of HEV is high (between 20 and 75%), indicating the frequent
exposure of pigs to the virus [105–109]. Boxman and colleagues found a high prevalence
(16%) of acute HEV infection in pigs in Dutch slaughterhouses [110]. The length of the
fattening period has been shown to affect the risk of HEV; a longer fattening period may
lower the risk of HEV in shedder animals at slaughter and thus reduce the risk of food
contamination [111].

The seroprevalence of immunoglobulin G (IgG) against HEV (anti-HEV IgG) ranges
between 10 and 20% in the European human population [112–115], and exposure to pigs
is associated with a significantly higher seroprevalence (in people with contact to pigs)
compared with non-exposed humans [116]. A high prevalence of anti-HEV antibodies
among swine slaughterhouse workers and farmers has been reported, suggesting an
occupational risk of HEV infection [117–120]. Wu and colleagues studied the risks of HEV
infection in workers along the meat supply chain [121]. Their analysis showed that the
human HEV infection risk increased along the pork supply chain, with the highest risk at
pig slaughterhouses and pork markets; in contrast, no significant higher risk was observed
among poultry workers.

Outbreaks of HEV-3 are primarily associated with the consumption of pork products,
especially undercooked pork liver or sausages [122,123]. Pig liver is more frequently posi-
tive for HEV, while muscles are less often contaminated by HEV-RNA [107]. In accordance
with that, the presence of HEV is the highest in products containing liver, which is followed
by raw meat sausages (Table 2). Table 2 summarises the recently published studies of the
presence of HEV RNA in commercially available pork products and meat cuts. A para-
metric stochastic model estimating the risk of foodborne exposure showed that products
containing liver pose the highest risk at the individual level [124].
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Table 2. HEV RNA detection in meat products.

Year of Sampling Type of Samples Region/Country No. of Samples Percentage of HEV RNA Detection Reference

2013–2014
pork meat cut, ground pork meat, pig liver,

pig intestines, raw pork balls, pork
sausages, fermented pork products

Nakhon Pathom Province,
Thailand 214 0.5% of pork products, 2.0% of pig liver [125]

2017–2018 marketed meat cuts (beef, chicken, pork) Uruguaiana, Rio Grande do
Sul, Brazil 131 0% [126]

2022 pork liver pâtés, raw dried hams and raw
dried sausages Belgium 54 65% of the pork liver pâtés, 15% of raw dried

hams and 0% of raw dried sausages [127]

2018 ground pork, liver Northern California, United
States 209 12.6% of ground pork, 45% of pork liver [128]

2017–2019 sausages the Netherlands 316 [129]

2019–2020 liver, liver sausage, liver pate Germany 131 10%, pork livers (5%), liver sausages (13%) and
liver pâté samples (15%) [130]

2017 pork cuts and organs Spain 450 [131]

2016 liver, liver sausage, liver pate, meat cuts,
sausages, wild boar meat 521

12.7% of livers, 70.7% of liverwurst, 68.9% of
liver pate, 0% of the pork chops, 0% of fresh

sausages, 0% of wild boar meat
[132]

2017–2018 raw bacon, meat cuts, pork and wild boar
sausages, salami, wild boar salami Southern Italy 162 6.3% of wild boar salamis, 0% all other samples [133]

2017–2018 meat cuts, liver, kidney, blood curd Hebei Province, China 413 pig liver 6.1%, kidney 3.1%, and blood
curd 1.2% [134]

not detailed pork meat cuts, livers, intestines,
spleens, ureters China 107 33.3% of meat cuts, 8.3% of pig liver, 18.7% of

intestine, 33.3% of spleen, 26.3% of ureter [135]

2016 liver sausage, raw meat sausage Switzerland 90 18.9% of liver sausages, 5.7% of raw
meat sausages [136]

2014–2015 liver sausage, salami, wild boar sausages Germany 120 20% of raw sausages, 22% of liver sausages [137]

2011 sausage, liver sausage, dry salted liver,
liver quenelles France 394 30% of sausage, 29% of liver sausages, 25% of

liver quenelles, 3% of dried salted liver [138]
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Studies on the efficiency of inactivation methods for HEV during meat processing
are quite limited [139]. According to a study by Johne and colleagues, high hydrostatic
pressure processing (HPP) can be considered as a treatment method for decreasing the risk
of foodborne HEV transmission [140].

