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Abstract: Whether RNA–RNA interactions of cytoplasmic RNA viruses, such as Betacoronavirus,
might end in the biogenesis of putative virus-derived small RNAs as miRNA-like molecules has
been controversial. Even more, whether RNA–RNA interactions of wild animal viruses may act as
virus-derived small RNAs is unknown. Here, we address these issues in four ways. First, we use
conserved RNA structures undergoing negative selection in the genomes of SARS-CoV, MERS-CoV,
and SARS-CoV-2 circulating in different bat species, intermediate animals, and human hosts. Second,
a systematic literature review was conducted to identify Betacoronavirus-targeting hsa-miRNAs
involved in lung cell infection. Third, we employed sophisticated long-range RNA–RNA interactions
to refine the seed sequence homology of hsa-miRNAs with conserved RNA structures. Fourth,
we used high-throughput RNA sequencing of a Betacoronavirus-infected epithelial lung cancer cell
line (Calu-3) to validate the results. We proposed nine potential virus-derived small RNAs: two
vsRNAs in SARS-CoV (Bats: SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p), one vsRNA in MERS-CoV (Bats:
MB-vsRNA-ORF1b-3p), and six vsRNAs in SARS-CoV-2 (Bats: S2B-vsRNA-ORF1a-5p; intermediate
animals: S2I-vsRNA-ORF1a-5p; and humans: S2H-vsRNA-ORF1a-5p, S2H-vsRNA-ORF1a-3p, S2H-
vsRNA-ORF1b-3p, S2H-vsRNA-ORF3a-3p), mainly encoded by nonstructural protein 3. Notably,
Betacoronavirus-derived small RNAs targeted 74 differentially expressed genes in infected human cells,
of which 55 upregulate the molecular mechanisms underlying acute respiratory distress syndrome
(ARDS), and the 19 downregulated genes might be implicated in neurotrophin signaling impairment.
These results reveal a novel small RNA-based regulatory mechanism involved in neuropathogenesis
that must be further studied to validate its therapeutic use.

Keywords: Betacoronavirus; RNA–RNA interaction; virus-derived small RNAs; host miRNA machin-
ery; human lung physiopathology; neurotrophin signaling impairment

1. Introduction

Over the last two decades, there have emerged highly pathogenic and deadly Betacoro-
naviruses (Beta-CoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome coronavirus (MERS-CoV), which can cause severe
human disease but have only been observed in a one-time event and limited outbreaks [1,2].
More recently, a novel Beta-CoV named SARS-CoV-2 has been identified as the source of
coronavirus disease 2019 (COVID-19), which continues to threaten the lives of hundreds
of millions of people [3]. These positive-sense, single-stranded RNA (+ ssRNA) viruses
belong to the Beta-CoV genus and carry one of the largest RNA genomes (~30 kilobases, kb)
capped at the 5′ ends and poly-A tail among all RNA virus families [4–6]. Upon cell entry,
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genomic RNA is initially translated to produce nonstructural proteins from ORF1a and
ORF1b and also serves as a template for the generation of subgenomic RNAs (sgRNAs)
from the 3′ end, which are subsequently capped and translated into structural and acces-
sory proteins [7,8]. Since the linear sequence of Beta-CoV genomes encodes all the proteins
needed to take over the host cell machinery, the most interesting hallmark of these viruses
is to understand how RNA molecules fold into complex, higher-conserved structures with
potential RNA–RNA interactions that may perhaps give rise to virus-derived small RNAs
(vsRNAs) with functions to modulate the host transcriptome that remain unknown. For
this purpose, it is crucial to consider that RNA structures are typically subject to selection
pressures. A well-conserved RNA structure indicates that, despite suffering an excess of
noncompensatory changes during the cross-species barriers of Beta-CoVs (e.g., GC→ CG or
AU→ UA), RNA structure-preserving supports maintained pointing to negative selection,
whereas substitutions that alter base pairs (e.g., GC→ AU or CG→ UA) hint at relaxed
constraints or positive selection [9–11].

During the last two decades, small noncoding RNAs (20–22 nt), including microRNAs
(miRNAs), have attracted attention owing to their well-conserved structure and regulatory
role in gene expression [12,13]. In a eukaryotic context, the biogenesis of human miRNAs
(hsa-miRNAs) is transcribed in the nucleus from RNA polymerase II into long primary
transcripts (pri-miRNAs). The nuclear microprocessor machinery (Drosha/DGCR8) cleaves
pri-miRNAs into small precursor-miRNAs (pre-miRNAs) that are then exported into the
cytoplasm by an exportin 5 (XPO5)/RanGTP complex. In the cytoplasm, they are further
processed to become mature miRNAs by Dicer, an RNase III-type protein, and loaded
into the Argonaute (AGO) protein to produce the effector RNA-induced silencing complex
(RISC) [14]. The RNA–RNA binding of a microRNA and its target typically involves
perfect complementarity between a sequence of six to eight bases at the 5′ end of the
mature miRNA, known as the miRNA seed, and a cognate complementary sequence in
the target’s 3′ untranslated region [15,16]. In light of these considerations, viruses often
hijack the miRNA pathway by clearing host miRNAs or producing their miRNAs as viral
microRNAs (v-miRNAs) [17,18]. Since some enzymes are involved in the biogenesis of
hsa-miRNAs located in the nucleus [19], all known v-miRNAs are derived from RNA
viruses that replicate in the nucleus [20]. Recent reports have identified v-miRNAs in HIV-1
(miR-N367, vmiR88, vmiR89 y miR-H3-3p) [21–23], influenza (miR-HA-3p) [24], dengue-2
(DENV–vsRNA-5) [25], and Ebola (miR-VP-3p, Zebov-miR-1-5p y miR-T1-5p) [26–29].
Regarding cytoplasmic RNA viruses, whether or not these viruses produce v-miRNAs is
not yet fully understood. However, previous studies have suggested that bearing artificial
miRNA sequences may be a source of v-miRNAs [30–32].

