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Abstract: Dysregulation of iron metabolism in chronic hepatitis C (CHC) is a significant risk factor
for hepatic cirrhosis and cancer. We studied if known genetic variants related to iron homeostasis
associate with liver disease progression in CHC. Retrospective analysis included 249 CHC patients
qualified for antiviral therapy between 2004 and 2014. For all patients, nine SNPs within HFE, TFR2,
HDAC2, HDAC3, HDAC5, TMPRSS6, and CYBRD1 genes were genotyped. Expression of selected
iron–related genes, was determined with qRT-PCR in 124 liver biopsies, and mRNA expression of
co-inhibitory receptors (PD-1, Tim3, CTLA4) was measured in 79 liver samples. CYBRD1 rs884409,
HDAC5 rs368328, TFR2 rs7385804, and TMPRSS6 rs855791 associated with histopathological changes
in liver tissue at baseline. The combination of minor allele in HDAC3 rs976552 and CYBRD1 rs884409
linked with higher prevalence of hepatocellular carcinoma (HCC) during follow up (OR 8.1 CI
2.2–29.2; p = 0.001). Minor allele in HDAC3 rs976552 associated with lower hepatic expression of
CTLA4. Tested polymorphisms related to iron homeostasis associate with histopathological changes
in the liver. The presence of both HDAC3 rs976552 G and CYBRD1 rs884409 G alleles correlates with
HCC occurrence, especially in the group of patients with elevated AST (>129 IU/L). rs976552 in
HDAC3 could impact immunological processes associated with carcinogenesis in CHC.

Keywords: hepatitis C virus infection; single nucleotide polymorphisms; iron homeostasis;
hepatocellular carcinoma

1. Introduction

Infection with the hepatitis C virus remains one of the main causes of chronic liver
disease globally with an estimated 1.5 million new infections and 300,000 deaths from
HCV-related complications occurring every year [1]. Over the last few decades tremendous
advancements have been made in the diagnosis, therapy, and prevention of HCV infection.
Still, however, further improvements in our understanding of disease pathophysiology are
necessary to explain differences in disease trajectory and highly variable clinical outcome [2].
The long-term effects of chronic HCV infection (CHC) in the liver range from minimal
necro-inflammatory changes to advanced fibrosis, cirrhosis, and hepatocellular carcinoma
(HCC). HCC is the most common type of hepatic cancer and is responsible for 75–85% of
all liver cancer cases worldwide [3]. HCV infection is one of the leading etiologic agents for
HCC and its risk in CHC increases as liver fibrosis progresses, reaching 1–4% annual HCC
incidence in cirrhotic patients [4]. Liver disease progression and extrahepatic complications
of the infection, such as lymphoproliferative diseases, can occur in CHC patients regardless
of therapeutically induced sustained viral response (SVR).
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Regulation of normal body iron metabolism occurs through hepcidin hormone pro-
duced mainly in the liver. Hepcidin interacts with ferroportin, the major cellular trans-
membrane iron exporter, leading to its internalization and degradation. This results in a
decreased iron efflux from cells and inhibited iron absorption in the duodenum. Hepcidin
gene (HAMP) expression is stimulated by increased serum and liver iron stores, inflam-
mation, and infection, and it is inhibited by erythropoietic drive and hypoxia. Regulation
of HAMP expression in response to increased circulating iron levels is maintained by in-
teraction between hemochromatosis (HFE) protein, transferrin receptors (Trf2 and Trf1)
and hemojuvelin (Hjv). Increased tissue iron stores are sensed by bone morphogenetic
proteins (Bmp6 and Bmp2) binding to ALK2 and ALK3, respectively, and interacting with
Hjv. These complexes stimulate SMAD phosphorylation pathway leading to increased
HAMP transcription [5]. Hereditary hemochromatosis is a group of genetic disorders
causing pathological reduction of hepcidin expression leading to body iron overload due
to increased iron absorption. The most common mutations, responsible for the majority
of hemochromatosis cases in patients with East European ancestry, are mutations in the
coding region of HFE gene: C282Y rs1800562, H63D rs1799945, and S65C rs1800730. The
penetrance of these mutations is modulated by other genetic polymorphisms and unknown
factors [6]. The rs855791 C > T mutation in TMPRSS6 gene encoding transmembrane serine
protease matriptase-2, which cleaves multiple proteins from HFE and Bmp6 signaling
pathways, reduces enzyme proteolytic activity. This leads to higher HAMP expression
and lower serum iron, transferrin saturation (TS), and a decreased hemoglobin level in the
general population [7–9].

