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Abstract: The COVID-19 pandemic has not only strained healthcare systems in Africa but has also
intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea,
mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during
this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further
burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the
COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise
transmission routes remain uncertain. Given the gravity of the situation, addressing the existing
challenges is paramount. Though the genome sequences from the current outbreak were not available
for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to
advocate for a shift towards active surveillance. This is essential to ensure the successful containment
of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This
study, which presents an update on the phylodynamics and the genetic variability of MARV, further
confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a
slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited
and episodic spread. These results highlight the critical need to strengthen genomic surveillance in
the region to effectively curb the pathogen’s dissemination. Moreover, the study emphasizes the
importance of prompt alert management, comprehensive case investigation and analysis, contact
tracing, and active case searching. These steps are vital to support the healthcare system’s response
to this emerging health crisis. By implementing these strategies, we can better arm ourselves against
the challenges posed by the resurgence of the Marburg virus and other infectious diseases.
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1. Introduction

Throughout the COVID-19 pandemic, numerous African countries, including Equa-
torial Guinea, experienced distinct zoonotic outbreaks [1]. Importantly, this global health
crisis has further strained the already fragile healthcare system, exacerbating the impact of
both emerging and re-emerging diseases, such as the recent Marburg virus (MARV) disease
outbreak in this region. In particular, the re-emergence of MARV during the COVID-19
pandemic is likely attributed to zoonotic spill-over events [2]. The Marburg virus belongs
to the Filoviridae family (Filovirus) and holds the distinction of being the first Filovirus ever
discovered [2]. It is an enveloped, single-stranded, negative-sense RNA virus, ranging
in length from 800 nm to 14,000 nm. MARV, together with the Ravn virus (RAVV) [3], is
the causative agent of Marburg virus disease (MVD), a highly lethal illness [4]. While the
virus is primarily transmitted from animals to humans, it can also spread through direct
contact with infected individuals’ blood, secretions, organs, and bodily fluids, as well as
contaminated surfaces and materials like bedding and clothing [5]. The Egyptian fruit
bat, Rousettus aegyptiacus of the Pteropodidae family, serves as the natural host of MARV
and RAVV. Human infection with MVD is often associated with prolonged contact with
mines or caves inhabited by bat colonies [5]. The World Health Organization (WHO) has
recognized MARV as an exceptionally significant global pathogen, categorizing it as a
risk group 4 pathogen with a high case fatality rate (CFR) ranging from 24% to 88% [6].
Since its discovery in 1967, there have been 14 reported MVD outbreaks, predominantly in
sub-Saharan Africa, including the Democratic Republic of Congo, Kenya, Angola, Uganda,
and South Africa [4]. On 13 February 2023, the Ministry of Health and Social Welfare
(MOW) of Equatorial Guinea officially declared the first-ever outbreak of MVD in two
villages, Ngum-Esatop and Evusoc Mokomo, located in the Nsok-Nsomo district of the
Kie-Nterm province [6]. As of 1 May 2023, a total of 17 laboratory-confirmed cases of
MVD and 23 probable cases have been reported. Among the laboratory-confirmed cases,
there have been 12 deaths, resulting in a CFR of 75% [6]. Confirmed or probable cases
have been reported in five districts: Bata, Ebeibiyin, Evinayong, Nsok Nsomo, and Nsork,
spanning four of the country’s eight provinces (Centro Sur, Kié-Ntem, Litoral, and Wele-
Nzas) [7]. Bata, located in the Litoral province, has been the most affected district, with
11 laboratory-confirmed MVD cases reported. While some reported cases are connected
within a social network or through proximity, the presence of cases and clusters across
multiple districts without clear epidemiological links suggests potential undetected virus
transmission [8]. The incubation period of MVD varies from 2 to 21 days, and the clinical
presentation of the illness typically includes abrupt onset of high fever, severe headache,
and profound malaise. Severe hemorrhagic manifestations may occur between five and
seven days after the onset of symptoms [8]. Diagnosing and treating MVD pose significant
challenges, as the early stages of the disease closely resemble other infectious diseases such
as malaria, shigellosis, meningitis, typhoid fever, and other viral hemorrhagic fevers [6].
Moreover, there are currently no approved vaccines or therapeutics for MARV. Additionally,
the sporadic nature of outbreaks poses challenges in testing new countermeasures during
these crises, both in terms of ethical considerations and logistical complexities [9]. In this
study, given the lack of genome sequences from the ongoing outbreak, we analyzed all
available whole genome sequences of this re-emerging virus from public databases such as
the NCBI Virus portal [10]. Indeed, understanding the genetic variability of a virus is of
paramount importance for constant monitoring and effective management of new waves of
infections. Viruses typically have the ability to mutate over time and these mutations can
affect the virus’s transmission rate, disease severity, and the efficacy of available treatments
and vaccines.

