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Abstract: Most vector control activities in urban areas are focused on household environments;
however, information relating to infection risks in spaces other than households is poor, and the
relative risk that these spaces represent has not yet been fully understood. We used data-driven
simulations to investigate the importance of household and non-household environments for dengue
entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork
was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval
collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between
household and non-household environments to assess mosquito presence, the number of vectors
collected, and the risk factors for vector presence. With these data, we simulated vector and human
populations to estimate the parameter m and mosquito-to-human density in both household and
non-household environments. Among the analyzed variables, the main difference was found in
mosquito abundance, which was consistently higher in non-household environments in Kisumu but
was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve
as mosquito breeding places in households as opposed to the trash- and rainfall-related containers
found in non-household structures. We found that the density of vectors (m) was higher in non-
household than household environments in Kisumu and was also similar or slightly lower between
both environments in Ukunda. These results suggest that because vectors are abundant, there is a
potential risk of transmission in non-household environments; hence, vector control activities should
take these spaces into account.

Keywords: Aedes aegypti; vectorial capacity; vector sampling; households; non-household
environments; simulations

1. Introduction

Arboviruses (arthropod-borne viruses) are an emerging threat in African countries
where the historically high burden of malaria masks the true prevalence of these dis-
eases [1–4]. African countries mainly located in Western and Eastern Africa have recorded
numerous outbreaks in recent years, with prevalence ranging from 3 to 29% [5]. One
of these affected countries is Kenya, where at least three outbreaks have been recorded
in the last decade [4], and there is evidence of multiple dengue virus (DENV) serotypes
circulating [6,7].
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Kenya’s situation has been well described in several studies conducted in Kisumu and
Ukunda, with two cities located in the western and coastal regions of Kenya, respectively:
studies have revealed seroprevalence in people from all ages [8–11] reaching values up to
67% [12] as well as the circulation of four DENV serotypes at high seroprevalence [7,10,12].

In addition, the presence of this vector and its traits have been described for these
cities [13–15]. The vector responsible for DENV transmission in Kenya is Aedes aegypti,
which usually lives in human-associated environments due to its anthropophilic feeding
preference, and is mainly found in urban environments where a higher abundance of
people is present [16,17]. In the absence of better and more affordable tools, current control
strategies are strongly focused on the interruption of vector—human contact to avoid the
transmission of this virus through strategies like the elimination of mosquito breeding
places and the spraying of insecticides [18]. However, most of these control activities are
heavily focused on households (HH) and are based on the assumption that mosquitoes are
mostly domestic and that people spend most of their time in the household [19]. However,
some studies have shown that Ae. aegypti mosquitoes are more active during daylight
hours [14,20–22] when there are increased chances of people spending a relevant portion
of time in places other than HH. Information related to the risk of non-household (NH)
environments is scarce and poor, but some work developed in other countries has suggested
a significant infection risk in places like markets [23], schools [24,25], hotels [26] or even
in uninhabited or abandoned spaces [27]. Taken together, there is evidence suggesting
that a significant risk of infection could occur in NH locations in urban areas, as suggested
previously in other settings [28].

Based on the entomological information from field surveys, we aimed to describe the
relative abundance of vectors in household and non-household environments in the Kenyan
cities of Kisumu and Ukunda based on the entomological metric of vector-to-human density
(m). Although this parameter cannot be taken as a direct measure for transmission risks,
other metrics like vectorial capacity depend proportionally on this parameter [29–32]. Our
purpose was to estimate this parameter based on data collected from intensive fieldwork
and to obtain realistic data-driven estimates of the relative vector density for both HH and
NH environments in these two cities to guide vector control activities.

2. Materials and Methods
2.1. Vector Sampling and Data Collection

The aim of the fieldwork was to assess the entomological risk in HH (including indoors
and outdoors that are part of the domestic environment of a house) and NH environments
(including indoors and outdoors that are not domestic but designated to uses other than
house living) in two cities in Kenya where the active transmission of dengue has previously
been established, vector populations have been characterized, and some interventions have
been developed to be implemented: Kisumu and Ukunda [8–11,13,33] (Figure 1). Kisumu is
the third largest municipality in Kenya, with approximately 398,000 inhabitants, according
to data from a census in 2019. It is located in the western part of the country, next to Lake
Victoria. Ukunda is a smaller municipality with approximately 78,000 inhabitants and is
located 30 km south of Mombasa on the Indian Ocean coast of Kenya.
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For sampling purposes, eight zones of 200 m × 200 m were defined across the entire 
urban area of each city in order to have a good geographical representation and to include 
equally both planned and unplanned environmental habitat strata. Each zone was subse-
quently divided into subzone areas of 100 m × 100 m, where sampling was conducted, 
including HH and NH spaces, and equal trapping was performed effort for both space 
types. 