Chronic HCV infection is tightly linked with a dysregulation of iron metabolism.
Elevated serum iron indices and increased frequency of iron deposits in the liver occur
in 30% and in up to 20% of individuals with CHC, respectively. Iron overload in CHC
was found to be a significant risk factor for non-response to IFN treatment, hepatic steato-
sis, liver fibrosis progression, and HCC [10,11]. Phlebotomy treatment of HCV-infected
patients significantly reduces liver cancer incidence [12,13]. Molecular pathways leading
to dysregulation of iron metabolism in CHC involve direct impact of HCV proteins on
the expression of HAMP [14]. Therapeutically induced SVR results in normalization of
hepcidin levels and serum iron indices [15–17]. In CHC patients, markers of serum and
hepatocyte iron overload associate with genetic polymorphisms in IFNλ3 gene region, well
known predictors of both spontaneous and IFN-treatment-induced HCV clearance [18] as
well as HFE gene mutations [19]. However, these polymorphisms are not the major factors
determining iron overload in HCV-infected subjects and the exact molecular background
underlying individual predisposition to the imbalance in iron metabolism in CHC remains
unknown [11].

We selected nine relatively common genetic SNP variants related to iron homeostasis
(Table S3) and evaluated them in a group of retrospectively analyzed CHC patients. To
obtain a deeper insight into the possible mechanisms triggering iron overload in CHC
patients, we analyzed the hepatic expression of selected genes involved in iron metabolism.
We also measured expression of co-inhibitory receptors which are known to be involved
in suppression of immune response in CHC and HCC. We show here that some of the
tested polymorphisms are linked with histopathological changes in liver tissue of CHC
patients and that HDAC3 rs976552 together with CYBRD1 rs884409 may be associated with
HCC occurrence.

2. Materials and Methods
2.1. Patients

Two hundred and forty-nine Polish patients (Caucasian origin) qualified for antiviral
treatment with pegylated IFN alpha and ribavirin or DAAs between 2004 and 2014 and
with at least a 1.5-year medical record were included in this retrospective study. All
patients were treated in the Department of Infectious Diseases, Medical University of
Gdansk, Poland. Selected patients were analyzed in previous studies [18,20]. The baseline
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characteristics of patients are shown in Table S1. Exclusion criteria included: history of drug
or alcohol abuse (>25 g alcohol intake/daily), diagnosis of chronic liver diseases other than
HCV-related, co-infections HCV/HBV, HCV/HIV. Diagnosis of CHC relied on detection
of HCV viremia for at least si months. HCV detection and genotyping was performed
as described [21]. The results of histopathological analysis of liver oligobiopsy were
available for 211/249 CHC patients. The preparation of liver specimen and classification of
inflammation activity, fibrosis and liver iron deposits was previously described [18,22]. The
patients were followed for a median of 6.3 years (75% CI 2.9–3.2), calculated by a reverse
Kaplan–Meier method [23] (Figure S1). Data on patients’ treatment outcome is summarized
in Figure S2. HCC monitoring of all patients was carried according to Polish guidelines [24].
Ultrasound examination of the liver and serum alpha-fetoprotein measurement was carried
every 6 months in patients with advanced fibrosis, and every 12 months in those with
mild fibrosis. When a tumor was suspected computer tomography or magnetic resonance
imaging with contrast was performed.

