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Abstract: Effective viral clearance requires fine-tuned immune responses to minimize undesirable in-
flammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant
and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukary-
otic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in
high-throughput sequencing has enabled a better understanding of the physiological and pathophys-
iological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs
and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replica-
tion or disease progression. There is increasing evidence that viral infections dysregulate circRNA
expression and that the altered expression of circRNAs is critical in regulating viral infection and
replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or
via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs
as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates
due to their higher stability and lower immunogenicity. This review presents an up-to-date summary
of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current
understanding of their regulatory roles, and the suggested applications.
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1. Introduction

The human genome project showed that less than 2% of the human genome comprises
protein-coding genes [1]. Nevertheless, most genomic DNA is a transcription template,
indicating that the human transcriptome predominantly contains non-coding RNAs (ncR-
NAs) [2,3]. ncRNAs have been demonstrated to play crucial roles in the regulation of gene
expression by impacting target genes’ transcription or post-transcriptional modifications.
ncRNAs can be divided into two major categories: small ncRNAs (sncRNAs) and long
ncRNAs (lncRNAs) [4]. sncRNAs are shorter than 200 nucleotides (nt) in length, and these
include piwi-interacting RNAs, microRNAs (miRNAs), transcription initiation RNAs, and
endogenous small interfering RNAs [5]. LncRNAs are longer than 200 nt in length and
constitute most of the non-coding transcriptome in mammals [6,7].

Circular RNAs (circRNAs) were initially discovered in RNA viruses such as the
Sendai virus, hepatitis D virus (HDV), and plant viroids in the 1970s [8–11]. Nevertheless,
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circRNAs were thought to be viral genomes or the results of pre-mRNA alternative splicing.
Hence, they received little attention in the past [12]. Current advances in high-throughput
sequencing technologies have enabled scientists to undertake comprehensive investigations
of the structure, expression profile, and functions of circRNAs, as well as the mechanisms
underlying their roles [13]. CircRNAs have been discovered in a wide range of plant and
animal species [14]. Some circRNAs are evolutionarily conserved across related species [15].
The extensive presence of circRNAs in eukaryotic cells indicates that circRNAs are not
only unintended products of RNA splicing events but rather an essential component of the
ncRNA family [16].

CircRNAs are now established ncRNA family members formed via backsplicing in-
trons, exons, or both [17]. CircRNAs are distinguished by their closed circular structure,
and lack of 5′ N7-methylguanosine (m7G) cap ends or 3′ Poly (A) tails [18]. CircRNAs are
a highly stable ncRNA form because they are naturally resistant to RNA nucleases [19].
Recently, the physiological and pathological roles of circRNAs have drawn researchers’
attention, as an increasing number of data demonstrate that circRNAs can serve various
functions through multiple mechanisms [20]. It has been shown that circRNAs play numer-
ous roles in cellular processes, such as the modulation of gene expression and alternative
splicing, sponging to miRNAs or proteins, providing translation templates, rRNA and
tRNA synthesis modulators, and so on [21]. Remarkably, many circRNAs exhibit altered
expression levels in response to specific disease conditions or infections with pathogens,
implying a link between circRNAs and the emergence and progression of human and
animal disorders [22].

Interestingly, despite the significant focus on the study of the relationship between
circRNAs and cancer, multiple reports have also suggested the involvement of circRNAs
in innate immunity against viral infection. Typically, viral infection dysregulates the ex-
pression of circRNAs, which, in turn, could regulate viral replication by modulating innate
immunity, providing novel insights into the diagnosis and treatment of viral infectious
diseases. Here, in this review, we will discuss the taxonomy, biosynthesis, functions, and
mechanism underlying the action of circRNAs and highlight their relevance to antiviral
immunity and potential applications, such as antiviral therapeutics, vaccine candidates,
and diagnostic and prognostic biomarkers.

2. Physical and Chemical Characteristics of Circular RNAs
2.1. RNA Circularization

Unlike conventional linear splicing, which forms a linear 5′ to 3′ mRNA of joined
exons, circRNAs feature a covalently closed structure lacking the 5′-cap and 3′-poly(A)
tail [23]. The conventional splicing patterns of circRNAs, known as exon-skipping and
backsplicing [17], have been observed both in vivo and in vitro. Nevertheless, evidence
suggests that backsplicing is more significant, as this pattern is widely reported [16].

Based on origin and composition, circRNAs may be categorized into three categories:
circular intronic RNAs (ciRNAs), exonic circRNAs (ecircRNAs), or exon-intron circRNAs
(eiciRNAs) [19]. EcircRNAs, composed of one or multiple exons, constitute more than
80% of the detectable circRNAs and are preferentially generated by intron pairing-driven
circularization or lariat-driven circularization [24,25]. The flanking introns adjacent to
the backspliced exons are crucial for circRNA biogenesis, as they contain complementary
sequences that base-pair and form hairpin-like structures, allowing the 5′ and 3′ splicing
sites to be closer for circularization to occur [26]. These sequences may consist of Alu repeats
of ~300 nt in length or non-repetitive elements [26]. Alu repeats-driven circularization is
often complex as the inverted Alu repeats may pair across introns and induce different
exon circularization events; consequently, one single gene locus can produce various
circRNAs [18,26].

EiciRNAs utilize an exon-skipping strategy for circularization, and contain flanking
intron sequences on the exonic core sequence’s off-side [27]. CiRNAs are generated via
a lariat-derived process that requires a consensus GU-rich domain close to the 5′-end
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splicing site and a C-rich domain close to the breakpoint, and then the uncircularized
intron sequences are then sequestered [23]. CircRNAs are predominantly cytoplasmic, but
ciRNAs and eiciRNAs are exclusively nuclear, suggesting roles in nuclear processes, such
as transcriptional regulation [28].