Moreover, a continuous and uninterrupted surveillance of viral genetic variations
enables scientists and public health officials to trace the emergence and spread of new
viral strains. Additionally, monitoring genetic diversity facilitates the identification of
clusters or subtypes of the virus circulating in different regions. This knowledge helps
in understanding transmission patterns and guiding targeted public health interventions.
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Our results strongly advocate for active surveillance to ensure the effective containment of
any potential outbreak of this re-emerging viral pathogen, not only in Equatorial Guinea
but also throughout the African continent. Enhancing genomic surveillance in the country,
coupled with measures like alert management, case investigation, contact tracing, and
active case search, plays a pivotal role in bolstering the health care system’s response to
this emerging health crisis.

2. Materials and Methods
Phylodynamics

To investigate the evolutionary relationship of Marburg virus over time, a dataset contain-
ing all genomes belonging to MARV has been built, downloading all genomes currently avail-
able in NCBI Virus portal (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/, accessed on
15 June 2023) [10]. The dataset consisted of a total of 86 complete genomes, comprising strains
from 11 countries.

Phylogenetic reconstruction was performed by following Scarpa et al. [11]. The genomes
were aligned using the L-INS-I algorithm implemented in Mafft 7.471 [12] and manually
checked and edited with Unipro UGENE v.35 [13]. The best probabilistic model of genome
evolution was determined using jModeltest 2.1.1 [14] through a maximum likelihood optimized
search. Evolutionary relationships among lineages were examined using MrBayes 3.2.7 [15].
Two independent runs were conducted, each consisting of four Metropolis-coupled Markov-
chain Monte Carlo (MCMCMC) simulations, with one cold and three heated chains. These
runs were performed simultaneously for 5,000,000 generations, with trees sampled every
1000 generations. The first 25% of the 10,000 sampled trees were discarded as burn-in. Nodes
with a posterior probability greater than 0.95 were considered statistically supported. The
resulting phylogenetic tree was visualized using FigTree 1.4.0 [16].

To obtain the time-calibrated tree, to determine the evolutionary relationship among
variants and estimate the time of divergence, we employed Bayesian Inference (BI) with
the software BEAST 1.10.4 [17]. This kind of analysis allows, by applying the neutral the-
ory of molecular evolution, the performance of minimum age molecular dating, where
the branch lengths are proportional to the elapsed time. The analysis involved runs of
200 million generations using various demographic and clock models. To determine the
best model for dating inferences, we compared strict and uncorrelated log-normal relaxed
clock models. These clock models were further assessed under different parametric demo-
graphic models (constant population size, exponential population growth, and expansion
population growth) and a piecewise-constant model (Bayesian skyline). Model selection was
conducted using the Bayes Factor test [18], comparing the 2lnBF of Marginal Likelihoods
values, using the software Tracer 1.7 [19], as described in Mugosa et al. [20]. Only values of
effective sample size (ESS) ≥ 200 were considered during the screening process. The maxi-
mum clade credibility tree was generated and annotated using the TreeAnnotator software
from the BEAST package. The resulting phylogenetic trees were edited and visualized using
FigTree 1.4.0 [16]. To reconstruct the Bayesian skyline plot (BSP), a further analyses involv-
ing runs of 200 million generations under the Bayesian skyline model with the uncorrelated
log-normal relaxed clock model was performed.

To identify possible subgroups within genetic clusters and assess the genetic vari-
ability among genomes, a principal coordinate analysis (PCoA) was conducted using
GenAlEx 6.5 [21]. The PCoA reconstruction was based on a pairwise p-distance matrix of
genetic data. The aim of this analysis was to examine the dissimilarity represented by the
genetic variability among the analyzed genomes.