Beta-CoVs replicate into the cytoplasm, and most studies rely on the assumption that
v-miRNAs derived from their genomes are processed by the host miRNA pathway [33–37].
Whether Beta-CoVs produce functional v-miRNAs has been controversial for several
years [38]. Here, conserved RNA structures with strong negative selection signals (s ≤ 2.99),
recently identified in a wide range of Beta-CoVs circulating in bats, a variety of animal
species, and humans [39], are proposed as model RNA structures to unravel potential
RNA–RNA interactions with the capacity to function as vsRNAs in host gene regulation.
Additionally, putative vsRNAs are validated using bulk RNA sequencing (RNA-seq) of the
epithelial lung cancer cell line Calu-3 infected with SARS-CoV, MERS-CoV, and SARS-CoV-
2. The RNA–RNA binding for predicting vsRNAs as functional miRNA-like molecules
is challenging. Still, our approach promises to be highly reliable and novel, shedding
light on the mechanisms and possible role of vsRNAs in the pathogenesis for developing
antago-miR therapies against these pathogenic viruses.

2. Materials and Methods
2.1. Data Acquisition

We retrieved conserved RNA structures under negative selection (s ≤ 2.99) in Beta-
CoV genomes that were found in bats, intermediate animals, and humans from a recent
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study [39]. Briefly, the prediction of structured regions across the whole viral genome
was scanned in windows of length 120 nucleotides sliding by 40 nucleotides with RNAz
(v2.1) [40]. Conserved RNA structures with p > 0.98, and z < −3 were retrieved and then
tested to estimate their selection pressures using SSS-test (v1.0) [11].

RNA-seq expression profiling was obtained from the Gene Expression Omnibus (GEO)
database (NCBI Reference series: GSE148729) of the epithelial lung cancer cell line (Calu-3)
in mock and infected with SARS-CoV (GER-FRA/2003) and SARS-CoV-2 (USA-WA1/2020).
For MERS-CoV, a complete transcriptional profile (RNA-seq) of circRNA, miRNA, and
mRNA expression was analyzed in epithelial lung cancer cells (Calu-3) for mock and
infected with MERS-CoV (HCoV-EMC/2012), downloaded from the GEO database (NCBI
Reference series: GSE139516).

2.2. Differential Expression Analysis

Gene-level differential expression analysis was carried out using the edgeR package
(v3.36) in R [41] to determine the set of differentially expressed genes (DEGs) as a response
to the viral infection. All samples were prefiltered to discard genes with a read count less
than 2, and then for each group, genes with a minimum requirement of 20 counts per
million (CPM) across libraries were kept. Count data were then normalized using trimmed
means of M values (TMM) to adjust for sequencing library size difference [42]. For each
virus, three comparisons were performed: (i) mock cells between the final and initial time
(MM), (ii) infected cells upon post-infection against onset (II), and (iii) a comparison of
infected cells with the respective mock cells (IM). We employed a quasi-likelihood F test
to assess the significance of group differences [42]. Significant DEGs were defined with
|log2 (fold change, FC)| > 1.5 and false discovery rate (FDR)-adjusted p-value < 0.05 using
Benjamini–Hochberg’s procedure for multiple comparison adjustment.

2.3. hsa-miRNAs Targeting Beta-CoVs in Respiratory Epithelial Cells

Given that the upper respiratory tract probably represents the onset site for Beta-CoV
infection [43], a systematic literature review was conducted to identify hsa-miRNAs in-
volved in lung cell infection for SARS-CoV, MERS-CoV, and SARS-CoV-2. In this systematic
review, databases such as Pubmed, Lilacs, EMBASE, Scopus, Web of Science Core Collec-
tion (WosCC), and EBSCO were searched using the terms “microRNA” and its synonyms
(microRNA OR hsa-miRNA OR miR OR miRNA OR small noncoding RNA OR small
ncRNA), “lung epithelial infection” (lung epithelial infection OR pulmonary epithelial
infection OR respiratory epithelial infection) and in titles/abstracts as “SARS-CoV, MERS-
CoV, and SARS-CoV-2”, separately. Research articles with either robust computational or
experimental validation were considered for the inclusion of hsa-miRNAs until July 2022.

2.4. RNA–RNA Interactions

For each virus, the putative 3′UTR regions of genes targeted by hsa-miRNAs were
predicted using TargetScan [44], miRDB [45], and miRTarBase [46], implemented in the
miRWalk 3.0 [47] online tool with a binding probability ≥ 1.0. These binding pairs were
cross-validated with intercepted DEGs between comparisons II and IM. For a rigorous tar-
get conservation analysis, hsa-miRNAs sequences were retrieved from miRBase [48], while
3′UTRs sequences of their respective targets as DEGs from the UTRdb database [49]. Ther-
modynamic interaction was undertaken for each hsa-miRNAs:3′UTR pairing, preventing
certain hsa-miRNAs from binding to the 3′UTR of other DEGs. We conducted these hy-
bridization duplexes using RNAhybrid [50], miRanda [51], and mirTarP [52]. RNAhybrid
queries were considered with a strict binding to seed region (nucleotides 2–8), a minimum
free energy (MFE) ∆G cutoff ≥ −18 kcal/mol, and a maximum bulge and internal loop
length of 1. The parameters for miRanda included a hybridization alignment score ≥140
and an MFE ∆G cutoff ≤ −18 kcal/mol, and for mirTarP, a consecutive base match of 7 and
an MFE ∆G cutoff ≤ −18 kcal/mol. Finally, we focused only on hsa-miRNAs overlapped
by the three methods with the ggVennDiagram package (v2.1) [53] implemented in R.
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2.5. Prediction of Putative vsRNAs

Upon the determination of potential hsa-miRNA candidates, we sought the most
energetically favorable hybridization sites targeting conserved RNA structures with the
negative selection at each host to identify putative vsRNAs derived from genomes of SARS-
CoV, MERS-CoV, and SARS-CoV-2. The interactions between hsa-miRNA:viralRNA were
predicted using RNAhybrid, miRanda, and mirTarP with similar parameters as specified in
the hsa-miRNAs:3′UTR pairing. The hsa-miRNA binding site to viralRNA was considered
as a possible candidate vsRNA.