Since circRNAs and their cognate mRNA share the same pre-mRNA and most splicing
sites, circRNA backsplicing and mRNA splicing often compete for transcription against
each other [8,29]. Nevertheless, due to unfavorable spliceosome assembly at backsplicing
sites, the efficiency of backsplicing is significantly lower than that of canonical splicing [30].

2.2. circRNAs versus mRNAs

circRNAs exhibit the same nucleotide sequence as their corresponding linear RNAs,
except for the back-splicing junction (BSJ) site. Thus, distinguishing the expression of
a particular circRNA from its linear cognate has been challenging on multiple scales,
including identification, validation, and loss- and gain-of-function investigations [19].
Nevertheless, the BSJ site enables the utilization of divergent primers to detect specific
circRNAs while avoiding the undesired signal of their cognate linear mRNAs [31].

In addition, most circRNAs are stable, with half-lives ranging between 18.8 and
23.7 h [30,32], which is much longer than the range of 4.0–7.4 h that their linear RNA
cognates have [32]. This stability is presumably a result of their resistance to linear RNA
degradation machinery. Consequently, in slowly dividing or nondividing cells and tis-
sues, certain circRNAs could accumulate to high levels [19,33]. However, it is suggested
that following viral infection or poly(I:C) stimulation, the RNase L could degrade the
transcribed circRNAs, a mechanism necessary for early innate immune responses [34].
Notably, after being transcribed, circRNAs could undergo N6-methyladenosine (m6A)
modifications [35]. m6A-circRNAs can then be recognized by YTHDF2 and HRSP12, re-
sulting in circRNA degradation by the RNAse P/MRP ribonuclease complex [36]. Some
circRNAs are degraded after perfect sponging to miRNA via the AGO2-mediated cleav-
age of circRNA [37]. Additionally, another degradation mechanism is that of the G3BP1
endonuclease, as it complexes with the RNA-binding protein UPF1 and decays highly
structured circRNAs [38].

Another functionally important distinction between circRNAs and their cognate mR-
NAs is immunogenicity [39–41]. Whereas self-circRNAs are not immunogenic, the RNA
pattern recognition receptors, Toll-like receptor 7/8 and retinoic-acid-inducible gene-I
(RIG-I), may be activated by exogenous circRNAs, making the circRNA itself immunos-
timulatory [41]. The immunogenicity of circRNA could be unfavorable to the circRNAs’
translation efficiency, their half-life stability, and biomedical applications. It has been
demonstrated that impure circRNA formulas elicit potent immunological responses in
cells [42–44].

2.3. Mechanisms Underlying Action of circRNAs

Studies have established that circRNAs play crucial roles in the modulation of physio-
logical processes and the progression of numerous diseases [45]. In the past few years, the
mechanisms underlying the action of circRNAs, such as the regulation of gene expression,
microRNA reservoirs, and microRNA sponges, the ability to encode proteins, etc., have
been progressively reported [19].

MicroRNA response elements (MREs) are miRNA-complementary sequences in the
3′-UTRs of target mRNAs [46]. Similarly, circRNAs, primarily cytoplasmic, include several
MREs that may bind to target miRNAs, thereby functioning as competitive endogenous
RNAs (ceRNAs) [47]. Additionally, lacking the 5′-cap or 3′-poly(A) tail, circRNAs are
resistant to RNase degradation, enabling them to serve as potent sponges for miRNA [48].
On the other hand, some circRNAs possess the capacity to stabilize or stimulate the actions
of miRNAs, a property known as miRNA reservoirs [49].

Moreover, circRNAs can bind to specific proteins called RNA-binding proteins (RBPs),
which serve as protein sponges [19]. RBPs exhibit complementary sequences to bind with
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their target RNA, and circRNAs can modulate protein activity by docking to the active sites
of RBPs [50].

Of note is that in 2015, circRNAs were reported in fruit flies to encode translatable
proteins and peptides [51]. This discovery established the theoretical foundation that paved
the way for circRNA vaccine development [52]. Multiple reports have demonstrated that,
unlike conventional mRNAs, circRNAs initiate translation not at the 5′ cap but rather at the
m6A-induced ribosome engagement site or the internal ribosomal entry site (IRES) [53–55].

3. Involvement of circRNAs in Innate Immunity against Viral Infection

Innate immunity provides the first line of defense against infections with
pathogens [56,57], and it possesses a crucial function in virus recognition and the sub-
sequent activation of the adaptive immune response. Pathogen-associated molecular
patterns (PAMPs) are viral components that can be sensed by the innate immune molecules’
pathogen recognition receptors (PRRs). PAMPs include, for instance, viral double-stranded
RNA, viral single-stranded RNA, and viral DNA. PPRs, such as RIG-I, Toll-like receptors,
and nucleotide oligomerization domain (NOD)-like receptors, are indispensable for the
activation of innate immune signaling that ultimately induces the production of various
cytokines and antiviral molecules, including interferons (IFNs) [56,58] (Figure 1).

Interestingly, recent studies have demonstrated the mechanistic involvement of circR-
NAs in viral infections, the regulation of innate immune responses, and other biological
processes of antiviral immunity [31,59]. Numerous virus- and host-derived circRNAs are
shown to regulate antiviral immune responses [21,60–62].