In addition to swine, wild boar is also an important natural reservoir for the zoonotic
transmission of HEV around the world. Since HEV infections are mostly asymptomatic,
only two outbreaks associated with the consumption of undercooked venison and wild
boar has been published so far [103,141]. Table 3 summarises an updated list of survey
studies published of the presence of HEV in wild boar. The prevalence of the virus varies
greatly between different geographical regions, as does as the number of samples tested in
these surveillance studies.

Although swine and wild boar are the main reservoirs of HEV-3-6, several other animal
species act as an HEV host, including domestic and wild ruminants. The first identification
of HEV RNA and evidence of zoonotic transmission of HEV in deer has been published in
2003 [142]. Since then, numerous surveillance studies were published on molecular and
serologic screening of serum and faecal samples from domestic and wild ruminant species.
The virus is present in deer (red deer, Cervus elaphus; roe deer, Capreolus capreolus; fallow
deer, Dama dama) and in chamois (Rupicapra rupicapra); however, the prevalence of HEV
varies in different geographic regions [143–147]. A high seroprevalence of HEV has been
observed in wild reindeer (23.1%) and moose (30% and 19.5%); furthermore, HEV exposure
in muskoxen has been reported [148,149]. In a study from Finland, HEV seroprevalence
was 9.1% (31/342) in moose and 1.4% (1/70) in white-tailed deer, but HEV RNA could not
be detected from samples of seropositive animals [150]. HEV RNA was detected in 7.69%
of the moose samples (n = 13) in a surveillance study in Lithuania [147].

HEV-3 and HEV-4 have been detected in bovine liver as well, suggesting that bovine
livers may be involved in the zoonotic transmission of HEV to humans [151,152]. More-
over, HEV-3 is also present in sheep and goat populations in Italy [143,153]. Recently,
sporadic infections with rabbit HEV (raHEV) have been reported, and immunosuppressed
patients (solid organ transplant recipients) have been infected with rabbit HEV (genotype
3ra) [154,155]. In France, 5 of 919 (0.5%) HEV-infected patients during 2015–2016 were
infected with a rabbit HEV strain. The source of infection was unclear because none of
the patients had direct contact with rabbits. The HEV-3ra infections could be the result of
foodborne or waterborne infections [156].

Predominantly, the HEV variants causing human infections belong to HEV species
A (Orthohepevirus A, HEV-A) [12]. Orthohepevirus genotype 1 (HEV-C1) circulates in rats
and was first isolated in Germany in 2010 [157]. HEV-C1 was earlier considered unable
to infect humans, but since then, several rat hepatitis E virus (HEV) cases have been
identified in humans [158–162]. Despite the occurrence of HEV-C1 infections in humans,
several studies indicating that HEV-C1 infections are very rare among several populations
in Europe [163–165]. Furthermore, the transmission route of HEV-C1 between rats and
humans is elusive. Rat meat consumption is uncommon, suggesting other infection sources
and transmission patterns (e.g., rat infestation in domestic premises, water contamina-
tion). Further epidemiological investigations would help to identify infection sources and
transmission patterns.

HEV-3 and HEV-4 have been found to be excreted in the milk of ruminants [166–168];
however, data on the potential milk-borne transmission are still lacking or/and conflicting.
The presence of HEV in milk samples from dairy farms was investigated in Germany,
but HEV-specific RNA could not be detected in the 400 bulk milk samples [169]. The
different results can possibly be due to the differences in the genotype distribution and
the differences in the farming systems. Thus, further investigations on the prevalence of
HEV in milk could facilitate the understanding of its risk of zoonotic transmission. The
zoonotic infection by HEV-7 in a human liver transplant patient who had consumed camel
milk demonstrates the ability of this virus to infect humans.
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Table 3. HEV RNA detection in wild boar.