2.6. Validation of vsRNAs and Prediction of Their Potential Targets

To verify whether there is a significant similarity between predicted vsRNAs and
host miRNAs, a search of miRNAs deposited in miRbase 22 [48] based on the miRNA
seed sequence was performed. Then, to better understand what processes may affect this
subset of Beta-CoV vsRNAs, assuming that they are acting as host-gene regulators, human
genes potentially targeted were identified using two independent tools including Diana
(software MR-microT) [54], and miRDB (Custom prediction) [45]. Only predicted targets
with a score ≥ 70 were considered in both cases. In addition, a reliable set of targets was
obtained by overlapping predicted genes with the two algorithms. Finally, this list of
targets was cross-validated with the repertoire of intercepted DEGs, and those overlapping
were retrieved.

2.7. Functional Enrichment Analysis

The functionality of these DEGs was analyzed by an over-representation analy-
sis (ORA) of gene ontology (GO) terms using Protein Analysis Through Evolutionary
Relationships (PANTHER) [55]. GO terms enriched in biological process (BP) and Re-
actome pathways were considered using a Fisher’s exact tests with an FDR-adjusted
p-value < 0.05. In addition, the Gene Cards database (https://www.genecards.org/, ac-
cessed on 16 March 2023) was used to reveal the human lung epithelial tissue, in which
DEGs targeted by vsRNAs are expressed, and also to retrieve information on the patholo-
gies that might be linked to these genes.

3. Results
3.1. Over 80% of Conserved RNA Structures in Genomes of SARS-CoV, MERS-CoV, and
SARS-CoV-2 Are under Negative Selection

This study employs conserved RNA structures that showed negative selective pres-
sures for genomes of the three Beta-CoVs (s≤ 2.99) in a wide variety of hosts, including bats,
intermediate animals, and humans. We retrieved 505 conserved loci or regions containing
RNA structures acting under negative selection (Table 1). Among these loci, 133 (26%)
were detected in SARS-CoV-2, followed by SARS-CoV and MERS-CoV with 159 (31%) and
213 (42%), respectively. We found that 81% of 619 loci under different selection pressures
were conserved RNA structures with negative signals.

Table 1. Comparison of the number of loci bearing conserved RNA structures under selective
pressures and those with negative selection, which shows the viral genome coverage.

Virus Host Total of Loci under
Selection Pressures

Total of Loci under
Negative Selection

1 Genome
Coverage (%)

SARS-CoV Bat 46 32 12.91
Intermediate 62 59 23.85

Human 72 68 27.47
MERS-CoV Bat 85 78 31.17

Intermediate 86 70 27.90
Human 83 65 25.90

https://www.genecards.org/
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Table 1. Cont.

Virus Host Total of Loci under
Selection Pressures

Total of Loci under
Negative Selection

1 Genome
Coverage (%)

SARS-CoV-2 Bat 40 36 14.51
Intermediate 69 45 18.16

Human 76 52 20.92
1 Genome coverage percentage was calculated by multiplying the total number of nucleotides of all predicted loci
by 100 and then dividing the viral genome length of a given host, shown in Figure S1.

3.2. Identification of DEGs in Beta-CoV-Induced Epithelial Lung Cancer

To validate downstream analyses, we conducted a differential expression analysis
using RNA-seq data obtained from Calu-3 cells infected with SARS-CoV-2, SARS-CoV, and
MERS-CoV from the GEO database. Although in the first comparison (MM), SARS-CoV
identified 172 DEGs (79 up- and 93 downregulated), MERS-CoV 115 DEGs (101 up- and
14 downregulated), and SARS-CoV-2 191 DEGs (86 up- and 105 downregulated) (Figure S2),
the vast majority of DEGs resulted from the II and IM comparisons (Figure 1). For the II
comparison, SARS-CoV registered 596 DEGs (461 up- and 135 downregulated), MERS-CoV
1622 DEGs (805 up- and 817 downregulated), and SARS-CoV-2 724 DEGs (505 up- and
219 downregulated), while in the IM comparison, 473 (431 up- and 42 downregulated),
2745 (1288 up- and 1457 downregulated), and 621 (480 up- and 141 downregulated) DEGs
were detected in SARS-CoV, MERS-CoV, and SARS-CoV-2, respectively.
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Figure 1. Volcano plots showing the differential expression profiling of Calu-3 cell cultures in-
fected with Beta-CoVs. Differential analyses rely on the distribution of –log10 in the FDR-corrected
p-value < 0.05 versus |log2FC | > 1.5 in (A,B) SARS-CoV, (C,D) MERS-CoV, and (E,F) SARS-CoV-2.
For each virus, there are three comparisons: (i) mock cells between the final and initial time (MM)
(Figure S2), (ii) infected cells upon post-infection against onset (II), and (iii) a comparison of infected
cells with the respective mock cells (IM). Upregulated DEGs are shown as red dots and downregulated
DEGs as blue dots.
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As the II and IM comparisons revealed the most significant number of DEGs, those in
common were used for the validation of RNA–RNA interactions, target prediction, and
functional enrichment. Accordingly, overlapping DEGs were identified, where 466 (331 up-
and 135 downregulated) and 593 (374 up- and 219 downregulated) were accounted for
SARS-CoV (Figure 2A,B), and SARS-CoV-2 (Figure 2E,F), respectively. Conversely, as
MERS-CoV obtained the most considerable amount of DEGs, only 1423 (727 up- and
696 downregulated) were retrieved (Figure 2C,D)). The complete list of DEGs for the three
viruses is available in Table S1.
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Figure 2. Venn diagrams register the amount of up- or downregulated DEGs in epithelial lung
cancer cells infected with Beta-CoVs: (A,B) SARS-CoV; (C,D) MERS-CoV; and (E,F) SARS-CoV-2. For
RNA–RNA interaction analyses, the intercepted DEGs between comparisons are considered: (i) mock
cells between the final and initial time (MM) (no significant), (ii) infected cells upon post-infection
against onset (II) and (iii) the comparison of infected cells with the respective mock cells (IM). Venn
diagrams sections are colored based on the number of DEGs. The number of significant DEGs are
shown for comparisons including 24 vs. 4 h post-infection and 24 vs. 6 h post-infection.