3.1. Host-Coded circRNAs Involved in Immune Responses

The dysregulation of cellular gene expression occurs in responses to multiple stimuli,
including infections [68]. Among them, viral infections have been reported to induce a
differential expression of host circRNAs, potentially enhancing or inhibiting the innate
immune response or impacting viral pathogenesis. Although the precise mechanisms
underlying the involvement of circRNAs in antiviral innate and adaptive immune responses
and viral pathogenesis are elusive, several studies have revealed their significance. For
example, multiple reports have revealed various differentially expressed host circRNAs
and established a circRNA–miRNA–mRNA regulatory network in immune responses to
infections with multiple viruses, including Hantaan Virus, Human Immunodeficiency Virus,
Coxsackievirus B5, Coxsackievirus A16, Rabies Virus, Peste-Des-Petits-Ruminants Virus,
Japanese Encephalitis Virus, Porcine Endemic Diarrhea Virus, Pseudorabies Virus Type II,
Foot-And-Mouth Disease Virus, Human Papillomavirus E7, Avian Leukemia, Influenza
Virus, Infectious Bursal Disease Virus, Enterovirus A71, Swine Hepatitis E Virus, Or Middle
East Respiratory Syndrome Coronavirus, SARS-CoV-2 virus, and so on [63,69–87]. In
addition, plant viruses are also reported to alter circRNAs expression. For instance, Maize
Iranian mosaic virus (MIMV) induced the dysregulation of circRNAs expression in MIMV-
infected maize [88]. Nevertheless, the precise functions of the altered circRNAs during
viral infections are still the subject of ongoing research.

Various circRNAs have been implicated in host–virus interactions. Here, we present a
brief overview of the most up-to-date comprehension of the roles of circRNAs in modulating
immune responses and impacting the pathogenesis of viruses with medical or veterinary
importance (Table 1 and Figure 1).

3.1.1. Hepatitis B Virus (HBV)

HBV is an exclusively hepatotropic virus that can cause persistent infections (chronic
hepatitis B (CHB)) and, in extreme cases, cirrhosis and hepatocellular cancer (HCC). It was
shown that hsa_circ_0004812 was highly upregulated in HCC tissues from CHB patients.
The robust expression of hsa_circ_0004812 enhanced HBV-induced immunosuppression by
sponging to miR-1287-5p, whereas knocking down hsa_circ_0004812 promoted interferon
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(IFN)-α/β production and suppressed viral propagation and multiplication, suggesting a
putative HBV therapeutic target [90].
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Figure 1. Mechanistic involvement of some circRNAs in innate immunity against some representative
viral infections. As reviewed by Rai et al. [57], virus detection by PRRs triggers innate immune
signaling via the activation of specific adaptor proteins (MYD88, MAVS, TRIF, STING, etc.) to
subsequently activate other transcriptional factors, including NF-κB, IRF3/5/7, and others. The
translocation of activated transcriptional factors into the nucleus induces the expression of IFNs.
The mechanistic involvement of several circRNAs in the modulation of immune responses has been
revealed. For instance, circ_0000479 sponged miR-149-5p and regulated RIG-I expression, thus
impacting HTNV and SARS-CoV2 viral replication [63,64]. CircRNA AIVR inhibited IAV replication
by predominantly absorbing miR-330-3p and enhancing CREBBP expression, thus facilitating the
production of IFN-β [59]. CircSIAE suppressed CVB3 replication by targeting miR-331-3p and
TAOK2, and impacting the levels of p-NF-κB [65]. CircEZH2 promoted the activation of NF-κB via
sponging miR-22 after TGEV infection [66,67]. HTNV: Hantaan virus; HBV: Hepatitis B virus; TGEV:
Transmissible Gastroenteritis Virus; IAV: Influenza A virus; CVB3: Coxsackievirus B3. Created with
BioRender.com (accessed on 4 August 2023).

Table 1. List of reported virus-dysregulated circRNAs and their functions/mechanisms in regulating
innate immunity or viral replication.

circRNA Stimuli Differential
Expression Functions/Mechanisms Reference

hsa_circ_0001400 KSHV Up

During KSHV de novo infections, circ_0001400
expression suppressed the expression of vital

latent and lytic viral genes without significantly
altering the viral genome copy number.

[89]

BioRender.com
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Table 1. Cont.

circRNA Stimuli Differential
Expression Functions/Mechanisms Reference

circ_0000479 HTNV Up
Circ_0000479 sponged miR-149-5p and

regulated RIG-I expression, thus dampening
viral replication.

[63]

hsa_circ_0004812 HBV Up Circ_0004812 silencing enhanced the expression
of IFN-α and β in HBV-infected Huh7 cells. [90]

circBACH1 HBV Up CircBACH1 regulated HBV propagation
through the miR-200a-3p/MAP3K2 pathway. [91]

circ-ATP5H HBV Up Circ-ATP5H boosted HBV replication by
modulating the miR-138-5p/TNFAIP3 axis. [92]

circFNDC3B

MERS-CoV UP

The silencing of circFNDC3B and circCNOT1
significantly suppressed the MERS-CoV viral

load and its target mRNA expression,
modulating various biological pathways,

including the MAPK and
ubiquitination pathways.

[69]

circCNOT1

hsa_circ_0004445 MERS-CoV UP The knockdown of hsa_circ_0004445 inhibited
MERS-CoV replication. [93]

hsa_circ_0000479 SARS-CoV-2 UP

SARS-CoV-2 could regulate IL-6 and RIG-I
activity via

hsa_circ_0000479/hsa-miR-149-5p/RIG-I,
IL-6axis.