Year of Sampling Species Country No. of Samples HEV RNA Prevalence; Genotype and Subtype Reference

2018–2022 wild boar Portugal 144 stool samples 2.80%; HEV-3e, m [170]
2017–2022 wild boar China 599, faecal or serum samples 2.2%; HEV-4a, d, h [171]
2019–2020 wild boar Italy 86 liver 26.70%; HEV-3c [172]
2019–2020 wild boar Italy 156 livers 5.12%; HEV-3c [173]

2013–2017 wild boar and deer Germany 1961 wild boar, 559 roe deer, 736 red deer,
316 fallow deer wild boar 13.3% and deer from 4.2%; HEV-3c, f, i [174]

2012–2021 wild animals, including
15 species Japan 3489 serum samples 1.2% of wild boar, 0.06% of Sika deer, HEV-3a, b, k

HEV-4j [175]

1997–2020 wild sika deer (Cervus
nippon) Japan 395 serum and 199 liver samples of 405 sika deer 0.20%; HEV-3b [176]

2019 wild boar Germany liver, faeces, and muscle samples mean 8.14%; HEV-3a, c, e, f, k, i [177]
2016–2020 wild boar Italy 611 livers and 88 paired lungs 2.45% of livers, 1.13% of lungs; HEV-3n [178]

2015–2020 wild boars, red deer, roe
deer and chamois Italy 602 wild boar liver, 228 ruminant liver 6.97%; HEV-3a, f [179]

2015–2019 wild boar Poland 470 liver, 433 faeces 12.1% of liver, 6.2% of faecal samples [180]
2018–2019 wild boar Bulgaria 32 12.50% [181]

2013–2019 wild boar Japan 1803 serum samples, 1519 liver tissues and
42 gallbladder 3.90%; HEV-5 [182]

2015–2016 wild boar Korea 1859 wild boar bloods 1.29%; HEV-3a, HEV-4a, d [183]
2010–2017 swine and wild boars Croatia 720 tissue and/or blood samples 11.50%; HEV-3a, e [184]
2016–2017 wild boar Italy 92 livers 52.20%; HEV-3c, f [185]
2013–2015 wild boar Romania 45 liver, 5 spleen 18%; HEV-3 [186]
2011–2012 wild boar Portugal 80 liver samples, 40 stools 25% of livers, 10% of stools; HEV-3e [187]

2003–2010 wild boar, Iberian pig,
deer Spain 287 10.12% of wild boar, 16.05% of red deer, 0% of

Iberian pigs [188]

nd wild boar Italy 594 serum and 320 liver 4.9% of liver, 0% of serum samples; HEV-3e, f [189]
nd wild boar Sweden 159 blood samples 8.17%; HEV-3f [190]
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Genotypes 7 and 8 should be considered as potential human pathogens [191]. A
review has been recently published, summarising the current scientific knowledge in HEV
detected in milk [192].

3. Methods Used for Detection of HAV and HEV in Different Food Matrices

The low virus concentration and the complexity of food matrices make it difficult to
detect viruses in food samples. In general, the virus detection procedure contains three
main steps: (1) virus extraction from food matrices, (2) nucleic acid extraction and (3)
detection by PCR-based methods.

The first step of the virus detection is virus extraction, which includes the separation
and concentration of viruses from food matrices. Methods for the extraction depend on
the food composition; three main categories can be distinguished [193]. The first category
is composed of carbohydrate- and water-based foods (fruits and vegetables). The second
category includes fat- and protein-based foods (ready-to-eat products). Shellfish belongs to
the third and separate food category due to the accumulation and concentration of viral
particles and other pathogens in the shellfish digestive system. Stals and colleagues have
summarised the variety of protocols for virus extraction from food samples [194].