3.3. hsa-miRNAs Associated with Lung Physiopathology in Beta-CoVs

For the prediction of putative RNA–RNA interactions, our strategy first consisted
of searching research articles published until July 2022 that focused on describing the
role, function, and/or association of hsa-miRNAs in the lung physiopathology of Beta-
CoVs. Based on the literature review, we found a total of 256 hsa-miRNAs, including
for SARS-CoV (36 hsa-miRNAs in 4 articles from 2002), MERS-CoV (70 hsa-miRNAs in
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5 articles from 2012), and SARS-CoV-2 (150 hsa-miRNAs in 22 articles from 2019) (Table 2).
Table S2 describes these hsa-miRNAs for each virus.

Table 2. Number of hsa-miRNAs targeting Beta-CoVs supported by either computational or experi-
mental studies.

Virus Number of
hsa-miRNAs Detection Method Number of

Articles

Date Range for
Publication

Search

SARS-CoV 36
Computational 1

2002–2022Experimental 2
Computational/Experimental 1

MERS-CoV 70
Computational 3

2012–2022Experimental 2

SARS-CoV-2 150
Computational 10

2019–2022Experimental 7
Computational/Experimental 5

3.4. The let-7 Family of hsa-miRNAs Is the Most Frequently Predicted in hsa-miRNA:3′UTR
Interactions

For each virus, hsa-miRNAs defined through the literature review were queried into
miRWalk 3.0 to predict their putative 3′UTR regions of the target genes. Then, the hsa-
miRNA:3′UTR pairings were cross-validated with previously identified DEGs, in which
SARS-CoV obtained 52 pairings, MERS-CoV 210, and SARS-CoV-2 76, thus MERS-CoV
had the most predicted pairings. To further decrease the impact of false favorable rates, the
predicted interaction of hsa-miRNA:3′UTR was corroborated using scores from highly cited
prediction tools such as RNAhybrid, miRanda, and mirTarP. These three tools matched
20 pairings in SARS-CoV, of which 15 (75%) showed to be of the let-7 family (Figure 3A). In
a lower proportion, from 31 and 21 pairings of MERS-CoV and SARS-CoV-2, 19 (61%) and
5 (24%) concerned the same family of hsa-miRNAs, respectively (Figure 3B,C) (Table S3).
In addition, it is worth mentioning that hsa-miRNA:3′UTR interactions showed a high
binding homology to the seed sequence. For instance, for SARS-CoV, the predicted target
sites were those where the MFE ranged from−19.4 to−30.7 kcal/mol, MERS-CoV between
−18.0 and−30.6 kcal/mol, and SARS-CoV-2 between−18.2 and−32.2 kcal/mol (Table S3).
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3.5. RNA–RNA Interactions in ORF1a Appear to Produce Discrete Putative vsRNAs

From the final hsa-miRNA:3′UTR interactions, hsa-miRNAs were retrieved to identify
which binding sites are shared with the loci seed sequence showing negative selection in
individual virus hosts using RNAhybrid, miRanda, and mirTarP (Figure S3). Interestingly,
the analysis matched a repertoire of 25 hsa-miRNA:virus RNA pairings, where 20 of them
were found in SARS-CoV-2, whereas MERS-CoV and SARS-CoV obtained 3 and 2 pairings,
respectively (Table S4). However, there were hsa-miRNA:virus RNA interactions that
matched identically in MERS-CoV and SARS-CoV-2, resulting in one and six pairings for
each virus (Table S5). Finally, nine hybridization duplexes ranging from 18 to 23 nucleotides
were analyzed.

The binding sites to the loci seed sequence were defined as a vsRNA candidate encoded
by Beta-CoV genomes (Table 3). Among these nine potential vsRNAs, five (55%) were found
in RNA structures belonging to ORF1a, while two (22%) were in ORF1b, and one (11% each)
in both S and ORF3a. Next, upon a comparative analysis across the three hosts, it was
discovered that more than one predicted vsRNA was shared between two hosts, indicating
possibly a highly conserved RNA structure during viral evolution (Figure S4C). This finding
was observed in SARS-CoV-2, intermediate animals (S2I-vsRNA-ORF1a-5p), and humans
(S2H-vsRNA-ORF1a-5p) at genome positions ranging from 4153 to 4189. As these vsRNAs
are similar in sequence and structure, we selected only one, modifying its nomenclature
according to the hosts in which it is shared (S2I-H- vsRNA-ORF1a-5p).

Table 3. Overview of potential vsRNA candidates identified within conserved RNA structures with
negative selection in Beta-CoVs.