[64]

ssc_circ_009380
(circEZH2) TGEV Down CircEZH2 promoted the activation of NF-κB via

sponging miR-22. [67]

circMerTK IAV Up
CircMerTK inhibited IFN-beta production and

suppressed IFN signaling, thus boosting
IAV replication.

[31]

circRNA AIVR IAV Up circRNA AIVR inhibited IAV replication by
predominantly absorbing miR-330-3p. [59]

circRNA_0050463 IAV Up
CircRNA_0050463 was found to sponge to

miR-33b-5p and thereby enhanced
IAV replication.

[94]

circ-GATAD2A IAV Up
Circ-GATAD2A promoted influenza virus

multiplication by inhibiting VPS34-dependent
autophagy in vitro

[95]

hsa_circ_0005870

IAV UP

The overexpression of these three circRNAs
inhibited AIV replication and proliferation,

whereas silencing these circRNAs enhanced
AIV multiplication.

[96]hsa_circ_0006104

hsa_circ_0009365

circEXOSC
HCV UP

Depleting circEXOSC in HCV-infected cells
markedly reduced viral infectivity.

[97]
circTIAL A significant reduction in HCV infectivity was

observed after circTIAL silencing.

circPSD3
HCV UP CircPSD3 promoted HCV RNA abundances at

a post-translational level.

DENV UP CircPSD3 was found to reduce viral infectivity
in Dengue virus-infected cells significantly.

ciTRAN HIV UP
HIV-1-Vpr-induced ciTRAN-sequestered SRSF1
from the HIV viral transcriptional complex to

enhance viral transcription.
[98]
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Table 1. Cont.

circRNA Stimuli Differential
Expression Functions/Mechanisms Reference

circSIAE CVB3 Down CircSIAE suppressed CVB3 replication by
targeting miR-331-3p and TAOK2. [65]

CircEAF2 EBV Down
CircEAF2 inhibited the replication of EBV and

the progression of DLBCL via the
miR-BART19-3p/APC/β-catenin axis.

[99]

KSHV: Kaposi sarcoma-associated herpesvirus; HTNV: Hantaan virus; HBV: Hepatitis B virus; MERS-CoV: Middle
East respiratory syndrome coronavirus; TGEV: Transmissible Gastroenteritis Virus; IAV: Influenza A virus; HCV:
Hepatitis C virus; DENV: Dengue virus; HIV: Human immunodeficiency virus; CVB3: Coxsackievirus B3; EBV:
Epstein–Barr virus.

It was also found that circ-ATP5H was upregulated in HCC-HBV-infected tissues.
Circ-ATP5H knockdown impacted HBV replication through sponging miR-138-5p. Circ-
ATP5H modulates TNFAIP3 by binding to miR-138-5p. Interestingly, circ-ATP5H boosted
HBV multiplication by altering the miR-138-5p/TNFAIP3 axis, revealing a potential novel
biomarker for HBV-positive HCC therapy [92].

In addition, HCC tissues, HepG2, and Huh7 cell lines showed elevated levels of
circBACH1 and MAP3K2 and diminished levels of miR-200a-3p. CircBACH1 depletion or
miR-200a-3p overexpression significantly impaired HBV replication. Studies revealed that
circBACH1 governs HBV replication via the miR-200a-3p/MAP3K2 pathway [91].

3.1.2. Influenza Virus

Influenza is a contagious respiratory disease caused by the influenza A (IAV) and B
viruses. Yu et al. [95] reported that following IAV H1N1 infection, A549 cells showed a
dramatic increase in circ-GATAD2A expression. It was observed that circ-GATAD2A over-
expression facilitated H1N1 replication via the inhibition of VPS34-dependent autophagy,
whereas circ-GATAD2A silencing reduced H1N1 titers [95]. It was also reported that cir-
cRNA_0050463 sponged to miR-33b-5p, therefore promoting the expression of eukaryotic
translation elongation factor 1 alpha 1 and boosting the replication of IAV [94]. In addition,
circRNA AIVR was demonstrated to inhibit IAV multiplication principally by sponging
to miR-330-3p, inhibiting its binding to the mRNA of the CREB-binding protein, thereby
accelerating IFN production (Figure 1) [59].

Recently, circMertk was reported by Qiu et al. [31] as a novel circRNA derived from pre-
MerTK. Interestingly, the overexpression or silencing of circMerTK enhanced or inhibited
the replication of the IAV and Sendai viruses, respectively. CircMerTK silencing stimulated
the secretion of type I IFNs and the expression of interferon-stimulating genes, while the
robust expression of circMerTK impaired their expression at both mRNA and protein
levels [31]. Additionally, in another report, RNA-seq of A549 cells in response to avian in-
fluenza (AIV) or IAV infections led to the identification of multiple sets of altered circRNAs’
expression, and the authors selected six circRNAs (hsa_circ_0005870, hsa_circ_0006104,
hsa_circ_0009609, hsa_circ_0060300, hsa_circ_0009365, and hsa_circ_0003428) for further
analysis [96]. The authors suggested that the selected circRNAs may influence the cell cycle
process and the endocytosis pathway via an in silico-established ceRNA network [96].

3.1.3. Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

MERS-CoV is an extremely pathogenic zoonotic virus that was first reported in hu-
mans in Saudi Arabia and Jordan in 2012, with a high mortality rate and unpredictable
incidence [100]. Interestingly, Calu-3 cells infected with MERS-CoV showed elevated cir-
cFNDC3B and circCNOT expression levels. Further studies showed that silencing these
particular circRNAs decreased the cellular viral load and indirectly influenced MAPK
signaling pathways [69]. Additionally, another study observed that the inhibition of
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hsa_circ_0004445 significantly reduced MERS-CoV replication by 50–75% via binding to
hnRNP C [93].

