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Abstract: The COVID-19 pandemic has expanded fast over the world, affecting millions of people
and generating serious health, social, and economic consequences. All South East Asian countries
have experienced the pandemic, with various degrees of intensity and response. As the pandemic
progresses, it is important to track and analyse disease trends and patterns to guide public health
policy and treatments. In this paper, we carry out a sequential cross-sectional study to produce
reliable weekly COVID-19 death (out of cases) rates for South East Asian countries for the calendar
years 2020, 2021, and 2022. The main objectives of this study are to characterise the trends and
patterns of COVID-19 death rates in South East Asian countries through time, as well as compare
COVID-19 rates among countries and regions in South East Asia. Our raw data are (daily) case and
death counts acquired from “Our World in Data”, which, however, for some countries and time
periods, suffer from sparsity (zero or small counts), and therefore require a modelling approach
where information is adaptively borrowed from the overall dataset where required. Therefore, a
sequential cross-sectional design will be utilised, that will involve examining the data week by week,
across all countries. Methodologically, this is achieved through a two-stage random effect shrinkage
approach, with estimation facilitated by nonparametric maximum likelihood.

Keywords: COVID-19; case fatality rates; statistical model; empirical Bayes prediction; shrinkage

1. Introduction

Infectious disease epidemiology has a long history of parameter estimation in math-
ematical models, often with the aim to interpret and understand the role and impact
of parameters in those models (for instance, [1,2]). The study of infectious diseases is a
highly interdisciplinary subject combining research from the biological characteristics of
the pathogen as well as statistical descriptions of the data behaviour and a mathematical
framework to allow for modelling and simulation [3]. Such a mathematical framework can
be provided by mixture models. Mixture models have been previously used for different
aspects of modelling infectious disease data, including [4], who were interested in mod-
elling prevalence rates and estimating the forces of infection. In a recent preprint, Ref. [5]
considered Poisson mixtures to estimate the real-time case fatality rate of COVID-19. The
research suggested in this application exploits mixture models through their relationship to
random effects, and enables the estimation of robust death rates through empirical Bayes
prediction [6].

The idea to use posterior Bayes estimates of random effects in order to stabilise the
estimates of mortality rates goes back at least to [7], but has, according to that paper, earlier
been presented in some doctoral theses and technical reports, and in related form in the
earlier literature on contingency tables. This strand of research draws its motivation from
small area estimation problems, where rare events (such as deaths due to certain cancer
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types) happen in small subpopulations and thus the resulting death rates are based on
small counts, and are notoriously unreliable. The principle of [7]’s and similar methods
is to robustify the raw, crude rates by taking the death rate from the overall dataset into
account. This is put in practice by imposing a random effect for each country or region,
that is equipped with some prior distribution (in [7]’s case, a normal prior on the log-odds).
After running this through the Bayesian machinery, one obtains ‘shrunk’ rates that can
be considered as a compromise of the region-wise and the overall rates, hence reducing
variance at a potential increase in bias. The fully Bayesian approach suggested by [7]
is rather computationally demanding and based on complex equations. Moreover, the
employed Gaussian prior on the log-odds of the rates is not necessarily well suited to
account for heterogeneities.

These problems found a solution with the work by [8], who proposed a simple ap-
proach for the estimation of random effect models, in which the random effect distribution
is approximated (for estimation purposes) by a discrete mixture so that the model, even
after the inclusion of covariates, can be fitted by a straightforward EM algorithm. In a
satellite paper, Ref. [9] also demonstrated how posterior random effects can be estimated
by empirical Bayes shrinkage from the fitted model, closing the circle to [7]’s work. The
case for the use of the empirical Bayes methods in this field had been made before by [6].