Between October 2020 and January 2022, four sampling strategies were carried out in 
the urban settings of these cities in order to collect and measure the abundance of different 
stages of mosquitoes: ovitraps, larval collections, Prokopak aspirators, and BioGents (BG) 
sentinel traps. 

We collected eggs using ovitraps, which consisted of black plastic cups filled with 
about 350 mL of tap, boreholes, or rainwater. Cups were lined inside with a paper towel 
that was partially submerged. Each zone was sampled once per month with 8 ovitraps (4 
for HH and 4 for NH environments), which were placed to collect the eggs for two con-
secutive weeks. After this period, paper towels containing the eggs were carried to our 
project entomology laboratories in each city, the eggs were hatched, the larvae were grown 
into adults, and individuals were identified as species using morphologic keys [34,35].  

To obtain information about the mosquito’s immature stages, larval surveys were 
conducted every two weeks, once per month, in all zones. Potential breeding places were 
inspected, and their status (larval presence or absence) was recorded. Immature mosqui-
toes in small positive containers (those with the presence of larvae) were counted in the 

Figure 1. Location of study sites in Kenya.

For sampling purposes, eight zones of 200 m × 200 m were defined across the en-
tire urban area of each city in order to have a good geographical representation and to
include equally both planned and unplanned environmental habitat strata. Each zone
was subsequently divided into subzone areas of 100 m × 100 m, where sampling was
conducted, including HH and NH spaces, and equal trapping was performed effort for
both space types.

Between October 2020 and January 2022, four sampling strategies were carried out in
the urban settings of these cities in order to collect and measure the abundance of different
stages of mosquitoes: ovitraps, larval collections, Prokopak aspirators, and BioGents (BG)
sentinel traps.

We collected eggs using ovitraps, which consisted of black plastic cups filled with
about 350 mL of tap, boreholes, or rainwater. Cups were lined inside with a paper towel
that was partially submerged. Each zone was sampled once per month with 8 ovitraps
(4 for HH and 4 for NH environments), which were placed to collect the eggs for two
consecutive weeks. After this period, paper towels containing the eggs were carried to our
project entomology laboratories in each city, the eggs were hatched, the larvae were grown
into adults, and individuals were identified as species using morphologic keys [34,35].

To obtain information about the mosquito’s immature stages, larval surveys were
conducted every two weeks, once per month, in all zones. Potential breeding places
were inspected, and their status (larval presence or absence) was recorded. Immature
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mosquitoes in small positive containers (those with the presence of larvae) were counted
in the container, while those in large containers were counted after the water was sieved.
Pupae and larvae samples for up to 10 individuals were taken to the laboratory in 10 mL
conical plastic tubes and were reared to adulthood to identify species. It is worth noting
that this strategy did not employ the use of traps but instead quantified larval abundance
in natural breeding places.

The adults were sampled with two trap strategies: a Prokopak aspirator and BG
sentinel traps. For the Prokopak, the same locations sampled in larval surveys were used.
There, spaces around HH and NH environments were sampled by progressively aspirating
walls and other potential Aedes resting places. In each setting, a pair of trained entomology
team members conducted sampling simultaneously for twenty minutes, both indoors and
outdoors [14]. The collected adults were placed in cooler boxes with ice packs and were
carried to the laboratory, where they were sorted and morphically identified.

BG sentinel traps, which target primarily mosquito females seeking breeding places,
were used at a rate of two per zone. BG traps were placed in the outdoor environment
for five consecutive days once per month in each zone. Every 24 h, mosquito collection
cups were placed into a box with ice packs and taken to the laboratory, where identification
took place.

During visits, additional information was collected in order to understand the potential
risk factors and explain the presence of the insects in the structure like the type of water
containers present at the time of the visit, the size of the containers, the source of the water
contained, the purpose of the water, how containers were covered and the presence of
other animals (Table S1). In addition, for each visit to a HH, a question about the number
of inhabitants was asked to consider this parameter in future analyses (see next sections).

Finally, temperature data were collected daily at the city level using temperature data
loggers (HOBO®), and the daily average was calculated during the entire study period.