3.1.4. Hepatitis C Virus (HCV)

HCV, a member of the Flaviviridae family, is the causative agent of hepatitis C, a
worldwide health concern with an estimated 7.1 million people chronically infected with
HCV [101]. HCV viral infectivity was significantly diminished after the depletion of
circTIAL and circEXOSC in HCV-infected cells [97]. Additionally, the upregulation of
circPSD3 in response to hepatitis C virus infection was reported to impact HCV viral
abundances significantly, thus acting as a proviral factor in the post-translational regulation
of HCV RNA amplification [97].

3.1.5. Transmissible Gastroenteritis Coronavirus (TGEV)

Transmissible gastroenteritis is an infectious disease in swine, particularly piglets,
characterized by severe vomiting and diarrhea caused by TGEV [66]. CircEZH2 was found
to be downregulated after TGEV infection. CircEZH2 promoted NF-κB activation by target-
ing miR-22 in intestinal porcine enterocyte (IPEC-J2) cells (Figure 1). The mitochondrial
permeability transmission pore (mPTP) opening of IPEC-J2 was induced by TGEV infection
and repressed by miR-22 sponging to circEZH2. Interleukin 6 (IL-6) and hexokinase 2
(HK2) were identified as miR-22 targets. TGEV-induced mPTP opening might be controlled
by two pathways: the circEZH2/miR-22/IL-6/NF-κB axis and the circEZH2/miR-22/HK2
axis [66,67].

3.1.6. Ebola Virus (EBOV)

EBOV causes severe and typically fatal Ebola virus disease (EVD) [102]. Wang et al. [103]
demonstrated that circ-chr19 boosted the claudin-18 (CLDN18) expression by sponging miR-
30b-3p, thereby serving as a ceRNA during EBOV infection [103]. Since CLDN18 regulates
cellular permeability, the basis of EBOV pathogenesis, circ-chr19 could be a promising target
for EVD therapy.

3.1.7. Human Immunodeficiency Virus (HIV)

Over 75 million individuals have contracted HIV worldwide. Untreated HIV infec-
tions are associated with progressive CD4+ T cell depletion and numerous immunological
abnormalities [104]. Interestingly, the expression pattern and function of circRNAs in the
pathophysiology of HIV were analyzed in peripheral blood mononuclear cells obtained
from early HIV-infected patients [87]. The authors identified 15,145 unique circRNA tran-
scripts, and the circRNA–miRNA–mRNA network uncovered that dysregulated circRNAs
contributed to HIV-1 multiplication by regulating the expression of CCNK, CDKN1A, and
IL-15 genes. Previous studies proved that circRNAs played a role in HIV replication and
indicated their potential therapeutic application [87].

3.1.8. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

SARS-CoV-2 is a highly pathogenic and contagious coronavirus that evolved in 2019
and resulted in a global pandemic of acute respiratory illness [52]. A recent study by Firoozi
et al. [64] has suggested that hsa_circ_0000479, induced by SARS-CoV-2, may regulate
the immune response to SARS-CoV-2 by binding to hsa-miR-149-5p and influencing the
expression of IL-6 and RIG-I (Figure 1) [64].

3.1.9. Kaposi Sarcoma-Associated Herpesvirus (KSHV)

KSHV, or Human Herpesvirus-8, is the causative agent of Kaposi sarcoma [105].
According to several reports, KSHV, Epstein–Barr virus (EBV), and human cytomegalovirus
induced hsa_circ_0001400 expression. The upregulation of hsa_circ_0001400 promoted the
expression of tumor necrosis factor-alpha and diminished the production of two viral genes
(replication and transcription activator and latency-associated nuclear antigen), which
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govern latent and lytic infection, respectively [89]. hsa_circ_0001400 promoted the cell
cycle, suppressed apoptosis, and activated multiple immune genes’ expression (TAP2,
ICAM1, CD40, etc.). hsa_circ_0001400’s capacity to impact viral genes implies that it may
exhibit potential antiviral properties, given that numerous viruses trigger circ_0001400
expression, substantiating its importance [106].

3.1.10. Herpes Simplex Virus Type 1 (HSV-1)

HSV-1 is a herpesvirus causing vesicular eruptions, most commonly in the orolabial
and genital mucosa [107]. The analysis of top dysregulated circRNAs and their circRNA-
miRNA–mRNA regulatory axis after HSV-1 infection (circRNA14189, circRNA14556, cir-
cRNA15053, and circRNA15655) revealed that a substantial number of genes related to
immunity in the NOD-like receptor/JAK-STAT signaling pathways could be governed by
HSV-1-induced circRNAs [107].

3.1.11. Non-Mammalian Viruses

The majority of the studies on circRNAs focus on mammalian circRNAs, but numerous
reports have addressed that non-mammalian species can also encode circRNAs that are
implicated in immunity against viral infections. For instance, in teleost fish infected with
Siniperca chuatsi rhabdovirus, circBCL2L1 was found to be significantly upregulated [108].
CircBCL2L1 could act as a ceRNA, enhancing the innate immune response by sponging
to miR-30c-3-3p and influencing TRAF6, thereby inducing NF-κB/IRF3-mediated innate
immunity and inflammatory pathways [108].

3.2. Virus-Coded circRNAs Affecting Innate Immunity

Circular RNAs were first discovered in a small number of viruses in the 1970s [11].
Since then, multiple DNA and RNA viruses have been shown to encode viral
circRNAs [109–112], and several reports have investigated the crucial role of virus-coded
circRNAs in the intricate virus–host interaction. Nonetheless, the precise biological roles of
virus-coded circRNAs are still elusive [113,114].