The work by [10] extended this methodology to two-level scenarios (like male/female
subpopulations within countries). This methodology was successfully applied in [11] to
obtain robustly estimated rates of mortality due to suicide and intentional self-harm in
the Republic of Ireland from 1989 to 1998, using Poisson generalised linear models with
region-wise random effects and an appropriate offset representing population sizes. It
was also shown in this paper how these robustly estimated rates allow the construction
of ‘league tables’ of mortality, and how posterior probabilities of class membership, from
the fitted mixture models, can be used to identify clusters or groups of regions of similar
behaviour. While one could describe the situation of interest in principle by either Binomial
or Poisson models, the latter are somewhat more adequate especially if the number of event
counts is small compared to the population sizes. The Poisson GLM with random effect
can be seen as a special case of a generalised mixed model [12].

In this work, the object of interest is that of weekly COVID-19 case fatality rates; i.e.,
weekly death counts by weekly case counts. Both the death or case counts may be small
or even zero for certain countries in some weeks. Additionally, we are dealing with the
problem of substantial heterogeneity in the death rates between countries. To some part,
this heterogeneity is intrinsic, arising from differing host response to the outbreak of the
pandemic, or from different testing and vaccination strategies in different countries. Further
heterogeneity is added by the way in which the raw data are reported. This “reporting”
heterogeneity is mainly, but not only, concerning the denominator, that is the number of
infections, which acts as a great unknown. Thus, above all, one could say that we have an
‘uncertain denominator problem’. One can easily show that, if the denominators of rates are
equipped with a multiplicative country-wise random effect that captures this heterogeneity,
then in a log-linear model, this random effect is just transported into the linear predictor so
that it gets absorbed by a usual, additive, random effect, in the sense of the above discussed
models. Hence, the models mentioned above are still suitable, with the additional benefit
that the mixture approach is particularly well suited to deal with the heterogeneity, and
will allow the identification of ‘robust’ clusters of countries with a similar death rate.

Clustering is a powerful method for detecting latent subpopulations or subgroups
between observations. The relationship of mixture components and clusters has been dis-
cussed, for instance, in [13]. The idea to use mixtures for clustering purposes is much older
and has, for instance, already been mentioned in [14], who also studied alternative methods
based on densities or distance measures. The computational vehicle to fit mixture models
is the expectation maximisation (EM) algorithm. This is a numerical iterative method for
approximating the maximum likelihood (ML) estimates of the mixture model parameters.
The EM algorithm contains a number of iterations over two steps: an expectation step
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(E-step) and a maximisation step (M-step). The E-step computes the posterior probabilities
that the current unit i stems from a certain cluster k that will be used in the subsequent
M-step to calculate the parameter estimates. The results from each cycle will then be used
to update the next cycle and this is continued until the differences in the estimates from
the current iteration to the next fall below a small threshold. In the initial E-step, suitable
initial parameter values are needed to complete the initial weights. Ref. [15] suggested a
grid search for setting the starting values. Different starting values result in different local
maxima [16]. This difference in the local maxima depends on whether the EM algorithm has
an odd or even number of mass points [8]. Ref. [17] demonstrated that the convergence to a
local maximum is assured when the EM algorithm is used to fit mixture models; however,
one needs to search over the starting values in order to locate the global maximum. Also,
locating the global maximum in fewer EM algorithm iterations depends on the choice
of starting values. The effect of the existence of outliers on the performance of the EM
algorithm was discussed by [18]. They defined statistical outliers as those observations
that differ significantly from the mixture component distributions where the number of
components is selected using the starting values.

Ref. [19] stated that, using the EM algorithm to estimate model parameters is preferable
due to its generality and simplicity: when the complete data are from an exponential family
whose ML estimates are simply calculated, then each M-step of an EM algorithm is also
simply calculated. In the mixture density estimation context, Ref. [15] designed the EM
algorithm for nonparametric maximum likelihood (NPML) estimation, further developed
by [20]. The NPML method provides an approximation of the random effect distribution
by a discrete distribution that is based on a finite number of mass points that can be used
as intercepts for the different unknown subgroups. A particular advantage of the NPML
approach is that the posterior probability corresponds to the weights in the final iteration of
the EM algorithm [11]. Another benefit of this methodology is that increasing the number
of components locates new mass points without computational effort, which means that
there is no restriction for the mass point to be on a grid [8]. Ref. [8] found that the EM
algorithm for the NPML estimate of the mixing distribution for both overdispersed and
variance component models is “very stable and converged in every case”. Brief details in
the context of linear models can be found in [10,21,22].