2.2. Statistical Analysis

Since our main goal was to understand the relative abundance of vectors in each
environment, data were analyzed according to their collection space as belonging to a
HH or NH environment. In this way, the analyses of this work were divided into two
phases: first, statistical analysis to understand data extracted from fieldwork, and second,
field data-driven simulations to understand the relative entomological abundance in each
environment separately (see next section).

Two comparison analyses between households and non-household environments were
performed with data derived from fieldwork conducted in each city: (1) the proportion of
structures for each collection date in which Ae. aegypti individuals were caught (compared
with chi-squared proportion comparisons); and (2) the number of individuals per structure
(compared with Wilcoxon’s rank sum tests).

Additionally, binary logistic regression analyses were performed on data from larval
collections in order to assess the main risk factors and explain the presence of natural larval
breeding places in HH and NH structures (predictor variables in Table S1).

2.3. Mosquito Density Simulations

We first aimed to simulate a distribution of likely vector abundances in HH and NH
environments. To undertake this, we used the field data from each environment and city in
the following way: proportions of structures with the presence of immature mosquitoes
were used in a binomial distribution to generate a random number of infested structures
in both environments for a thousand structures. In each of them, the number of positive
containers per structure was randomly sampled from observed empirical values. For each
positive container, we used distributions fitted to empirical values of immature and mature
stages of mosquitoes to simulate the number of individuals. To conduct this, the number
of eggs per container was randomly simulated using the appropriate fitted distribution.
Assuming that some proportionality was conserved between the number of eggs laid and



Viruses 2023, 15, 1550 5 of 13

the number of adults that emerged, the same percentile of the number of eggs was used to
estimate the number of adult individuals according to the distribution fitted to the number
of adults per structure (supplementary information). Similarly, information about the
number of inhabitants per house was also fitted to a Poisson distribution (Table S2). During
simulations, such distributions were used to generate random numbers of inhabitants per
house, and the total number of people across a thousand houses comprised the size of the
human population that was used for the simulations (Figure 2). Because we assumed a very
limited movement of mosquitoes, we simulated a different population for HH and NH
structures separately, while a single human population was simulated based on a thousand
houses. By simulating both vector and human populations, it was possible to estimate the
proportion of mosquitoes in relation to humans (m).
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Figure 2. Procedure followed to generate simulated human and mosquito populations. The same
human population generated across a thousand HH was also used for NH-related simulations, while
a different population of mosquitoes was generated for each environment separately. In this way, we
considered the differences observed between them and considered the low movement of mosquitoes.

Once the number of human and mosquito individuals per house and population were
calculated, we proceeded to estimate m in time to gain an idea of how this parameter
changed during the two-year fieldwork temporal window. To undertake this, we averaged
for each week the daily proportion of structures with the presence of vectors considering
egg and larval stage trapping irrespective of their specific location inside the city. Following
the same procedure previously described and 1000 structures for each in both environments,
we simulated the number of adults and estimated the parameter m by considering the size
of the human population.

All simulations were run 1000 times and were performed for the purpose of learning
about the general shape of the distribution of m and its variation in time considering the
two-year samplings and both environments.
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3. Results
3.1. Mosquitoes Were Present and Abundant in Both Environments

During the sampling time, there were, in total, 6380 inspections performed for the
presence of vectors in both cities. These were distributed through different sampling time
points and strategies across both environments. Thus, for Kisumu, 3290 inspections were
conducted, where 1716 resulted in the capture of individuals. In Ukunda, 1507 out of
3090 inspections resulted in the capture of vectors.

The proportion of structures reporting the presence of mosquitoes behaved similarly
between cities but was different across the four sampling strategies. Specifically, the
proportion of Aedes-infested structures detected through larval collections was always
higher (around 2-fold) for HH environments and likewise for Prokopak samples in Kisumu.
The remaining strategies resulted in either no difference or NH environments displaying a
higher proportion of structures with the presence of vectors (Figure 3). On the other hand,
number of individuals was consistently higher in NH environments in Kisumu, while no
differences were detected in Ukunda (Figure 4).
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Figure 4. Number of individuals captured per HH or NH structure with four sampling strategies.
Error bars indicate 95% confidence intervals, and p-values of statistically significant differences
(α = 0.05) are shown above bars.

The binomial logistic regression analyses suggested that each environment had dif-
ferent explanatory variables for the presence of vectors. None of the studied variables
were statistically significant in predicting the variation in vector presence in NH spaces
in Ukunda. In Kisumu, variables relating to clean water and domestic use in small con-
tainers were the most predictive of the vector presence in HH environments, while those
relating to trash, including small plastic containers and tires containing rainwater, were
most predictive in NH environments (Table 1).