For instance, circBART2.2, an EBV-encoded circRNA, was reported to be significantly
upregulated in nasopharyngeal carcinoma (NPC), where it upregulates programmed death-
ligand 1 (PD-L1) expression levels and inhibits T-cell functions in vivo and in vitro [115].
circBART2.2 assisted in immune escape by binding to the RIG-I helicase domain and
activating transcription factors NF-κB and IRF3, resulting in increased PD-L1 transcription
and the inhibition of the activation of the effector T lymphocytes [115].

In addition, it has been recognized that circRNAs generated by SARS-CoV-1, SARS-
CoV-2, and MERS-CoV induce the expression of genes linked to mRNA processing and
splicing during the initial stages of viral infection. In contrast, late-stage circRNAs modulate
genes implicated in metabolism, autophagy, cancer, and viral infection [112].

It has also been observed that Merkel cell polyomavirus (MCV) expresses multiple
circRNAs [116]. Of note, is that circMCV-T, the most highly expressed MCV-circRNA, mod-
ulated MCV replication by sponging to the miR-M1-loaded RISC complex, thus stabilizing
the transcripts of linear T-Ag, and enhancing the expression of T-Ag. The depletion of
circMCV-T was accompanied by the degradation of T-Ag linear transcripts via the miR-
M1-induced RISC complex, inhibiting T-Ag production and, consequently, affecting MCV
replication [116].

Additionally, some non-mammalian viruses have been shown to encode circRNAs.
For example, Bombyx mori cypovirus (BmCPV) is an RNA virus affecting silkworms that
can cause developmental retardation and severe economic losses [117]. BmCPV was re-
ported to encode circRNA-vSP27, which can translate a small viral peptide, vSP27, that
activates NF-κB signaling, suppressing BmCPV infection [108]. Bombyx mori Nucleopoly-
hedrovirus (BmNPV) is a critically important virus in silkworms, causing a significant
economic impact on the silk production industry [118]. BmNPV was found to express
multiple circRNAs; of them, circRNA-000010 could encode a small viral peptide termed
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VSP39 that acts as a proviral agent, boosting BmNPV virus replication [119]. Addition-
ally, gibel carp (Carassius gibelio) is a uniquely important globally cultured freshwater fish
species [120]. Cyprinid herpesvirus 2 (CyHV-2), which causes gill hemorrhagic disease and
severe mortalities to gibel carps, encodes circ-udg, which can promote CyHV-2 proliferation
and propagation [121].

4. Practical Applications of Circular RNAs

circRNAs differ from linear RNAs in conformation, immunogenicity, and stability. In
particular, circRNAs are arguably more stable and less immunogenic than are other types
of linear RNAs. These characteristics render circRNAs superior to linear RNA for practical
applications. Therefore, several efforts have been made to create circRNA-based formulas,
including non-coding aptamers, antisense RNAs, templates for sustained translation, mod-
ulators of innate immune responses and miRNAs, diagnostic and prognostic biomarkers
for viral infections, and vaccine candidates [19].

The immunogenicity of synthetic circRNAs must be assessed and, if necessary, tailored
for optimal biomedical uses. Recently, self-circRNAs were demonstrated to be commonly
programmed by introns and paired with RBPs, denoting their origins. Nonself-circRNAs
are distinguishable, and RIG-I-mediated signaling triggers antiviral immune responses
after sensing them [122]. Breuer et al. [123] demonstrated that synthetic circRNAs might be
used as miRNA sponges if they are generated in a cell-free system via in vitro transcription
and ligation and purified via gel extraction [123].

4.1. Vaccine Candidates

Being chemically stable and less immunogenic than linear mRNAs [42,124], it has been
suggested that synthetic and adeno-associated viral-based translatable circular RNAs can
be incorporated into circRNA-based therapies [42,125–127]. Additionally, lipid nanopar-
ticles (LNPs) are employed to deliver circRNA vaccines and therapeutics [42,52]. In
mouse adipose cells and tissues, the nano-formulated administration of unmodified IRES-
containing circRNAs improved the length of translation duration relative to that of linear
mRNAs [42,124]. Of note is that circRNA-LNPs demonstrated significantly greater ther-
mostability than did linear mRNA-LNPs [52]. Unlike current mRNA vaccines, necessitating
strict transportation and storage conditions [128], circRNA vaccines encapsulated in LNP
can be effectively kept for four weeks at 4 ◦C and up to two weeks at room temperature [52].

Intriguingly, it was hypothesized that the circRNA vaccine could exploit the observa-
tion that non-self circRNAs can activate RIG-I and PKR signaling pathways to function as a
self-adjuvant and further boost the immune response induced by vaccination [42,43,115].
Nevertheless, its immunogenicity must be optimized to maintain the desired adjuvant
effect without inducing adverse reactions that could significantly reduce circRNA vaccine
efficacy [129].