3. Results

The Bayes Factor test indicated that the coalescent constant size, under the lognormal
uncorrelated relaxed clock model, provided a significantly better fit to the data compared
to other tested models (2lnBF = 11.2). The phylogenetic tree obtained with MrBayes and
the time-scaled phylogenetic tree obtained by using the software Beast provide the same
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topology; therefore, only the latter is showed (Figure 1). The Bayesian evolutionary tree,
obtained from a dataset containing all available genomes of Marburg virus (Figure 1),
reveals well-supported branches (posterior probabilities = 1). Overall, the tree exhibits
a distinct and statistically significant genetic structure, geographically and time based.
Following the application of midpoint rooting, the tree reveals two well-separated clades,
one representative of Marburg virus (MARV) and one of Ravn virus (RAVV). The first clade
(MARV) comprises a diverse assemblage of discrete groups represented by three clusters,
while the second (RAVV) was represented by only one cluster. More specifically, regarding
the first main clade (clusters A + B + C in the tree), cluster A is composed of genomes from:
(i) the Demographic Republic of the Congo 1999–2000), (ii) South Africa (only one sampled
in 2013) and (iii) Uganda (2007–2014). In turn, this cluster presents a sister clade relationship
with the heterogeneous sub-clade comprising the clusters B + C, composed of genomes
from Germany, Netherlands, Uganda, Demographic Republic of the Congo, Sierra Leona,
Angola, Guinea, USA and Canada. More specifically, cluster B is composed of genomes
form Germany (1967), Netherlands (2008), Uganda (2008–2012) and Demographic Republic
of the Congo (1999). This cluster in turn shows a sister clade relationship with cluster
C that is composed of genomes from Sierra Leone (2017–2018), Guinea (2021), Angola
(2005), Canada (2014–2017) and USA (2013). The second main clade is represented by one
cluster composed of genomes from Kenya (1987), Uganda (2007–2009) and Demographic
Republic of the Congo (1999). The root of the tree is placed about 230 years ago and the
branches supporting the two main clades are indicate a length of 116 and 190 years for
MARV and RAVV, respectively. The Time of the Most Recent Common Ancestor (TMRCA)
of the first main clade dates back to about 114 years ago while the second main clade is
about 42 years old. Within the clades, the clusters are dated as follows, A: 36 years old
(CI95%HPD = 27–52 years), B: 95 years old (CI95%HPD = 64–112 years), C: 23 years old
(CI95%HPD = 22–38 years), D: 41 years old (CI95%HPD = 35–75 years).

The Bayesian skyline plot (BSP) graph (Figure 2) depicts the genetic variability (y-
axis) as a function of time (x-axis). Since genetic variability is directly linked to the viral
population size, it enables us to observe variations in the viral population size over time.
The BSP shows an initial flattened genetic variability with a decrease in viral population
size during the 2000s. Following this period, genetic variability, and consequently the viral
population size, surged and reached a plateau between 2005 and 2015. Since that point, a
subsequent decline has been observed, persisting into the current period. Oscillations in
genetic variability represented in the graph reflect the diversification followed in the tree
by recent clade.

Analyses of principal coordinates (PCoA) (Figure 3), based on genetic data, depicts
a representation of the genetic relatedness and variability among samples. In the graph,
each genome is depicted as a data point, and the relative positions of these points reflect
the genetic similarity or difference between samples. Samples that appear close together
indicate genetically related groups; conversely, samples that are widely scattered across the
graph signify higher genetic diversity and heterogeneity among the samples.

PCoA (Figure 3) revealed the same primary subdivision as observed through midpoint
rooting, accounting for 87.75% of variability explaining this division (Axis 1). In the PCoA,
evolutionarily close clades that appeared in the tree as sister groups clustered together,
forming three main groups. The total variability explained by the first three axes amounts
to 97.67% (Axis 1: 87.75; Axis 2: 7.46; Axis 3: 2.75).
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Figure 1. Phylogenetic reconstruction of MARV. Time-scaled maximum clade credibility phylogenetic
tree of n = 86 MARV genome sequences available on NCBIVirus as of 11 June 2023. Values around
key nodes represent posterior probability support. A–D represent the main clades found in the
phylogenetic reconstruction.
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plot shows the genetic differentiation among genomes due to the nucleotide substitutions per site
found in the dataset. Capital letters in the plot indicate the genetic clusters labeled in the tree. The total
variability explained by the first three axes amounts to 97.67% (Axe 1: 87.75; Axe 2: 7.46; Axe 3: 2.75).