Virus Host vsRNA
Name vsRNA Sequence vsRNA

Length
Genome
Position Strand ORF RNAhybrid

MFE

SARS-
CoV

Bat SB-vsRNA-
ORF1a-3p GCAUUUUACGUGCUACCUUC 20 4250–4270 Forward ORF1a −20.9

Bat SB-vsRNA-S-
5p UACCAUACAGCUUCUACUUUAC 22 23,434–

23,456 Forward S −27.7

MERS-
CoV Bat MB-vsRNA-

ORF1b-3p GAGGUGAUGUGCUGUUGG 18 15,575–
15,593 Forward ORF1b −27.0

SARS-
CoV-2

Bat S2B-vsRNA-
ORF1a-5p UUAUCUGUAGGCACUUUU 18 4212–4230 Reverse ORF1a −23.1

Intermediate
S2I-vsRNA-
ORF1a-5p

*
AUUGUCUGUUGGCACUUUU 19 4170–4189 Reverse ORF1a −25.4

Human
S2H-vsRNA-

ORF1a-5p
*

AUUGUCUGUUGGCACUUUU 19 4153–4172 Reverse ORF1a −25.4

Human S2H-vsRNA-
ORF1a-3p CUGAGCAGGUGGUGCUGA 18 5526–5544 Reverse ORF1a −22.9

Human S2H-vsRNA-
ORF1b-3p CAAUUUAGGUGGUGCUGU 18 19,443–

19,461 Forward ORF1b −26.1

Human S2H-vsRNA-
ORF3a-3p GGCUUAUUGUUGGCGUUGCACUU 23 25,459–

25,482 Forward ORF3a −23.4

* vsRNAs showing similar sequence, structure, and MFE.

In more detail, RNA–RNA bindings in SARS-CoV and MERS-CoV carried two and one
vsRNAs only in bats (SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p) and (MB-vsRNA-ORF1b-3p)
with an MFE between −20.9 and −27.7 kcal/mol, respectively (Figure 4A,B). Conversely,
SARS-CoV-2 showed vsRNAs across the three hosts: one in bat viruses (S2B-vsRNA-ORF1a-
5p), one in intermediate animals (S2I-vsRNA-ORF1a-5p), and four in humans (S2H-vsRNA-
ORF1a-5p; S2H-vsRNA-ORF1a-3p; S2H-vsRNA-ORF1b-3p; S2H-vsRNA-ORF3a-3p), where
the MFE ranged from −22.1 to −26.1 kcal/mol (Figure 4C).
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Figure 4. Putative illustration of vsRNA structures from the hsa-RNA:viralRNA interaction in Beta-
CoVs. (A) For SARS-CoV, RNAhybrid, miRanda, and mirTarP agree with SB-vsRNA-ORF1a-3p and
SB-vsRNA-S-5p detected in the viral genomes of bats. (B) Likewise, only MB-vsRNA-ORF1b-3p
is predicted in bat viruses with matching by RNAhybrid, miRanda, and mirTarP in MERS-CoV.
(C) Conversely, RNAhybrid, miRanda, and mirTarP agree with identifying vsRNAs in the three
hosts for SARS-CoV-2. For bat-associated viruses, S2B-vsRNA-ORF1a-5p is detected, in intermediate
animals, S2I-vsRNA-ORF1a-5p, shared with human viruses S2H-vsRNA-ORF1a-5p, along with S2H-
vsRNA-ORF1a-3p, S2H-vsRNA-ORF1b-5p, and S2H-vsRNA-ORF3a-5p. Interactions show the target
as the locus depicted by the sequence written in red (vsRNA), the hsa-miRNA shown in green, and
the free energy MFE.

3.6. ORF1a Is a Crucial Viral Gene in Modulating the Host Transcriptome

First, we asked whether these nine potential vsRNAs had significant similarities with
miRNAs from any organism. To this end, the miRBase database was used to search based on
the miRNA seed sequence. Surprisingly, none of our predicted vsRNAs showed miRNAs
associated with other organisms, which is a promising result (Table S5). In light of this, the
following purpose was to understand what processes may affect this subset of Beta-CoV
vsRNAs, assuming that they act as host gene regulators. Diana (MR-microT software) [54]
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and miRDB (Custom prediction) [45] tools with a score ≥ 70 were employed to obtain a
reliable set of candidate human genes potentially targeted by these vsRNAs. A total of
1998 human genes were predicted as possible vsRNA targets for the three viruses. Despite
SARS-CoV having two vsRNA candidates, it registered the most significant number of
targets compared to the other viruses, resulting in 1076 ranging from 102 (SB-vsRNA-S-5p)
to 974 (SB-vsRNA-ORF1a-3p), 538 being the average number of targets across the vsRNAs
predicted (Figure S5A). Instead, SARS-CoV-2 with five potential vsRNAs scored 879 targets,
between 82 (S2H-vsRNA-ORF1a-3p) and 393 (S2H-vsRNA-ORF1b-3p) averaging 175.8
(Figure S5C). As MERS-CoV only has one vsRNA, 43 targets were predicted (Figure S5B).
The full details of each vsRNA targeting human genes can be consulted depending on the
virus: SARS-CoV (Table S6), MERS-CoV (Table S7), and SARS-CoV-2 (Table S8).