circRNA vaccines expressing the receptor-binding domain (RBD) of the SARS-CoV-2
spike protein demonstrated sustained antigen production, cellular and humoral immune
responses, neutralizing antibody formation in mice and monkeys, and distinct Th1-biased
immune responses (Figure 2A) [52,55,130]. These recent findings substantiate the thera-
peutic benefits of circRNAs for sustained expression. Nevertheless, a number of crucial
concerns must first be resolved, including IRES optimization and other strategies facil-
itating cap-independent translation [127,131], as well as reducing the cellular immune
responses induced by the administration of the circRNA vaccine [43,55].
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Figure 2. Potential applications of circRNAs in antiviral therapeutics. The relatively more stable
and less immunogenic nature of circRNAs compared to that of their linear cognate RNAs renders
circRNAs a superior arsenal for potential antiviral therapeutics and a new biomarker for the detec-
tion of strenuously diagnosed diseases caused by viruses. (A) Circular RNA vaccines expressing
the RBD of the SARS-CoV-2 spike protein demonstrated neutralizing antibody generation in mice
and monkeys [52,55,130]. (B) Top panel: a circular RNA sponge containing miRNA-122 binding
sites, sequestered miRNA-122, and suppressed HCV viral replication [48]; Bottom panel: anti-
sense circRNAs targeting distinct regions of the 5′-UTR of SARS-CoV-2 that can efficiently inhibit
virus replication [132]. (C) Top panel: EBV-encoded circRPMS1 and host hsa_circRNA_001387 that
are significantly expressed in EBV-positive NPC tissues. Hence, they could be valuable biomark-
ers for the diagnosis and prognosis of NPC [133,134]; CircEAF2 inhibited EBV and large B-cell
lymphoma progression via the miR-BART19-3p/APC/β-catenin axis, indicating it is a potential
prognostic biomarker [99]. Bottom panel: four circular RNAs (hsa_circ_0018429, hsa_circ_0026579,
hsa_circ_0125357, and hsa_circ_0099188) which were shown to be very sensitive and specific biomark-
ers for the diagnosis of community-acquired pneumonia (CAP) [135]. HCV: Hepatitis C virus; EBV:
Epstein–Barr virus; CAP: community-acquired pneumonia. Created with BioRender.com (accessed
on 4 August 2023).

4.2. Therapeutic Agents

circRNAs can absorb miRNAs, reducing their bioaccessibility and activity against
their intended mRNA targets. This led to the introduction of ectopically produced or
in vitro-generated circular RNAs expressing partial MREs sites, enabling a reduction in
disease- or virus-related miRNA activity in vitro and in vivo [48,136], giving a potential
therapeutics alternative to the existing gold standard, antagomirs [137].

The HCV functional sequestration of miRNA-122 in cells is an excellent example of
this approach. miRNA-122 is critical for HCV replication and propagation as it binds to the
HCV RNA 5′-end, stabilizing and protecting the HCV genome from nucleolytic degradation
and boosting HCV viral replication. Miravirsen, a locked nucleic acid (LNA)-modified
DNA phosphorothioate antisense oligonucleotide complementary to miRNA-122, currently
undergoing clinical trials, disrupts miRNA-122’s protective role on HCV RNA [138]. Briefly,
5′-3′-end-ligation using T4 RNA ligase 1 was used to generate a circular RNA sponge
containing four miRNA-122 binding sites, thus sequestering miRNA-122 and suppressing
HCV viral protein synthesis more effectively than did Miravirsen (Figure 2B) [48].

Additionally, SARS-CoV-2 viral replication was significantly suppressed in a cell
culture by a panel of antisense circular RNAs that were designed to target the structurally
conserved 5′-UTR of the virus’s genomic RNA [132]. Antisense-circRNAs targeting distinct
regions of the 5′-UTR of SARS-CoV-2 efficiently inhibited virus replication by up to 90%
compared to the control, and the durability was at least 48 h (Figure 2B) [132].

Additionally, two interesting Chinese herbs (Oldenlandia diffusa (Willd.) and
Scutellaria barbata D.Don (SB)) were shown to dramatically reduce HBV activity, and HCC
growth, migration, and invasion both in vitro and in vivo [139]. This activity may have
been due to the modulation of the circRNA–miRNA–gene expression network [139].

BioRender.com
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4.3. Viral Infection Biomarker

circRNAs are detected as enriched detectable components in exosomes [140,141] and
as a component of physiological body fluids (such as saliva, blood, and urine); they are
also prevalent in peripheral tissues [142–146]. These properties make circRNAs stable and
resistant to environmental fluctuations, rendering them potential biomarkers for detecting
various diseases and infections [147].

For instance, diagnosing NPC, a disease typically caused by EBV, can be challenging;
consequently, early detection can benefit therapeutic management. In this context, host
hsa_circRNA_001387 and EBV-encoded circRPMS1 are significantly expressed in EBV-
positive NPC samples. Hence, EBV-circRPMS1 and cellular hsa_circRNA_001387 could be
valuable biomarkers for the diagnosis and prognosis of NPC [133,134]. Additionally, it was
reported that the overexpression of circEAF2 in EBV-positive B lymphoma cells induces
cell apoptosis and sensitizes lymphoma cells to epirubicin. circEAF2’s preferential target is
the EBV-encoded miR-BART19-3p, which upregulates the tumor suppressor adenomatous
polyposis coli (APC) and inhibits downstream β-catenin production, leading to the inacti-
vation of the Wnt signaling pathway and suppression of EBV and DLBCL cell proliferation.
CircEAF2 impacted the miR-BART19-3p/APC/β-catenin axis, and consequently inhibited
EBV and large B-cell lymphoma progression, indicating that it is a potential prognostic
biomarker (Figure 2C) [99].

Recently, four circRNAs (hsa_circ_0026579, hsa_circ_0018429, hsa_circ_0099188, and
hsa_circ_0125357) were shown to be very sensitive and specific biomarkers for diagnosing
community-acquired pneumonia (CAP). Interestingly, hsa_circ_0026579 was proposed
as a circRNA biomarker that can distinguish the causative agent of CAP to be either
viral/bacterial or mixed infection (Figure 2C) [135]. In addition, He et al. [148] reported
that patients with dengue fever showed considerable upregulation of hsa_circ_0015962 and
significant downregulation of hsa_circ_0006459. The upregulation of hsa_circ_0015962 and
downregulation of hsa_circ_0006459 influence the therapeutic response to dengue fever
and are promising biomarkers in dengue fever patients [148].