4. Discussion

Human-to-human transmission of Marburg virus (MARV) occurs from direct contact
(through skin lesions or mucous membranes) with blood, secretions, organs, or other
body fluids of infected persons and with surfaces and materials (e.g., bedding, clothing)
contaminated with these fluids; health care workers can also be infected while treating
patients with suspected or confirmed MVD. Indeed, the first case of the MVD was reported
in 1967 when lab personnel working with African green monkeys became infected in
Germany and Serbia simultaneously. Burial ceremonies involving direct contact with the
body of the deceased may also contribute to transmission of Marburg virus. The incubation
period ranges from 2 to 21 days, and MVD starts abruptly, with high fever, headache, and
severe malaise. Severe hemorrhagic manifestations appear between five and seven days
after the onset of symptoms, and fatal cases usually have some form of bleeding, often
from multiple areas. Supportive care (rehydration with oral or intravenous fluids) and the
treatment of specific symptoms improve survival [22]. Despite interest in and progress
toward deploying monoclonal antibodies [23], direct antivirals, and small interfering RNA
(siRNA) molecules [24,25], no currently approved treatment for MVD is currently available.
Indeed, in many ways, the therapeutic approach in 2020 is not dissimilar to the one taken
in Belgrade in 1967 following the first outbreak. Variations in case fatality rates between
resource-constrained settings and those with greater capacity indicate the potential impact
of healthcare provisions on disease outcomes [26,27]. However, much like with Ebola virus
diseases, substantial evidence to inform comprehensive supportive treatment guidelines
remains insufficient, even as of 2020. In February 2023, Equatorial Guinea’s Ministry
of Health and Social Welfare declared an outbreak of MVD after deaths from suspected
viral hemorrhagic fever were reported between January and February, 2023, Since the
outbreak declaration and through June 2023, 17 confirmed and 23 probable cases have
been reported in the mainland region of Equatorial Guinea. Twelve of the confirmed cases
have died and all probable cases have died (the mortality rate among confirmed cases is
75%, excluding one confirmed case for which the outcome is unknown). On June 2023,
after two consecutive incubation periods (42 days) without reporting any new confirmed
case, the Ministry of Health of Equatorial Guinea declared the end of the epidemic. This
is the first time Equatorial Guinea has reported an outbreak of MVD. Another MVD
outbreak was recently declared in the United Republic of Tanzania (WHO Communiqué
of June, 2023). Other MVD outbreaks have been previously reported in Ghana (2022),
Guinea (2021), Uganda (2017, 2014, 2012, 2007), Angola (2004–2005), Democratic Republic
of Congo (1998 and 2000), Kenya (1990, 1987, 1980), and South Africa (1975). Here, we
conducted an updated analysis of the phylodynamics and genetic variability of MARV
using all available genomes spanning different time periods. Unfortunately, the most
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recent isolate is from 2021 and genomes belonging to the outbreak of 2023 are not still
available. We attempted to explore and identify any potential differences over time between
these epidemics, utilizing evolutionary and phylogenetic tools. All sequences available
in the gene bank were employed. Our findings highlighted that the population dynamics
of MARV illustrate a general evolutionary trajectory characterized by modest levels of
genetic variability and slow evolutionary rate. This perspective is further supported by
the phylogenomic reconstruction, which reveals the existence of several small clusters
largely independent of one other. In certain instances, it seems that specific specimens from
a particular cluster branch out to interact with other clusters, forming a more expansive
epidemic-type cluster within a closed community. This pattern closely resembles the
seasonal flu, as observed in studies such as Mugosa et al. [20]. Recently, dynamics of similar
nature have been observed in the monkeypox virus [28]. In general, the phylogenetic tree
displays a distinct and statistically significant genetic structure based on both geographical
and temporal factors. The presence of two primary, distinctly separated clades, confirms
that MARV and RAVV are two evolutionary related yet quite divergent strains (with a
nucleotide divergence lower than 20%).