2.2. SNP Genotyping

Genomic DNA was isolated from whole blood samples stored in −80 ◦C using QI-
Aamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to manufacturer instruc-
tions. Genotyping of 9 SNPs: HFE-rs1800562 G > A C282Y, rs1800730 A > T S65C and
rs1799945 C > G H63D, TFR2 rs7385804 A > C; histone deacetylase 2 (HDAC2) rs3778216 C
> T; HDAC3 rs976552 T > G; HDAC5 rs368328 A > G; TMPRSS6 rs855791 C > T; duodenal
cytochrome b (CYBRD1) rs884409 T > G was performed using MassARRAY MALDI-
TOF MS platform with MassArray® mass spectrometer (Agena, San Diego, CA, USA)
using IPLEX®Gold Complete genotyping set with SpectroCHIP® II (Agena, USA) as de-
scribed [25]. Briefly, the initial PCR amplified nine different products of ~100 bp containing
SNPs of interest and a single-nucleotide extension reaction was performed which resulted
in allele-specific products of distinct masses. Mass spectra were acquired with a MassAR-
RAY Analyzer 4 mass spectrometer and analyzed with MassARRAY Typer 4.0 software.
Amplification and extension primers were designed with Agena Assay Design Suite v2.

2.3. Gene Expression Analysis

Total RNA from biopsy liver tissue stored in RNAlater™ Stabilization Solution (Thermo
Fisher, Waltham, MA, USA) from 124 CHC patients was isolated using RNeasy Mini Kit
(Qiagen, Germany). The cDNA was synthesized with QuantiTect Reverse Transcription
Kit (Qiagen, Germany) from 250 ng of total RNA. qRT-PCR amplification was performed
using Light Cycler 480 system (Roche Applied Science, Penzberg, Germany) with GUS as
a reference gene. We have analyzed expression of genes associated with iron metabolism
(Trf2, HAMP, Hjv, Bmp6, Id1, HO1) in 124 liver biopsies. Due to shortage of material mRNA
levels of co-inhibitory receptors (PD-1, Tim3, CTLA4) were analyzed in 79 remining biopsy
samples. Primer sequences are given in Supporting information (Table S2).

2.4. Statistical Analysis

Statistical analysis was carried out using data analysis software STATISTICA version
13 (StatSoft, Inc., Tulsa, OK, USA). All statistical data were presented as a mean ±standard
error (SE) or median value (histopathological data). SE was used since the distributions
of data were skewed. The analysis was performed using nonparametric statistics: the
Mann-Whitney U test, the Chi-square test, Yates’ Chi-square test and Spearman’s rank-
order correlation coefficient test. The Bonferroni correction was applied in multiple testing
procedures. LD of analyzed SNPs was evaluated using MIDAS software [26]. All statistical
tests were 2-tailed. P values less than 0.05 were considered statistically significant.
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3. Results
3.1. Histopathological Changes in the Liver

All SNPs were in Hardy-Weinberg and linkage equilibrium (r2 ≤ 0.01). Genotype
frequencies are shown in Table S3. The frequency of minor alleles in HFE H63D and TFR2
rs7385804 was significantly higher (p < 0.001 for either SNP) in the analyzed group than in
the CEU population (TOPMed).

Only two of the tested SNPs associated with dysregulated serum iron indices. Minor
allele in CYBRD1 rs884409 linked with higher serum levels of liver enzymes, increased
bilirubin (p = 0.009) and iron levels (p = 0.011) (Table S3). The presence of mutant allele in
HFE C2822Y associated with elevated transferrin saturation (p = 0.01), ferritin (p = 0.004)
and higher ALT levels (p = 0.02), but it was also more prevalent in men (p = 0.013) (Table S3).

Five polymorphisms associated with the presence of histopathological changes in the
liver at baseline (Table 1).

Table 1. Association between selected SNPs and the presence of histopathological changes in the liver.