Selecting the number of clusters in general, or the number of mixture components, K, in
particular, is a difficult problem. A simple approach, in the context of our model class, is to
begin with a standard generalised linear model (K = 1, i.e., no random effect) and gradually
increase the number of components until the likelihood or a model selection criterion such
as AIC or BIC is maximised [10]. Estimating the number of clusters using classical statistical
tests is not possible due to the problem of parameter boundary hypothesis; instead, one
can use model selection criteria [23]. Ref. [24] showed that unnecessarily large values of K
may be needed when the NPML estimation is used to maximise the likelihood whereas
well-fitting models with a fewer number of classes are usually preferred.

For clarification, it is noted that this work will not investigate the dynamics of the
infection over time, but will consider the problem of obtaining more reliable death rates at
each fixed point in time. Building on our results, dynamic versions of this methodology
can be created in the future, building on compartments and other models as outlined in [3].
With regard to the use of statistical analysis to investigate the dynamics of the infection
over time, Ref. [3] remarked that statistics plays an important role in providing meaningful
insights into the dynamics of infectious diseases enabling a deep understanding of the
patterns and processes.

Section 2 will give a more technical exposition of the problem and the statistical
methodology used to address it. Section 3 will present the results of the analysis for the
eleven countries of South East Asia, namely Brunei, Cambodia, Timor-Leste (East Timor),
Indonesia, Laos, Malaysia, Myanmar (Burma), the Philippines, Singapore, Thailand, and
Vietnam. This paper concludes with a discussion in Section 4. Code to reproduce the
analysis, in the statistical programming language R, is provided as Supplementary Material.
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2. Methododoloy

We applied the methodology recently proposed in [25] and adapted it to the setting
of weekly counts. Therefore, in a given (for the moment, fixed) calendar week, yi denotes
the observed total number of cases in regions (countries) i = 1, . . . , m, di denotes the total
number of deaths in that week in that region, and ni, i = 1, . . . , m denotes the population
size of that region. Then, it is clear that crude weekly case-out-of-population rates could
be easily computed by yi/ni, and crude weekly death-out-of-cases rates (also called case
fatality rates in the epidemiological literature) by

ri =
di
yi

. (1)

However, as explained in detail by [25], there are several potential problems with
this approach. Firstly, it could be that the observed case rate was 0, making Equation (1)
undefined. Secondly, even if it was non-zero, the count may be small or affected by the
measurement error, as alluded to in the introduction. This may lead to highly volatile
values of the ri. Thirdly, the observed death count di may be 0 which would result, if
defined, in ri = 0, which may constitute an implausible estimate of the true death rate
(referred to as the “latent death rate” in [25]). Finally, there is a time lag between infection
and death that certainly causes interpretational problems if the death-out-of-cases rates
are considered to reflect any sort of causality. Therefore, one can include a time lag in the
computation which has been performed and discussed in detail in [25]. We will not follow
this idea here, but only consider un-lagged rates. While this may break the causal link
between cases and deaths, it is still of value for monitoring and surveillance purposes as it
gives the most current snapshot of the state of the pandemic.

Now, the methodology works by finding “robust” versions of both the numerator and
the denominator of (1). In the case that yi and di are large, this will leave the crude rate
largely unchanged, but if yi and/or di are small, then the idea is to “borrow” information
from other countries in the cross-sectional dataset to arrive at a more reliable rate, for a
given fixed week. In statistical terms, this approach aims to reduce variance, at the expense
of a moderate increase in bias.