This pattern has also been substantiated by the PCoA graph, which fully supports the
geographical structuring, identifying three distinct groups that align with the main clades
observed in the tree (clade A, clades B + C, and clade A). Interestingly, genomes from both
Uganda and the Democratic Republic of the Congo are present in each cluster, although
the Democratic Republic of the Congo genomes are represented by only a single genome
in two of the clusters. As for the genomes from Uganda, they are well represented in all
of the main clusters, including ones from relatively recent sampling dates (i.e., 2017). The
largest distance depicted in the graph is between the cluster D (RAVV) and the clusters
A + B + C. Indeed, they share a common ancestor dated back about 230 years ago with
broad range of credibility interval, as found in previous studies [29,30]. Such a condition is
typical when there is missing information in the dataset or incomplete steps in the process
of reconstructing the evolutionary history of the two lineages. Concerning the dating
of MARV, its ancestor dates back 114 years, suggesting that MARV had been present in
an enzonotic cycle involving non-human hosts for a substantial period before its initial
documentation in humans. The branch supporting the diversification of cluster A spans
78 years. This condition may represent a lineage with a prolonged existence and probable
frequent recurrence, as confirmed by short branches within internal clades. These findings,
along with their high level of nucleotide similarity (also depicted by their distance in the
PCoA) and their heterogeneous isolation dates, suggest that these lineages may have the
potential to periodically emerge in reservoir animals and become dominant in different
locations due to the continuous and uninterrupted viral evolution, primarily influenced by
genetic drift. The common ancestor shared by clusters B and C dates back about 100 years.
Subsequently, cluster B and C are dated back 95 and 23 years, respectively. Cluster B
contains the strain that caused the first known outbreak in Europe in 1967, and considering
that the common ancestor to genomes from Germany dates back about five years before
(1962), this further confirms the hypothesis of the enzonotic cycle involving non-human
hosts previously described. Cluster C, which has a relatively recent common ancestor dating
back around 23 years, contains genomes from Angola, Sierra Leone, Guinea, and North
America, and it appears to be the cluster with the faster evolution. Based off its internal
sub-structuring, confirmed both by the tree and the PCoA, it could be speculated that this
cluster consists of lineages that, after emerging, remain confined to a specific episode in
terms of both time and location and seem to disappear shortly thereafter. This last one
may be the more potentially dangerous clade. Overall, the heterogeneous and complex
scenario portrayed by the reconstructed phylogeny may represent multiple spillovers from
the animal reservoir, as previously described for MARV by Bausch et al. [31].

In general, the BSP displays a flattened genetic variability. The genetic distances
matrix further supports this observation, as the largest value of genetic distance within the
internal clusters was found to be 0.003 (±0.0001). Specifically, the BSP graph displayed an
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initial prolonged phase of flattened genetic variability, with no variations accompanied
by a decrease in the viral population size during the 2000s. Afterwards, there was an
increase in genetic variability and, consequently, the viral population size reached a plateau
between 2005 and 2015. However, a subsequent decrease in genetic variability took place,
continuing up to the present day. The fluctuations in genetic variability depicted in the
graph reflect the diversification observed in the tree, particularly in relation to the more
recent clades. Such fluctuations are the result of localized outbreaks occurring over time.
Typically, during an outbreak, the genetic variability and viral population size rise until
reaching a plateau and then decrease again. Ever since the first documented case in 1967,
numerous outbreaks of MVD have occurred, following initial contact with wild animals
and contraction of the disease. Despite trials with a wide range of medications to date,
no concrete solution has been achieved. As noted, the most reliable method of treatment
remains supportive care with careful monitoring and isolation of the patient. Disease-
modifying drugs and inhibitors of viral protein have shown some promising results in
many patients and can be administered to those affected; however, they might not be
the final answer to this deadly virus. Vaccine research likely remains a more reliable
option for creating a vaccine to protect populations especially vulnerable to the disease.
With the discovery of the filoviruses now over four decades old, one could question why
there is still no approved vaccine available for human use. While several experimental
vaccine approaches have been tested for Ebola virus and, to a lesser extent, for MARV, no
progress seems to have been made towards clinical trials to date. Given that filoviruses
can only be handled in high-containment facilities available in a few countries world-wide
(biosafety level 4, BSL-4) and that, until 2014, they had not caused more than a few thousand
human fatalities, there was likely never sufficient commercial interest or funding available
for the development of licensed countermeasures. The situation changed following the
EBOV epidemic that devastated West Africa from 2013 to 2016; clinical trials for the most
promising countermeasure approaches were accelerated and funding was made available
for the licensure process. The problem now is not waiting until a devastating Marburg
epidemic occurs in some African regions or worldwide. In light of the recent major and
lethal outbreaks in Africa regions, it is crucial for health authorities to formulate a clear
and applicable pandemic strategy for the current times, where an uncontrolled endemic
and pandemic can rapidly escalate an epidemic, causing chaos for health facilities already
strained by numerous challenges.