The RNA extraction is mostly performed with commercially available kits that are
based on the Boom nucleic acid extraction method using the disruption of viral capsids with
guanidine thiocyanate and adsorption of viral RNA to silica magnetic beads or columns
with silica [195]. Earlier, RNA was extracted by phenol–chloroform, which ischeaper, but
produces hazardous by-products. RT-qPCR is widely used for virus detection because of
its sensitivity and specificity. In addition, it delivers quantitative data if standard curves
or reference values are used. On the other hand, the PCR is an enzymatic reaction and
therefore is sensitive to inhibitors. Food samples are complex and often contain PCR
inhibitors. Therefore, proper controls are needed to avoid false negative results (due to
inhibition) and false positive results (due to cross-over contamination). Inhibition can be
monitored using an external control (EC) RNA, as described, for example, in ISO 15216-
1:2017 [196]. The degree of inhibition is measured by comparing the Cq value of a sample
well spiked with EC RNA with the Cq value of a control well containing an equal amount
of EC RNA in nuclease-free water. Typical PCR inhibitors in food matrices are phenols,
polysaccharides (berries), pectin, polyphenol, xylan (green leafy vegetables), algae, and
glycogen (bivalves) (summarised by [197]).

3.1. Methods for HAV Detection

A standardised method is available for norovirus and HAV detection in food and has
been validated in seven food matrices: bottled water, food surfaces, oysters (Magallana
gigas, earlier: Crassostrea gigas), mussels (Mytilus edulis), raspberries, lettuce and green
onions [196]. In addition to the validated, high-risk food categories, the standardisation and
validation of detecting viruses from other food matrices is needed. For multicomponent
foodstuff samples, methods have been described that can be used to detect viruses in
composite food products for routine diagnosis [198–200].

3.2. Methods for HEV Detection

Unlike HAV and norovirus, no standardised method has been described so far for the
detection of HEV in food samples; however, the standardisation process for the detection of
HEV has recently been initiated by the International Organisation for Standardisation (ISO;
ISO/TC 34/SC 9/WG31 Hepatitis E virus). For pork products, several RT-PCR methods
have been described to detect HEV; a recently published review discusses these methods,
focusing on the successful use in subsequent studies and surveys [201]. A validated
method for HEV RNA detection in meat and meat products has been described by Althof
and colleagues [202]. The method was validated in a ring trial with nine independent
laboratories using artificially contaminated pork liver sausage samples. The method is
currently the basis for the development of a new ISO standard in ISO/TC 34/SC 9 WG
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31 (Magnus Simonsson, personal communication). Contaminated milk is a potential risk
source for HEV infection, so the assessment of HEV in the milk is of great importance for
consumers’ safety [166,203]. A study has been published recently on the detection of HEV
in milk-based food products, showing that the HEV molecular assay could be improved by
the selection of the extraction procedure that matches with the milk matrix. In addition, the
removal of inhibitory substances such as fat and casein from the milk sample increased the
performance [204].

3.3. Digital PCR Vs. qPCR

In recent years, digital PCR (dPCR) has been recognised as a useful alternative to qPCR
for detecting and quantifying viruses in food samples [205–207]. The idea of digital PCR
was described already in the 1990s (then referred to as limited dilution PCR [208]), but it was
not until the 2010s that the technique became widely commercially available. The sensitivity
of the reverse transcription digital PCR (RT-dPCR) assay was similar to that of RT-qPCR, and
the methods agreed well in quantification of the presence of HEV in naturally contaminated
pig products [209]. Similar to qPCR, dPCR allows the simultaneous quantification of
different targets. HAV and norovirus genogroup I and II were quantified simultaneously
by triplex droplet reverse transcription digital PCR in food, drinking water, and faecal
samples [210]. In general, RT-dPCR can be more expensive and time consuming compared
to RT-qPCR, but no external calibration curves are needed for the quantification. In addition,
compared to RT-qPCR, RT-dPCR generally offers higher precision in quantification [211]
and is less affected by inhibitors [212,213] and primer–template mismatches under certain
conditions [214–216].