We consider the yi as realisations of random variables Yi ∼ Pois(µi), where the
expected rates are described by a log-linear model with a random effect (but without any
covariates), that is

log
µi
ni

= zi (2)

with zi ∼ Z, for some distribution Z. The distribution of Z will account for the heterogeneity
of the population of countries in terms of the expected (reported) COVID-19 counts in a
single, given week. Having obtained posterior random effects z̃i from the fitted model (2),
we can compute “shrunk” or robust country-wise case counts via

ỹi = ni exp(z̃i),

which can be used as a “robust” denominator in (1).
We build a second model to deal with the numerator. Therefore, the observed deaths di

in country i, i = 1, . . . , m are considered as realisations of random variables Di ∼ Pois(λi),
where now

log
λi
ỹi

= ci, (3)

with random effects ci following a distribution C accounting for denominator uncertainty
and heterogeneity. After fitting the model, yielding posterior random effects c̃i, robust
weekly death counts are obtained as

d̃i = ỹi exp (c̃i) (4)
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or correspondingly, robust weekly case fatality rates

r̃i = exp (c̃i). (5)

It remains to specify the random effect distributions Z and C and the actual estimation
methodology. We consider here the nonparametric maximum likelihood approach outlined
in several works by Murray Aitkin and co-workers [8,10,17]. Under this approach, these
distributions are approximated by discrete mixtures, with K and L mass points, respec-
tively, the parameters of which are nonparametrically estimated from the data via the EM
algorithm. A mixture approach appears particularly suitable here, as it can capture the
underlying heterogeneities between countries (in terms of COVID-19 response, cultural
or political aspects, geographical proximity, . . .), and provides an implicit clustering of
countries [25] with a view to their death rates. Under this approach, the fitted values c̃i, to
be plugged into (5), are then obtained as ‘posterior intercepts’

c̃i =
L

∑
`=1

vi`c`

from the fitted model (3), where c` are the mixture mass points estimated in the EM algo-
rithm and the vi` are posterior probabilities, computed via Bayes’ theorem, that country i
belongs to cluster ` = 1, . . . , L. The effect of the shrinkage may be different for different
countries, but as a rule of thumb, for most countries, the rates r̃i will be shrunk towards
exp (cj(i)), where j(i) = arg max`vi` is the maximum a posterior estimate of cluster mem-
bership for country i. Countries with large denominators (here: cases) will have r̃i ≈ ri and
countries with very small denominators will tend to have shrunk rates which are close to
the worldwide (grand) rate of deaths out of cases.

Further details of the estimation methodology under the described two-stage scenario
involving models for numerators and denominators have been given in [25] and are
therefore not repeated here. It is important to state, however, that the methodology requires
the choice of the number of mass points (mixture components) for both Z and C, which we
denote by K and L, respectively. In [25]’s work, for daily counts, these values were set at
K = 30 and L = 4 based on model selection criteria. For the scenario in the current paper,
where we have weekly counts, an equivalent analysis suggested using K = 30 and L = 6,
hence indicating a slightly larger heterogeneity across countries in terms of their death
rates. This result is somewhat plausible given other indications in the literature that data
aggregation (in this case, from daily to weekly counts), can increase dispersion [26]. It is
important to emphasise that the entire methodology described so far is fully cross-sectional.
It can, however, be applied sequentially along successive weeks, hence motivating the title
of this paper. Such an analysis will be carried out in the following section.

3. Results

We extract raw daily counts of new infections and deaths over 234 countries from [27].
We consider the calendar years 2020 to 2022, and firstly aggregate all daily counts to weekly
counts (starting Mondays) using this dataset. This then gives us two count data time series
(of case counts and deaths) spanning over 159 weeks, for each of the 234 countries. The raw
data file also allows one to extract a population size for each country, which is, however,
assumed constant across the study period.