Considering that our assumption relies on RNA–RNA interactions acting in a vsRNA
fashion, capable of exploiting host machinery as miRNA-like molecules to regulate host
transcriptional reprogramming [20], we selected the targets identified and cross-validated
them with the list of DEGs for each Beta-CoV vsRNA. Out of the 1998 putative targets, 74
(55 up- and 19 downregulated) were detected as DEGs targeted by vsRNAs that were likely
regulated upon infection (Figure 5). In particular, 34 DEGs (46% each) were identified for
SARS-CoV (two vsRNAs: 28 up- and 6 downregulated) and SARS-CoV-2 (five vsRNAs:
21 up- and 13 downregulated) (Figure 5A,C). Conversely, the only MERS-CoV vsRNA
detected six DEGs (14%) that were upregulated (Figure 5B). Interestingly, most of the
vsRNAs targeting DEGs were detected in ORF1a, 56 (41%); followed by ORF1b, 10 (7.4%); S,
6 (4.4%); and ORF3a, 2 (1.5%). In addition, 40 (72%) and 16 (84%) of up- and downregulated
DEGs were in ORF1a, suggesting a critical viral gene modulating the host transcriptome.
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Figure 5. Beta-CoV vsRNAs targeting DEGs upon human lung infection. Prominent DEGs were
possibly silenced up or down for each vsRNA according to the predicted targets. (A) vsRNAs
encoded by SARS-CoV are targeted to 34 DEGs (28 up- and 6 downregulated); (B) MERS-CoV
only shows 6 DEGs that are upregulated; and (C) SARS-CoV-2 also reports 34 DEGs (21 up- and
13 downregulated). Each vsRNA is colored given the detected ORF (ORF1a: blue; ORF1b: green; S:
purple; ORF3a: orange).
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3.7. vsRNAs Are Probably Shutting Down Genes Associated with Neurotrophin Signaling
Impairment upon Infection

An ORA was performed using GO terms with the PANTHER online tool to better un-
derstand the functional alterations induced by up- and downregulated DEGs following lung
epithelium infection with Beta-CoVs. Figure 6A shows the DEGs regulated by SARS-CoV
vsRNAs. It is appreciated that vsRNA candidates of bat-associated viruses upregulate
important BP terms in human lung cells, including regulation of the nucleobase-containing
compound metabolic process (GO:0019219) and regulation of the RNA metabolic pro-
cess (GO:0051252), mainly triggered by the increased expression level of KLF4 (Diana: 92;
miRDB: 75; log2FC: 4.46) and PPARGC1A (Diana: 90; miRDB: 75; log2FC: 3.20). Interestingly,
83% of downregulated DEGs were targeted by ORF1a vsRNAs, highlighting the BP terms
associated with the regulation of presynaptic membrane potential (GO:0099505) by GRIK2
(Diana: 100; miRDB: 82; log2FC: −1.92). On the other hand, the most enriched Reactome
pathways for up- and downregulated DEGs were related to a generic transcription path-
way (R-HSA-212436) and retrograde neurotrophin signaling (R-HSA-177504), respectively
(Table S9).
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Figure 6. Functional enrichment analysis of DEGs regulated by Beta-CoV vsRNAs. Over-
representation analysis for gene ontology showing biological process with adjusted p-value < 0.05
using a Fisher’s test for up- and downregulated DEGs in (A) SARS-CoV, (B) MERS-CoV, and
(C) SARS-CoV-2. Each horizontal bar depicts a term and is grouped based on the ontology hierarchy,
where the term in bold is the most relevant.

Regarding MERS-CoV (Figure 6B), the enrichment analysis of bat vsRNA showed
that several enriched BP terms for upregulated DEGs were associated with the regula-
tion of T-helper 17 cell differentiation (GO:2000320), involving DEGs such as SMAD7
(Diana: 76 miRDB: 77; log2FC: 4.62), and RC3H1 (Diana: 78; miRDB: 77; log2FC: 3.05). In
addition, Reactome pathway analyses hinted that TGF-beta receptor signaling activates
SMADs (R-HSA-2173789) (Table S9).

Unlike SARS-CoV and MERS-CoV, most of the SARS-CoV-2 vsRNAs were predicted
in human virus genomes, allowing a closer approximation of how infection may alter
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gene expression in human epithelial cells (Figure 6C). For instance, upregulated DEGs
were enriched mainly by BP terms such as the regulation of natural killer cell proliferation
(GO:0032819), interleukin-6-mediated signaling pathway (GO:0070102), regulation of tumor
necrosis factor production (GO:0032760), and regulation of cytokine production involved
in immune response (GO:0002720). DEGs engaged in these processes were highly over-
expressed, namely, the cytokine family (CXCL8 [Diana: 97; miRDB: 97; log2FC: 2.31], and
CXCL11 [Diana: 96; miRDB: 97; log2FC: 8.09]), interleukins (IL-6 [Diana: 100; miRDB: 99;
log2FC: 5.96]), and proinflammatory genes (JAK2 [Diana: 85; miRDB: 90; log2FC: 2.95],
STAT2 [Diana: 97; miRDB: 97; log2FC: 2.88], and MXD1 [Diana: 99; miRDB: 99; log2FC: 2.91]).
Although these BP terms are already widely known in human SARS-CoV-2 infection [56–58],
the most remarkable findings concern downregulated DEGs, where ORF1a vsRNAs tar-
geted 78%. Similar to SARS-CoV, these DEGs were involved in the regulation of presynaptic
membrane potential (GO:0099505), which together with GRIK2 (Diana: 97; miRDB: 99;
log2FC: −2.04), also participated L1CAM (Diana: 96; miRDB: 73; log2FC: −1.75) and NEFL
(Diana: 98; miRDB: 98; log2FC: −1.72). Taking into consideration the upregulated DEGs,
the most enriched Reactome pathways were cytokine signaling in the immune system (R-
HSA-1280215), interferon signaling (R-HSA-913531), and SARS-CoV-2 activates/modulates
innate and adaptive immune responses (R-HSA-9705671). At the same time, those down-
regulated were involved in retrograde neurotrophin signaling (R-HSA-177504) (Table S9).