Genotype Steatosis Advanced Fibrosis * Iron Deposits
OR (CI 95%) p OR (CI 95%) p OR (CI 95%) p

CYBRD1
rs884409

TT (n = 140) 0.5 (0.3–0.9) 0.029 0.7 (0.4–1.4) NS 1.0 (0.6–1.9) NS
GG (n = 12) 2.0 (0.5–7.6) NS 3.7 (17.8–0.8) NS 1.0 (0.3–3.6) NS

HDAC5
rs368328

AA (n = 96) 2.3 (1.3–4.1) 0.006 2.2 (1.2–4.1) 0.010 1.1 (0.6–2.0) NS
GG (n = 26) 0.5 (0.2–1.1) NS 0.6 (0.3–1.3) NS 0.8 (0.3–1.9) NS

TFR2
rs7385804

AA (n = 58) 1.0 (0.5–1.8) NS 0.6 (0.3–1.2) NS 0.9 (0.4–1.8) NS
CC (n = 42) 0.8 (0.4–1.6) NS 2.4 (1.1–5.3) 0.035 0.6 (0.3–1.2) NS

TMPRSS6
rs855791

CC (n = 83) 0.8 (0.5–1.4) NS 0.5 (0.3–0.8) 0.011 1.5 (0.8–2.7) NS
TT (n = 20) 0.9 (0.4–2.4) NS 3.6 (1.1–11.8) NS 0.5 (0.2–1.4) NS

HFE H63D
rs1799945

CC (n = 144) 0.8 (0.4–1.4) NS 0.7 (0.4–1.2) NS 0.5 (0.2–0.9) 0.022
GG (n = 6) 0.6 (0.1–3.0) NS 0.5 (0.1–2.0) NS 0.7 (0.1–3.7) NS

Results of multivariate logistic regression analyses, adjusted for age and sex; OR-odds ratio; CI—confidence
intervals; NS—not significant; * advanced fibrosis ≥ 2 on a 0–4 grading scale.

3.2. HCC Occurrence

HCC diagnosis associated with older age, elevated liver enzymes (p ≤ 0.002 for ALT,
AST, and GGT), higher iron indices (p ≤ 0.01 for sFe, sFerritin, and transferrin saturation),
elevated liver inflammation scores at baseline (Table 2), and unsuccessful IFN treatment
(p = 0.00001). Minor allele in HDAC3 rs976552 or CYBRD1 rs884409 linked with HCC
occurrence, and the combined effect of minor allele in both SNPs was even stronger
(Table 2). No other polymorphism associated with HCC.

Table 2. Baseline characteristics of patients diagnosed with HCC during the follow-up period.

Characteristisc (n = 249)
HCC

p OR (CI 95%)
No (n = 230) Yes (n = 19)

Age [yr] 47 ± 1 53 ± 2 0.022
Sex (Male/Female) 140/90 13/6 0.686

HGB [g/dL] 14.8 ± 0.1 14.6 ± 0.4 0.579
ALT [IU/L] 109 ± 6 187 ± 23 0.0002
AST [IU/L] 72 ± 3 164 ± 19 <0.00001
GGT [IU/L] 97 ± 6 152 ± 20 0.002

Bilirubin [mg/dL] 0.8 ± 0.04 1.2 ± 0.1 0.0006
sFe [µg/dL] 147 ± 4 215 ± 15 0.00004

Transferrin saturation [%] 42 ± 1 67 ± 10 0.010
sFerritin [ng/mL] 351 ± 31 609 ± 89 0.002
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Table 2. Cont.

Characteristisc (n = 249)
HCC

p OR (CI 95%)
No (n = 230) Yes (n = 19)

Histopathology n = 211 No (n = 97) Yes (n = 14) p

Inflammation grade 2 (2/2) 3 (2/3) 0.001
Fibrosis grade 2 (1/3) 3 (2/3) 0.276

Iron deposits grade (0–3) 0 (0/1) 0 (0/1) 0.618
Steatosis grade (0–3) 1 (0/2) 1 (0/2) 0.719

Hepatocyte iron deposits
present (yes/no) 70/127 6/8 0.621

Hepatocyte steatosis present
(yes/no) 118/79 8/6 0.937

Liver fibrosis present (yes/no) 119/78 12/2 0.050

Polymorphism n = 249 No (n = 230) Yes (n = 19) p

HDAC3
rs976552

TT 155 (96%) 7 (4%)
0.026 #GT 70 (86%) 11 (14%)

GG 5 (83%) 1 (17%)