We apply the methodology sequentially to a worldwide dataset of counts and deaths
for 159 weeks. For the purposes of this paper, we produce and report the robust death
rates for only the South East Asia countries, as it would be infeasible to report the results
for all 234 countries in a single paper. South East Asia comprises 11 countries: Brunei,
Cambodia, Timor-Leste (East Timor), Indonesia, Laos, Malaysia, Myanmar (Burma), the
Philippines, Singapore, Thailand, and Vietnam, with a combined population of approxi-
mately 680 million people. The countries and corresponding population sizes are displayed
in graphical form in Figure 1, with explicit figures given in the first column of Table 1. The
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largest and most populated country in the region is Indonesia, whereas Brunei has the
smallest population.

Brunei

Indonesia

Cambodia

LaosMyanmar

Malaysia

Philippines

Singapore

Thailand

Timor−Leste

Vietnam

10°S

 0°
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5.0e+07
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South−East Asia

Figure 1. The South East Asian countries. Please note that here and in subsequent figures, the
notation ae+b used in legends denotes a × 10b.

Table 1. For each of the eleven South East Asian countries considered, the population size, the
number of times (out of 159 weeks) that the denominator of the weekly crude death rates (1) is zero,
then (otherwise) the numerator is zero, or none of the above occurs.

Country ni yi = 0 Otherwise, di = 0 Otherwise

Brunei 449,002 32 83 44
Cambodia 16,767,851 26 80 53
Indonesia 275,501,344 9 1 149
Laos 7,529,477 51 70 38
Myanmar 54,179,312 12 48 99
Malaysia 33,938,216 4 16 139
the Philippines 115,559,008 7 3 149
Singapore 5,637,022 3 63 93
Thailand 71,697,024 2 38 119
Timor-Leste 1,341,298 42 79 38
Vietnam 98,186,856 7 60 92

Firstly, we re-emphasise the fact that crude rates (1) are generally not computable
or not sensible. Table 1 shows, for all eleven countries, in the third column the number
of weeks (out of 159) in which the total number of cases was equal to 0, and hence (1)
undefined (NA). The fourth column gives, for all weeks in which (1) was defined, the
number of weeks in which the death count is zero, in which case (1) is certainly implausible:
at any given stage in the pandemic, the risk of dying of COVID-19, once infected, was
never 0. We see that both the third and the fourth column of the table contain substantial
numbers except for the larger countries, namely Indonesia, Malaysia, and the Philippines.

An interesting example for a situation with many zero counts in both columns is
Cambodia. As can be seen in Figure 2, essentially for the whole of 2020 either of yi or di
was equal to zero, hence rendering the raw rates in Cambodia unusable for practically the
whole year. A similar picture was again observed in 2022. However, as just stated, even in
Cambodia the risk of dying, once infected, was never zero. The methodology described
in Section 2, that robustifies the death rates by borrowing information across countries,
gives plausible estimates of the latent death rate for the country of Cambodia, even in
the year 2020, hovering most of the time around 0.015, as visible from the bottom right
panel of Figure 2. Such estimates are then superseded in the year 2021, when case and
death numbers rose in Cambodia, allowing reliable estimates of the death rate in their own
right. Robust rates then take over again in 2022, albeit now on a much smaller level than
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in 2020. The bottom left panel of Figure 2 also shows fitted versus raw death rates. It is
evident from this figure that many points fall on the diagonal line, indicating that, in this
case, no shrinkage has taken place. However, considerable shrinkage has taken place in
the situations of zero death rates (corresponding to the pile of points at the left boundary)
and for some scattered, very large rates (likely caused by small denominators). It should be
added that this plot is not entirely complete, simply for the reason that 26 out of 159 raw
death rates do not exist, as can be seen in Table 1.
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Figure 2. Raw case and death numbers for Cambodia, along with robust, fitted death rates.

In Figures 3–6, we provide explicit results for Indonesia (the largest country in terms
of population size among those considered), Thailand (population being about a quarter of
that of Indonesia), Singapore (which is in a somewhat unique position, being a city-state
and island-state), and Timor-Leste, which features the second-smallest population size
among the 11 countries considered. Analyses for the other six countries are delegated to
the Appendix A.