5. Summary

The biological functions of circRNAs have drawn the scientific community’s attention
in the past years. Importantly, recent research has revealed that circRNAs could play a role
in inducing or dampening antiviral immunity. It has been shown that circRNAs potentially
regulate the expression of genes implicated in innate immunity, serving as either antiviral
or proviral host factors. These findings contribute to the ever-growing comprehension
of physiological and pathophysiological functions of such ncRNAs. However, our cur-
rent knowledge and advancements in circRNA research are limited. For instance, the
mammalian transcriptome contains a vast number of circRNAs with unknown functions
that remain to be determined. Moreover, during circRNA synthesis, the backsplicing of
pre-mRNA is frequently accompanied by alternative splicing. How the splicing machin-
ery decides and chooses between RNA splicing, alternative splicing, and backsplicing to
generate circRNAs is poorly understood. Consequently, it is essential to have a thorough
understanding of the processes underlying circRNA synthesis and degradation.

Although progress has been made in the understanding of circRNAs’ involvement in
the innate immune response to viral infection, the exact mechanism of how they regulate
innate immunity is still unclear. Extensive studies of circRNA expression and function
in response to viral infections may provide a solid basis for a better understanding of
regulatory networks that protein-centric research might have underestimated. CircRNAs
could potentially serve as proper biomarkers for a number of infections and diseases,
therapeutic agents, and vaccine candidates, but these need to be further investigated. One
of the challenges confronting circRNAs research is the lack of a well-established in vivo
system for depleting circRNAs of interest. Since circRNAs share the same pre-mRNA with
their cognate mRNA, it is challenging to alter the expression of only circRNAs without
influencing the expression of the linear mRNA. Limited success has been achieved in
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developing some specific circRNA-depleted animal models. However, establishing a
methodology to knock out merely circRNA expression effectively is an ongoing task. The
development of such an in vivo system would be a breakthrough in investigating the
biogenesis and functions of circRNAs in vivo.
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Abbreviations

APC Adenomatous polyposis coli
BmCPV Bombyx mori cypovirus
BmNPV Bombyx mori Nucleopolyhedrovirus
BSJ Backsplice junction
Calu-3 Human lung adenocarcinoma cells
CAP Community-acquired pneumonia
CCNK Cyclin-K
ceRNAs Competing endogenous RNAs
CHB Chronic Hepatitis B
circRNAs Circular RNAs
ciRNAs Circular intronic RNAs
CLDN18 Claudin 18
COVID-19 Coronavirus Disease 2019
CREBBP CREB-binding protein
CVB3 Coxsackievirus B3
CVB3 Coxsackievirus B3
CyHV-2 Cyprinid herpesvirus 2
DENV Dengue virus
DLBCL Diffuse Large B-Cell Lymphoma
EBV Epstein–Barr virus.
ecircRNAs Circular exonic RNAs
eiciRNAs Exon–intron circRNAs
EVD Ebola Virus Disease
G3BP1 GTPase-activating protein SH3 domain-binding protein 1
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
HDV Hepatitis D virus
HepG2 Human hepatoma cell line
HIV Human immunodeficiency virus
HK2 Hexokinase 2
hnRNP C Heterogeneous nuclear ribonucleoprotein C
HRSP12 Heat-responsive protein 12
HTNV Hantaan virus
Huh7 Human hepatocarcinoma cell line
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IAV Influenza A virus
ICAM1 Intercellular adhesion molecule 1
IFN Interferon
IL-15 Interleukin-15
IL-6 Interleukin-6
IPEC-J2 Intestinal porcine enterocytes cell line
IRF3 Interferon Regulatory Factor 3
JAK-STAT Janus Kinase/Signal Transducer and Activator of Transcription
KSHV Kaposi sarcoma-associated herpesvirus
LNA Locked nucleic acid
lncRNAs Long non-coding RNAs
LNP Lipid-based nanoparticle
MAP3K2 Mitogen-Activated Protein Kinase Kinase Kinase 2
MAPK Mitogen-activated protein kinase
MERS-CoV Middle East respiratory syndrome coronavirus
MIMV maize Iranian mosaic virus
miRNAs MicroRNAs
mPTP Mitochondrial permeability transition pore
MREs MiRNA response elements
mRNAs Messenger RNAs
ncRNAs Non-coding RNAs
NF-κB Nuclear factor kappa light chain enhancer of activated B cells
NOD Nucleotide-binding oligomerization domain
NPC Nasopharyngeal carcinoma
p53 Tumor protein P53
PD-L1 Programmed death ligand 1
PKR Protein kinase R
RBD Receptor binding domain
sncRNAs Small non-coding RNAs
SRSF1 Serine And Arginine-Rich Splicing Factor 1
TAOK2 Thousand-And-One Kinase 2
TAP2 Transporter 2
TGEV Transmissible Gastroenteritis Virus
TNFAIP3 TNF alpha-induced protein 3
TRAF6 TNF receptor associated factor 6
TRIM59 Tripartite Motif Containing 59
VPS34 Vacuolar protein sorting 34
vSP27 Viral small peptide 27
VSP39 Viral small peptide 39
YTHDF2 YTH N6-Methyladenosine RNA-Binding Protein F2
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