TT 155 (96%) 7 (4%)
0.011 * 3.6 (1.3–9.8)GG + GT 75 (86%) 12 (14%)

CYBRD1
rs884409

TT 155 (95%) 8 (5%)
0.041 * 2.5 (1.0–7.1)GT + GG 75 (87%) 11 (13%)

HDAC3
rs976552/
CYBRD1
rs884409

TT in any
SNP 203 (95%) 10 (5%)

0.001 * 8.1 (2.2–29.2)
GG +

GT/GG + GT 27 (75%) 9 (25%)

Quantitative biochemical data is shown as mean ± SE; data for inflammation, fibrosis, iron deposits and steatosis is
shown as median values with percentiles (25th/75th). # p for log-linear analysis of main effect, * p for multivariate
logistic regression analysis (adjusted for age and sex). sFe, serum iron; sFerritin, serum ferritin.

Multivariate logistic regression model of HCC occurrence was constructed by back-
ward stepwise regression with all variables significant in monovariate logistic regression
analysis at the input (Table S4). Only AST, sFe, and ALT were automatically selected by
the algorithm (validated AUCROC of 0.738; Table S4) and this model was only slightly
improved when the presence of the minor allele in HDAC3 rs976552/CYBRD1 rs884409
was added for comparison (validated AUCROC 0.839; Figure S3; Table S4). On the other
hand, minor allele status in HDAC3 rs976552/CYBRD1 rs884409 together with AST were
the most informative variables in the decision tree model of HCC occurrence built with the
CHAID (Chi-squared Automatic Interaction Detector) method (Figure 1).

3.3. Hepatic Gene Expression

Polymorphism in HDAC3 associated with hepatic expression of CTLA4 gene but
not PD-1 or Tim3 mRNA levels (Figure 1). Patients with both dominant T alleles had
significantly higher CTLA4 expression levels (TT vs. GT + GG, p = 0.01) No significant
correlation between CYBRD1 rs884409 polymorphism, minor allele status in both HDAC3
rs976552/CYBRD1 rs884409 and gene expression were found (Figure S4).

Patients with HFE S65C mutation had higher liver hepcidin expression (p = 0.029)
(Table S6). No other associations between gene expression and analyzed polymorphisms
were identified. In patients with C282Y rs1800562 mutation ratios of expression of Trf2, Hjv,
Bmp6 and HO1, but not HAMP and Id1, normalized to either sFerritin or sFe were lower
than in the rest of individuals. HFE S65C mutation decreased HAMP/sFe and Id1/sFe
ratios, while HFE H63D polymorphism was not associated with any changes in these
parameters (Table S6).
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Figure 1. Decision tree model of HCC occurrence, calculated by the CHAID algorithm. The hierarchy
model included all significant factors associated with HCC (Table 2): age, all liver enzymes, serum
iron parameters, HDAC3 rs976552 and CYBRD1 rs884409 (individual and combined effect of minor
alleles). Pie charts indicate the rate (%) of HCC in each group of patients. The number of patients and
the percentage of the overall population are indicated. P values are corrected.

4. Discussion

Among SNPs selected according to their impact on iron metabolism only HFE C282Y
and CYBRD1 rs884409 associated with serum iron indices in CHC patients. There was no
correlation between tested SNPs and hepatic expression of genes involved in iron regulation,
except for HFE S65C polymorphism which associated with HAMP expression (Table S5). In
order to better reflect regulation of iron metabolism in condition of liver inflammation in
CHC we have normalized expression levels of iron-related genes to serum iron or ferritin
concentrations to correct for iron stores. Our analysis revealed differential impact of HFE
polymorphisms on iron metabolic genes in CHC (Table S5) which may directly result from
structural differences between mutated HFE proteins. The C282Y rs1800562 mutation
disrupts a critical disulfide bond in the α3 domain of HFE limiting its localization mostly
to the cytoplasm. Two others SNPs, namely H63D rs1799945 and S65C rs1800730, affect the
α1 binding groove of HFE protein, which interacts with Tfr1, but do not change cellular
HFE localization. Surprisingly we found higher HAMP expression in patients with S65C
allele but the ratio of HAMP/sFe was lower for these individuals (Table S5), suggesting that
regulation of HAMP expression in CHC is mainly driven by inflammation, as it was shown
previously [18,27]. Our results are consistent with other reports showing that regulation of
iron metabolism in CHC is largely dependent on HCV-mediated inflammation and patients’
immune status [15,18]. We also show here that SNPs involved in normal iron regulation
may contribute to liver disease in CHC (Table 1). However, their impact on the progression
of hepatic pathology still needs to be verified. This is probably due to the fact that iron
status reciprocally modulates immune function in inflammatory diseases [28].