3.4. Molecular Typing

The typing of viral strains allows the identification of the possible source of foodborne
outbreaks [217]. Moreover, it helps with studying the epidemiology and transmission
routes of the viruses. Online genotyping tools have been developed to identify the HAV
and HEV genotypes of a nucleotide sequence (https://www.rivm.nl/mpf/typingtool/hav/
(accessed on 24 April 2023); https://www.rivm.nl/en/Topics/H/HEVNet (accessed on 24
April 2023)).

Next-generation sequencing (NGS) is a sensitive and widely used technique for the
molecular typing of pathogens. Yang and colleges identified inter- and intra-host variants
of HAV in the clinical specimens and under laboratory culture conditions using NGS [218].
Lately, a multiplex PCR-based NGS was implemented to define HAV genotypes from
hepatitis A patients [219]. NGS is becoming frequently applied in food sample testing,
primarily for norovirus typing [220,221]. Only few studies have been published so far on
the application of NGS for the typing of HAV and HEV in food matrices. The majority
of the NGS methods for foodborne virus analysis are amplicon-based and incorporate an
RT-PCR amplification step (amplification of subgenomic regions, such as the VP1/P2B
junction in case of HAV). These methods can be used for the identification of transmissions
among cases with known epidemiological association. As an example, HAV was detected
and identified as a source of outbreak from frozen berries by NGS in northern Italy [222].
Yang and colleges developed a sensitive and amplification-independent method for virus
characterisation. Celery samples were used as a food matrix, and they were inoculated
with high and low copies of viruses (norovirus and HAV) as a single or as a multi-strain
mixture [223]. Compared to amplicon-based sequencing, the whole-genome sequencing
methods offer a more accurate tracking of virus strains. In a study by Vaughan et al., HAV
genetic identity was precisely determined using whole genome (WG) sequences using
samples from food-borne outbreaks besides non-outbreak-related samples [224].

Both the ORF 1 and ORF2 regions are used for molecular typing of HEV for Sanger
sequencing and NGS, and different subtypes can be determined [130,225–227]. HEV-3
subtypes c, e and f have been shown to be the most prevalent subtypes in Europe [4].
Investigations on the HEV strains circulating in pig farms showed that each farm has its

https://www.rivm.nl/mpf/typingtool/hav/
https://www.rivm.nl/en/Topics/H/HEVNet


Viruses 2023, 15, 1725 11 of 22

unique HEV-3 strain, and the same strain is present in the farms for several years [109,190].
This uniqueness can be helpful in outbreak investigations by facilitating the source tracking.

Sanger sequencing and NGS are still the primarily used methods for viral detection
and typing, but third-generation sequencing such as Oxford Nanopore Sequencing, ONT,
is becoming a common method for epidemiological studies (e.g., to elucidate viral recombi-
nation) [228–231]. Flint and colleagues used a pre-amplification step to obtain full-length
genomic amplicons followed by sequencing on Illumina and ONT platforms in combina-
tion to obtain accurate data while reducing the required viral titre [232]. In general, ONT
can generate long reads up to 100s of kilobases in a relatively short time and at low cost;
however, it is less accurate with a higher error rate compared to Illumina [233,234].