It is noted that the figures do not report fitted case rates, as these graphs look virtually
indistinguishable from the true case counts (similarly observed in [25]). However, they are
not mathematically equal or proportional, since the fitted case rates are always larger than
zero. For the fitted death rates, we see from the bottom left panels of all figures that the
shrinkage can be considerable, but it is notably less strong for very large countries such as
Indonesia (Figure 3).

In terms of the development of the pandemic, the picture in Indonesia and Thailand
is somewhat similar, with late entries into the pandemic but then two powerful, roughly
equally sized spikes in the case numbers in mid-2021 and early 2022. In terms of raw death
counts (top right panels), the second spike is for both countries lower than the first spike,
and less pronounced for Indonesia than it is for Thailand. The reader may find the grossly
differing shapes of the curves in the bottom right panels as compared to the raw death
counts surprising. However, this is easily explained by recalling that in the bottom right
panels, we see (estimates of) rates; i.e., they are subject to a denominator (corresponding to
the fitted case counts) which can impact the shapes dramatically. Furthermore, where any
of the involved raw counts are small (or zero), the implicit robustification by the model
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is kicking in here, which may further impact on the shape. Summarising this point, the
discrepancies between the two plots on the right hand panels do not indicate poor fits.

0 50 100 150

0e
+

00
2e

+
05

4e
+

05

Indonesia: Weekly case counts

week

ca
se

s

2020 2021 2022

0 50 100 150

0
50

00
10

00
0

15
00

0

Indonesia: Weekly death counts

week

de
at

hs

2020 2021 2022

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

Fitted vs raw weekly death rates

raw death rates

fit
te

d 
de

at
h 

ra
te

s

0 50 100 150

0.
00

0.
04

0.
08

0.
12

Fitted weekly death rates

week

fit
te

d 
de

at
h 

ra
te

s

2020 2021 2022

Figure 3. Raw case and death numbers for Indonesia, along with robust, fitted death rates.
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Figure 4. Raw case and death numbers for Thailand, along with robust, fitted death rates.
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Figure 5. Raw case and death numbers for Singapore, along with robust, fitted death rates.
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Figure 6. Raw case and death numbers for Timor-Leste, along with robust, fitted death rates.
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Looking now specifically at the fitted death rates in the bottom right panels, we see that,
for Indonesia there were two spikes reaching approximately 0.08, roughly corresponding in
position to the case spikes (with a slight lag), and reaching in magnitude roughly the death
rates observed in the early days of the pandemic. For Thailand, however, the situation
is slightly different, with fitted death rates for any of these spikes not exceeding 0.02,
staying below the magnitude observed in early 2020. Furthermore, and most notably, the
second spike in raw deaths does not correspond at all to any mentionable spike in the fitted
death rates; it is rather that the final spike in fitted death rates towards the end of 2022
corresponds to a third spike of raw death counts in the upper right panel, which in turn
does not seem to relate to any visible spike in the case counts. Finally, it worth mentioning
that both countries are quite large so that the overall shrinkage is moderate; the skewed
shape of the bottom left panel of Figure 4 is mainly driven by a single, grossly shrunk (but
still large) rate, towards the end of 2020.

Proceeding to the smaller countries of Singapore and Timor-Leste, here we see some
interesting behaviour with the fitted death rates seemingly decoupled from either case
counts or death counts. For Singapore, some apparent spikes in the raw death counts after
mid-2021 do not translate into spikes in the fitted death rates; however, a relatively minor
but sharp death count spike in early 2021 coinciding with a period of low case counts results
in a big spike in the fitted death rates. Upon this occasion, it is worth reiterating that the
methodology does not perform any longitudinal smoothing—information is borrowed just
across countries, not across time. In Timor-Leste, the generally small raw counts (including
many zeros) in the top panels of Figure 6 should be noted, implying that more information
needs to be borrowed from other countries. The “background death rate” of just below 0.02
observed here for wide parts of 2020 has a similar interpretation as for Cambodia. This
magnitude is not significantly exceeded even at the death count spike of late summer of
2021. The year 2022 sees a mixture of “own” and “background” information, with minor
spikes occurring but generally still smallish fitted death rates well below 0.02.