In our study, carriers of two dominant alleles in H63D rs1799945 were less frequently
diagnosed with hepatic iron overload (Table 1). The role of HFE mutations in secondary iron
overload diagnosed in CHC still remains unclear, as some studies show association H63D
and C282Y mutations with elevated serum iron indices [19,29], liver iron deposits [11],
and others reported no such relation [6,30]. Our results confirm the notion that HFE
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mutations may contribute to (but do not fully explain) hepatic iron accumulation in chronic
hepatitis C.

The occurrence of HCC during follow up was associated with elevated serum iron
indices (Table 2). Our result confirms the well-known association of iron overload in CHC
with liver inflammation and HCC [10–13]. Additionally, we found higher prevalence
of HCC in the group of carriers of two minor alleles: HDAC3 rs976552 G and CYBRD1
rs884409 G (Table 2, Figure 1). Decision tree model showed that this discriminating effect
was the most significant in the group of patients with elevated AST (>129 IU/L) (Figure 1).
To our knowledge we show this relation here for the first time, but it agrees with existing
literature data connecting HDACs and CYBRD1 with liver pathology and carcinogenesis.
Histone deacetylases (HDACs) regulate variety of cellular processes including key innate
immune pathways and stimulation of antiviral responses through IFNα signaling [31].
HCV infection increases cellular activity of HDAC3 which leads to suppressed HAMP
expression [32,33]. HDAC3 was shown to impact hepatic steatosis [34]. Polymorphisms in
HDAC2 rs3778216, HDAC3 rs976552, and HDAC5 rs368328 were independent predictors of
treatment outcome in CHC patients treated with peg-IFNa with ribavirin and improved the
predictive value of SNP in IL-28B gene [35]. Expression of HDACs is elevated in HCC and
can predict tumor recurrence and survival of these patients [36,37]. Application of selective
HDAC inhibitors was found to be a promising strategy in HCC treatment [38].

CYBRD1 is a ferroreductase involved in the absorption of iron in the duodenum. The
CYBRD1 rs884409 polymorphism associates with variation in serum transferrin saturation
and ferritin concentration in patients with HFE C282Y mutation and the mutated allele
reduces CYBRD1 promoter activity by 30% [39,40]. CYBRD1 rs884409 was found previously
to associate with liver inflammation, liver enzymes and bilirubin in CHC patients [20].
In our study this SNP was linked with liver inflammation grade (Table S4) and liver
steatosis (Tables 1 and S5) as well as serum liver enzymes, bilirubin, and iron concentration
(Table S6). Apart from iron metabolism CYBRD1 is involved in other cellular functions
which are not fully understood. The link between major allele in CYBRD1 rs884409 and
lower frequency of HCC occurrence found in our study agrees with reports showing
correlation of elevated CYBRD1 expression with a diminished proliferation, invasion and
adhesion of cancer cells [41,42] as well as prolonged recurrence-free survival in treated
breast cancer patients [42]. Additionally, CYBRD1 inhibited activation of focal adhesion
kinase which is crucial for tumor adhesion and metastasis and this effect was independent
of cellular iron signaling pathways [41,42].