4. Discussion

Since a picture is emerging in which various DNA viruses have been documented to
encode v-miRNAs and undergo transcription and biogenesis similar to host miRNAs [59],
whether RNA–RNA interactions of RNA viruses might function as putative vsRNAs
has been a matter of controversy for several years. Nevertheless, several reports have
demonstrated the functional identification v-miRNAs encoded by nuclear RNA viruses
like retroviruses, which may benefit from host miRNA biogenesis machinery [21–23,60], as
they have a DNA replication intermediate in their replication cycle and maintain long-term
persistent infections [20,61]. Cytoplasmic RNA viruses do not confer this evolutionary
advantage, as they may not access the nuclear enzyme Drosha needed for v-miRNA
processing [62]. However, a recent study has shown that the hepatitis A virus may encode
two novel functional v-miRNAs, hav-miR-1-5p and hav-miR-2-5p, which might hijack the
host miRNA pathway [63]. Under these premises, we used RNA–RNA interactions of
negative selection RNA structures to predict potential vsRNAs proposed as miRNA-like
molecules, which might not fall into the more widely accepted category of miRNAs in the
field [38].

In the wake of the SARS-CoV-2 pandemic, the discovery of vsRNA candidates in
different Beta-CoVs has increasingly taken precedence. Unlike multiple reports that have
shown computationally the presence of putative Beta-CoV-derived v-miRNAs (Table 2), our
study employed RNA–RNA bindings of conserved RNA structures undergoing negative
selection in the genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 circulating in different
bat species, intermediate animals, and human hosts across the globe. Additionally, most
studies predict v-miRNAs using the complete list of hsa-miRNAs from miRbase v22 [48] to
be aligned against Beta-CoV genomes [64–69], and even in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) map pathways database [70], increasing the false positive rate of
v-miRNAs considerably. Instead, we focused only on Beta-CoVs targeting hsa-microRNAs
previously predicted upon complete validation by computational or experimental reports,
coupled with sophisticated long-range RNA–RNA interactions from six highly cited pre-
diction tools such as TargetScan [44], miRDB [45], and miRTarBase [46], integrated into
miRWalk 3.0 [47] and corroborated with RNAhybrid [50], miRanda [51], and mirTarP [52],
to refine the seed sequence homology of hsa-miRNAs with RNA structures under negative
selection. More importantly, our results always are cross-validated with DEGs induced by
human lung cells infected with Beta-CoVs for each RNA–RNA interaction.
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Considering our RNA–RNA strategy, nine potential vsRNAs conserved in negatively
selected RNA structures of Beta-CoVs are proposed. Among them, two vsRNAs are encoded
by SARS-CoV circulating in bats (SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p), one vsRNA for
MERS-CoV circulating in bats (MB-vsRNA-ORF1b-3p), and six vsRNAs for SARS-CoV-2
distributing in bats (S2B-vsRNA-ORF1a-5p), intermediate animals (S2I-vsRNA-ORF1a-
5p), and humans (S2H-vsRNA-ORF1a-5p; S2H-vsRNA-ORF1a-3p; S2H-vsRNA-ORF1b-3p;
S2H-vsRNA-ORF3a-3p). Remarkably, we report for the first time that two SARS-CoV-2
vsRNAs from intermediate animals (S2I-vsRNA-ORF1a-5p) and humans (S2H-vsRNA-
ORF1a-5p) at positions 4153 to 4189 (ORF1a) match in both sequence and structure with an
identical MFE, indicating the RNA structure is strongly under negative selection during
viral evolution [9,11,71]. Efforts addressed to identify vsRNAs in the different Beta-CoV
hosts start from scratch. Most are dedicated to human-associated SARS-CoV-2, given the
context of the current clinical crisis. Nevertheless, a recent study has been reported for SARS-
CoV, which falls into the intermediate host category. Morales and coworkers identified
three vsRNAs in lung derived from SARS-CoV-infected mice using deep sequencing. This
study demonstrates that vsRNA molecules derived from N protein and nonstructural
protein 3 (nsp3) of ORF1a contribute to SARS-CoV lung pathogenesis, which is reduced
by the antagonization of these vsRNAs [72]. There are no findings of possible vsRNA
candidates concerning MERS-CoV, and SARS-CoV-2 is highlighted from infected human
cells. For instance, a Northern blot assay-based study demonstrated that SARS-CoV-2
could encode miRNA-like vsRNA, namely vmiR-5p, from its ORF7a associated with the
pathogenesis of the virus [73]. In addition, the deep sequencing of infected Calu-3 and Vero
E6 cells showed that the SARS-CoV-2 N protein might encode vsRNAs v-miRNA-N-28612,
v-miRNA-N-29094, and v-miRNA-N-29443 with a positive association with viral load
in COVID-19 patients. More recently, Singh and coworkers identified a CoV2-miR-O7a
as vsRNA in the ORF7a using small sequence RNAs from SARS-CoV-2-infected human
A549-ACE2 cells, which have the potential to interfere with host transcripts involved in
IFN signaling [74]. These studies were the stepping stones that paved the way for further
exploring that SARS-CoV-2, a cytoplasmic RNA virus, might generate vsRNAs during
infection.

Interestingly, it has been suggested that many RNA viruses contain “hotspots” that
serve as sites for vsRNA production [62], whereby sequences surrounding hotspots might
be expected to adopt stable hairpin-like structures predicted by RNAz within the con-
served RNA structures [75,76]. This pattern was recently observed by comparing virally
derived small RNAs in different SARS-CoV-2-infected samples that are prone to generate
vsRNAs [77]. In our case, the vast majority of our Beta-CoV vsRNAs encoded in ORF1a at
genome positions ranging from 4153 to 5544 seem to show possible “hotspots”, indicating
that the nsp3 of ORF1a is deeply involved in vsRNA production [78,79]. Intriguingly, Fu
and coworkers found a vsRNA in the 3′ arm of a hairpin within nsp3, namely miR-nsp3-
3p, which appears to indicate the risk of occurrence of critical illness among COVID-19
patients [80]. Indeed, a computational study discovered the expression of eight putative
vsRNAs in SARS-CoV-2-infected human lung cancer cells using deep learning. They
also found vsRNAs in viral ORF1a that may regulate the host transcriptome upon infec-
tion [34]. These results indicate that the nsp3 of ORF1a appears to be a prominent hotspot
to produce specific vsRNAs from bat virus transmission to humans. However, further
functional studies are required to validate this result, especially for Omicron SARS-CoV-2
variants [81–83].