In this context, it should be highlighted that understanding the genetic variability and
evolutionary patterns of viruses has become increasingly vital in the context of constant
monitoring and effective public health surveillance, for instance see Nelson et al. [32]
for Influenza A Virus. Recent advancements in genomic technologies have provided re-
searchers with invaluable insights into the dynamics of viral pathogens, allowing for the
precise tracking of their evolution and transmission [33]. Genetic variability within a virus
population offers critical information about its adaptability, virulence, and transmission
potential. Analyzing the genetic makeup of a virus helps identify distinct strains and track
their prevalence over time, enabling the anticipation of potential changes in virulence or
drug resistance and the design of appropriate control measures. Moreover, studying the
evolutionary patterns of a virus provides valuable insights into its transmission dynamics
(see, e.g., Scarpa et al. [34] and references therein). By comparing genetic sequences from
different cases, it is possible to reconstruct the transmission network and identify clusters
of related infections. This knowledge is invaluable for understanding the routes of trans-
mission and identifying potential sources of outbreaks [35]. By integrating genetic data into
public health surveillance systems, authorities can establish a comprehensive and dynamic
approach to monitoring infectious diseases. Moreover, the one health approach should
be applied, which recognizes the interdependence of human, animal, and environmental
health [36]. By considering the health of all these components together, public health efforts
can become more effective in identifying potential sources of outbreaks and predicting
disease emergence [36]. Traditional surveillance methods often rely on epidemiological
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data alone, which can be limited in their ability to detect emerging threats. Genetic data
complement these methods, providing a more comprehensive picture of the pathogen’s
behavior (see Ling-Hu et al. [37]). Accordingly, embracing genomic technologies as a
standard surveillance tool allows for early detection, precise monitoring, and effective
control of infectious diseases. By leveraging genetic data, public health authorities can
proactively safeguard communities, respond swiftly to outbreaks, and optimize resource
allocation to protect global health.

5. Conclusions

In conclusion, it is crucial to continuously monitor the genetic variability of viruses to
inform proactive and evidence-based public health interventions. By being alert and flexible
in response to viral mutations, we can successfully navigate and respond to novel waves of
infections, minimizing their impact and preserving population health. In this context, it
is essential to promptly gather current data related to the virus resurgence in Equatorial
Guinea and to determine the current cluster. Once the samples of 2023 are accessible, it
becomes crucial to sequence them, and analyze and incorporate them into existing studies.
This enables us to determine the group of belonging and their potential for spread, thus
enhancing our understanding of the virus’s behavior and transmission patterns. Analyzing
all available genomes over times, we found at least two different specific patterns of viral
spread. One pattern demonstrates a slower, yet persistent and recurring, virus circulation,
while the other showcases a faster but episode-confined spread. Understanding these
patterns helps to provide a comprehensive view of the present status of Marburg virus
(MARV) diffusion. Regular genomic surveillance coupled with real-time data analysis
offers invaluable insights into the virus’s evolutionary dynamics, aiding informed decision
making for public health responses. This allows authorities to enact suitable measures,
such as adjusting testing strategies and bolstering contact tracing efforts, to effectively
mitigate new waves of infection and prevent rapid spread within communities.
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