4. Discussion

This study used a sequential cross-sectional design, which involved examining a
series of cross-sectional data from various time points, to provide valuable insights into
the spread of COVID-19 in South-East Asia. The COVID-19 rates for South-East Asian
countries have been acquired from the official source; Our World in Data [27]. The robust
weekly COVID-19 rates over time were estimated using a random effect model with
nonparametric maximum likelihood estimation, and compared across several countries
and regions. According to the study, there were a significant number of weeks in which
either the case count or the death count was zero, making the crude rates undefined or
implausible. This was particularly the case in smaller countries, such as Laos. However,
the methodology used in this study was able to robustify the death rates by borrowing
information across countries, providing plausible estimates of the latent death rate even in
countries with low case and death counts. In Cambodia, for example, the robustified death
rate was estimated to be around 0.015 for most of 2020. This is a plausible estimate, as it is
below the death rate observed in early 2020, but still above zero.

The fitted death rates differed generally strongly from the shape of the raw death
counts; this is firstly due to the random effect shrinkage; but also secondly because the fitted
death rates are subject to a denominator, which can have a significant impact on the shape.

The plots of fitted death rates, in the respective bottom right panels of each of
Figures 2–6 and A1–A6, allow a broad categorisation of countries according to their fitted
death rates over time. For one group of countries, including Brunei, Laos, and Timor-Leste,
the fitted death rates fell more or less continuously over the three years of the pandemic,
converging to values of almost 0 in 2022 (albeit with some small spikes for Timor-Leste).
For a second group of countries, including Cambodia, Singapore, Malaysia, Myanmar, and
Vietnam, consistently small fitted death rates were reached in 2022 following major spikes
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in (typically, late) 2021. A third group of countries, consisting of Indonesia, Thailand, and
the Philippines, experienced persistent spikes of the fitted death rates well into 2022.

The major benefit of the methodology applied in this study is that it enables a princi-
pled estimation of weekly death (out of cases) rates when the raw rates are mathematically
undefined or practically meaningless (due to zero death counts). However, even in periods
of the pandemic which are characterised by small case or death counts, it is still vital for
every health system to be able to quantify an individual’s risk of dying of COVID-19, once
infected. This quantity has implications for resource planning, allocation, and prioritisation,
but also for patient consultation or even for simple communication to the “worried well”,
hence closing a serious gap in the current computational toolkit underpinning national
COVID-19 responses.

The study has some limitations, such as the lack of any temporal smoothing, and the
lack of adjustment for slight changes in population size over time. Also, “weekly data”
may depend on the chosen cut-off point, and, by construction, may not be able to capture
short-term fluctuations in COVID-19 rates.
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Appendix A

This Appendix contains, in Figures A1–A6, the analysis corresponding to the one
carried out in Section 3, for the countries of Brunei, Laos, Malaysia, Myanmar (Burma), the
Philippines, and Vietnam, respectively. Interpretation of these plots is analogue to the ones
in Section 3.
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Figure A1. Raw case and death numbers for Brunei, along with robust, fitted death rates.
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Figure A2. Raw case and death numbers for Laos, along with robust, fitted death rates.
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Figure A3. Raw case and death numbers for Malaysia, along with robust, fitted death rates.
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Figure A4. Raw case and death numbers for Myanmar, along with robust, fitted death rates.
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Figure A5. Raw case and death numbers for the Philippines, along with robust, fitted death rates.
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Figure A6. Raw case and death numbers for Vietnam, along with robust, fitted death rates.
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