Cytotoxic T lymphocyte-associated antigen (CTLA4), programmed cell death 1 (PD-1),
Tim3 (T cell immunoglobulin and mucin-domain containing protein 3) are immune check-
point receptors that deliver inhibitory signals to T cells and are highly expressed during
CHC on exhausted and dysfunctional T cells [43–45]. Additionally, they are commonly
overexpressed in many cancer types including HCC, and immune checkpoint inhibitors are
intensively studied as cancer immunotherapy [46]. PD-1 and Tim-3 are threshold receptors
which are already expressed on the surface of cells while CTLA4 is a negative feedback re-
ceptor upregulated on T cells upon activation but constitutively expressed on Tregs [47,48].
The fundamental role of CTLA4 is the inhibition of T cell activation, by competing with
CD28 binding to its ligands, which occurs during initiation of the immune response [49].

Interestingly we found that major allele in HDAC3 rs976552, which also linked with
lower number of HCC cases, associated with higher hepatic expression of CTLA4 (Figure 2).
Additionally, CTLA4 expression positively correlated with ALT, AST, bilirubin, sFe, trans-
ferrin saturation, sFerritin and liver inflammation (Table S7), and patients homozygotic for
minor HDAC3 allele had lower AST levels (Table S5). This apparent inconsistency could be
explained by the fact that higher CTLA4 expression in the early stages of HCV infection
may be favorable for disease course as it could protect from overactivation of the immune
response in the liver, but at the same time indicate robust immune response to infection [49].
We have previously reported that CHC patients with IL-28 rs12979860 CC genotype which
is favorable for disease outcome exhibited higher liver inflammation at the time of quali-



Viruses 2023, 15, 1710 8 of 11

fication [18]. Additionally, CTLA4 action in T cells is regulated on the translational level
and by trafficking from intracellular vesicles to the cell membrane and endocytosis [50]. It
is possible that liver inflammation and elevated liver enzymes are reflection of different
opposing effects of immune reaction to HCV infection. To dissect these processes, it would
be necessary to monitor liver disease progression and hepatic CTLA4 expression over time.
We hypothesize that elevated CTLA4 expression could indicate early stage of inflammation
which is accompanied by a flare of liver enzymes and an ongoing process of inhibition
of overt T-cell activation. The link we observed between polymorphisms in HDAC3 and
CTLA4 expression is supported by the study in which HDAC inhibitor Belinostat was
found to potentiate the antitumor effect of anti-CTLA4 antibody in subcutaneous murine
model of HCC [51].
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Figure 2. HDAC3 rs976552 and hepatic expression of co-inhibitory receptors. Hepatic expression
of CTLA4 (a), PD-1 (b), and Tim3 (c) in samples from CHC patients with different HDAC3 rs976552
genotypes. Shown are the p values from a Kruskal–Wallis test.

The strong point of our study is a relatively large number of analyzed liver biopsy
samples as well as a long follow up time. Our study also has some limitations. We could
not verify if hepatic expression of inhibitory receptors at baseline is linked with cancer
occurrence during follow up due to a small group of patients with HCC and liver biopsy
samples available for analysis. Lack of paired liver biopsies from the end of observation
made it impossible to evaluate the rate at which liver disease progression occurred in
these patients. Also, we were unable to determine the true duration of HCV infection as
diagnostic and screening protocols were not fully developed in 2004 in comparison to the
year 2014. Our results on the association of genetic background with HCC occurrence
certainly need to be evaluated on a larger cohort of patients. Especially it would be
interesting to verify the link between hepatic expression of co-inhibitory receptors, genetic
variation in HDAC3 and CYBRD1, and liver disease progression to HCC. Due to the current
diagnostic protocols where the liver biopsy is rarely needed, such studies would probably
have to be performed on an animal model.

5. Conclusions

Polymorphisms in genes associated with iron homeostasis associate with liver disease
in CHC but are not the crucial factors determining secondary iron overload. The presence
of minor allele in both HDAC3 rs976552/CYBRD1 rs884409 is linked with higher prevalence
of HCC in these patients, especially in the group of patients with significantly elevated
AST (>129 IU/L). Unfavorable G allele in HDAC3 rs976552 associates with lower hepatic
expression of immune checkpoint receptor CTLA4 mRNA. Further studies are needed to
determine the significance of HDAC3 and CYBRD1 in liver disease progression to HCC in
CHC patients.
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