Regarding the function of potential vsRNAs, it is tempting to speculate that microRNA-
like molecules might modulate host gene expression upon infection. A limitation of this
study relies on RNA-seq data from the human lung cancer cell line (Calu-3) infected with
SARS-CoV, MERS-CoV, and SARS-CoV-2, which assumes that the predicted vsRNAs in
viruses isolated from bats and different animal species may, in part, also infect the human
upper respiratory tract and promote their post-transcriptional regulation. Remarkably,
among 74 DEGs, we found 55 up- and 19 downregulated DEGs upon infection according
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to the II and IM comparisons between the time points assessed. This may suggest that our
vsRNA candidates would be produced either at different stages of the viral replication
cycle or depending on the viral load in the cell, triggering probably post-transcriptional
gene silencing under particular conditions [84]. Regarding upregulated DEGs, it would
be expected that vsRNAs encoded by bat-associated SARS-CoV increased the expression
levels of KLF4 and PPARGC1A in human lung epithelium, which are involved in the gene
transcription pathway. Likewise, the unique vsRNA predicted in MERS-CoV bats appears
to induce the differentiation of human T-helper 17 cells via SMAD7 and RC3H1.

In contrast, as most SARS-CoV-2 vsRNAs were detected in human viruses, we ob-
served an over-expression of critical genes associated with the acute respiratory distress
syndrome (ARDS) seen in COVID-19 patients, such as cytokines (CXCL8 and CXCL11) [85],
interleukins (IL-6) [86], and proinflammatory genes (JAK2, STAT2, and MXD1) [87]. Never-
theless, the premise of this study is that 83% and 73% of downregulated DEGs are targeted
by vsRNAs encoded by the nsp3 of ORF1a, produced in bat SARS-CoV and human SARS-
CoV-2 genomes, respectively. Most importantly, these vsRNAs appear to be shutting down
genes implicated in the mechanisms regulating synaptic function, such as GRIK2, L1CAM,
and NEFL, which are largely responsible for the neurotrophin signaling impairment of
SARS-CoV-2 [88,89]. Although the role of SARS-CoV-2 in neurotrophins is an emerging
trend, it has been reported that patients positive for SARS-CoV-2 have increased levels of
brain-derived neurotrophic factor (BDNF) [90,91], a pivotal regulator of synaptic neuroplas-
ticity, where its dysregulation might mediate in the pathogenesis of diverse neurological
diseases such as Alzheimer’s disease (AD) [92]. To the best of our knowledge, we report the
first potential RNA–RNA interactions capable of acting as vsRNAs linked to SARS-CoV-2
neuropathologies. Although recent publications show experimental evidence that there
exists an interphase of RNA–RNA interactions on A549, Vero E6, and A549hACE2 cells in-
fected with SARS-CoV-2, their findings cannot draw conclusions in other cell types [93,94].
Due to the limitation of our survey, we claim that further experimental studies are war-
ranted to confirm the legitimate identity of these putative vsRNAs detected in Calu-3 cells
infected with SARS-CoV-2 to understand their function and to implement strategies to be
used as potential biomarkers to interrupt the course of SARS-CoV-2-induced neurological
manifestations.

5. Conclusions

We implemented a novel computational approach to predict nine potential vsRNAs
from negatively selected RNA structures of SARS-CoV, MERS-CoV, and SARS-CoV-2
circulating in bats, intermediate animals, and humans, coupled with a complete review of
Beta-CoVs targeting hsa-miRNAs and sophisticated long-range RNA–RNA interactions as
well as validation using RNA-seq data. We found that most of our vsRNA candidates are
encoded by the nsp3 of ORF1a, which transcriptionally dysregulated 74 DEGs in human
epithelial cells (Calu-3). Among them, 55 upregulate molecular mechanisms underlying
ARDS, whereas 19 downregulated DEGs might be implicated in neurotrophin signaling
impairment. However, further experimental studies are needed to consider our predicted
vsRNAs as potential biomarkers against Beta-CoV pathologies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v15081647/s1, Figure S1: Flowchart showing approach to data
collection, curation process, and range of sequence lengths for the three Beta-CoVs used in the study
by [39], Figure S2: Volcano plots showing the differential expression profiling of mock cultures of
Calu-3 cells infected with Beta-CoVs between the final and initial time (MM), Figure S3: Potential
common miRNA:virusRNA pairings predicted by RNAhybrid, miRanda, and mirTarP in Beta-
CoVs, Figure S4: Comparison of vsRNAs encoded by Beta-CoVs across hosts of bats, intermediate
animals, and humans, Figure S5: Number of predicted targets in the human genome for each vsRNA
candidate in the three Beta-CoVs, Table S1: DEGs of Beta-CoVs using a |log2FC| > 1.5 and FDR < 0.05,
Table S2: Full list of hsa-miRNAs targeting Beta-CoVs highly supported by either computational or
experimental studies [35,66–69,95–121], Table S3: Number of hsa-miRNA:3′UTR interactions resulting
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from RNAhybrid, miRanda, and mirTarP overlaps, Table S4: Number of hsa-miRNA:viralRNA
interactions resulting from RNAhybrid, miRanda, and mirTarP overlaps, Table S5: Repertoire of
identified vsRNAs in Beta-CoV genomes using RNA–RNA interactions, Table S6: Number of targets
identified for SARS-CoV by vsRNAs, Table S7: Number of targets identified for MERS-CoV by
vsRNAs, Table S8: Number of targets identified for SARS-CoV-2 by vsRNAs, Table S9: Functional
enrichment of DEGs that are possibly silenced by vsRNAs identified in Beta-CoVs.
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