3.5. Emerging Molecular Methods

The rapid and early detection of foodborne pathogens is essential for food safety and
for outbreak investigations. The most commonly used methods for nucleic acid detection
are PCR-based methods thanks to their accuracy. An important limitation of PCR is the
expensive instrumentation and special expertise/trained personnel. Simpler approaches
allow more rapid, ease of use methods with less cost (on-site testing). Several techniques
have been established over time for nucleic acid-based diagnostics. The main types of these
methods are recombinase polymerase amplification (RPA), isothermal-based amplification
methods (e.g., loop-mediated isothermal amplification, LAMP), and CRISPR-Cas-based
detection methods [235]. Reverse transcription loop-mediated isothermal amplification
(RT-LAMP) combines LAMP DNA detection with reverse transcription and can be an
alternative to RT-qPCR. In the case of LAMP, the nucleic acid amplification is conducted
at a constant temperature (between 60 and 65 ◦C), so a thermal cycler is not needed. Wu
and colleges have developed an RT-LAMP assay for the detection of HAV in different food
matrices, including green onion, strawberry, mussel, and milk [236]. Their assay showed
comparable sensitivity with RT-qPCR in certain food matrices. The specific amplification of
the LAMP method relies on four or six designed primers that bind to six regions specific to
the target gene [235]. The mismatches between primers and templates significantly reduce
the amplification efficiency of LAMP (especially the two inner LAMP primers FIP and BIP
that are typically over 40 nt long, which form mismatches easily with templates of highly
variable viruses) [237]. The LAMP assay performance on samples varies according to the
level of detectable RNA, and the diagnostic performance may change over time from symp-
tom onset in real-life clinical settings [238]. Generally, this technique has great potential, but
further improvement and implementation are needed until more extended application.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nu-
clease (Cas) (CRISPR-Cas)-based methods are a promising alternative for pathogen diag-
nostics. Approaches such as SHERLOCK (based on CRISPR-Cas13a) and DETECTR (based
on CRISPR-Cas12a) are potential methods for the rapid detection and identification of
infectious diseases, with simple yet ultra-sensitive tests [239–241]. Although these methods
are rapidly evolving, there are still many challenges that need to be solved before CRISPR
sensing can replace or complement established techniques such as PCR. These challenges
mainly are sequence limitations, standardisation, quantification and multiplexing.

4. Concluding Remarks

The globalisation of the food industry favours the foodborne-related HAV outbreaks,
as many high-risk products (shellfish, fresh or frozen fruits, and vegetables) are produced
in HAV-endemic countries and imported to countries of low endemicity (e.g., Europe). A
standardised method helps the accurate quantification and comparison of analysis results
between laboratories and between different survey studies. The available ISO method for
the detection of HAV in food gives an opportunity for more harmonised and reliable food
control; however, even when harmonised standards are used, considerable variation may
occur in results [242].
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The reported HEV cases in Europe have increased tenfold in the last 20 years partially
due to the increasing awareness and the improvement of the detection methods [3]. Yet,
the global burden of the disease is considered underestimated and largely unknown. It is
difficult to estimate the overall prevalence of HEV, since the methods used in the survey
studies are different as well as the samples sizes of these studies. The prevalence varies
widely between geographical regions and study populations [243]. A standardised method
for HEV detection followed by further research and survey studies of HEV would help
achieve a better risk assessment of the food and animal products in the transmission of
HEV to humans. Comprehensive and comparable surveillance studies in Europe would
help obtain a complete picture regarding the presence and global burden of the virus.

The nucleic acid-based methods (including the most widely used PCR methods) are
not able to discriminate between the infectious and the non-infectious viral particles, which
may make the interpretation of a positive test result in foods arguable. However, with the
usage of proper controls, etc.; the presence of viral RNA suggests that viral contamination
of the tested food has occurred somewhere along the supply chain. Viability PCR methods—
which amplify nucleic acids only from intact virions—could be an alternative to this
problem [244,245], but these methods are not used in routine surveillance currently.

Further method improvements can lead to two different directions that complement
each other. One direction could be the improvement of a more accurate but simple and quick
detection of viruses, such as CRIPSR-Cas based methods. These methods are extremely
useful when a rapid detection is needed (e.g., crisis situations). The other direction—not
replacing but complementing the rapid tests—could be the improvement of NGS methods
(e.g., more user-friendly bioinformatics software) to help the outbreak investigations and
the characterisation of the virus strains circulating in the human population and in the
environment.
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