3.2. Vector Density Is Equal or Higher in Non-Household Spaces Compared to Households

From these empirical measurements of vector abundance and human population
presence in each environment, we simulated vectors and human populations to estimate
the density of vectors for each environment and city. The distribution of values of m
(i.e., the relative-to-human density of vectors) differed between cities and environments:
higher values were more frequent in HH from Ukunda, but the opposite occurred in
Kisumu, where higher values (around four and higher) were were frequent in NH structures
(Figure 5).
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Table 1. Statistically significant variables of binomial logistic regression fitted with the presence of
vectors as dependent variables with a significance of 95%.

City Environment Factor Coefficient OR p-Value

Kisumu

Household

Intercept −2.28682 0.101589 1.64 × 10−09

Type Drum 1.95693 7.07756555 0.00652
Type Pot 2.94528 19.0159861 8.81 × 10−05

Purpose Sanitation 1.37002 3.9354294 0.00899

Non-Household

Intercept −3.493 0.03040951 0.029187
Size large −28.16 5.89 × 10−13 0.001062

Size medium −25.54 8.09 × 10−12 7.06 × 10−04

Size small −26 5.11 × 10−12 7.22 × 10−04

Type small plastic domestic 3.986 53.8391017 0.015713
Type tire 5.812 334.287032 0.009137

Source rain 26.76 4.18 × 1011 4.47 × 10−04

Ukunda Household

Intercept −2.508 0.08143094 0.002533
Type small domestic −4.864 0.00771954 0.003098
Type animal feeding −4.18 0.01529851 0.020602

Type Bucket −8.607 1.83 × 10−04 4.87 × 10−04

Type Drum −3.965 0.01896804 0.048362
Type jerrycan −5.016 0.006631 0.013445

Purpose animal 3.588 36.1616802 0.011661
Non-Household None NA NA NA
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Parameter m varied through time in both cities; however, NH remained consistently
higher than HH environments in Kisumu. In this city, the weekly average values of m
ranged from 0 to 5.05 (with a mean of 2.36) vectors per human in NH environments, while
in HH, it ranged from 0 to 1.39 (mean of 0.972) vectors per human. On the other hand, in
Ukunda, the estimation of m showed a more heterogeneous behavior over time. In this city,
HH environments displayed higher values of m, but at some time periods, such as at the
beginning and at the end of the study time, the confidence interval overlapped with those
from NH environments. Different from Kisumu, the m values in Ukunda were more similar
and ranged from 0 to 2.83 (with a mean of 1.15) vectors per human in NH environments and
from 0.5 to 3.06 (with a mean of 1.82) vectors per human in HH environments (Figure 6).
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Figure 6. Relative-to-human vector density (m) simulated in time as a function of weekly averages
for daily sampling data of immature stages of Ae. aegypti. A LOESS (span = 0.75) smoothed function
with 95% confidence intervals was added to the plots to visualize a general trend of m. Plots differ in
their x-axis since there were slightly different sampling times between cities.

4. Discussion

Arboviruses are one of the most prevalent and morbid groups of diseases in the
world [36–38]. However, the development of control strategies other than vector control
has been challenging, and some of them are still currently being evaluated in this field
(like vaccines or transinfection [39,40]). For this reason, reducing mosquito density (i.e.,
parameter m, relative-to-human density of mosquitoes) has been historically the most
useful strategy and is widely implemented. However, most of the current evidence and
practices related to vector control are mainly focused on prevention at the HH level [19],
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while little attention has been put into understanding the contribution of spaces outside of
the HH.

Although we observed a different pattern between HH and NH environments in
these Kenyan cities, it is expected that the same phenomenon occurs in many endemic
settings; therefore, further research should be conducted in each location to understand
the extent of this difference. However, though the real number of infections happening
in non-household spaces is hard to quantify, phenomena described in other places, like a
reduction in dengue cases observed during the pandemic lockdown [41,42], the description
of peak biting time during regular working hours (around 3:30 and 7:30 pm) [14], and
reports on infection risk taking place in specific NH environments [23–27] support our
results and suggest that a non-negligible number of infections are happening in those NH
spaces, indicating the presence of an appropriate number of vectors.

The risk factors for the presence of immature stages of vectors align with those previ-
ously identified by Ngugi and co-authors [13]. Specifically, we found a differential ecology
between environments, where those related to NH spaces were mainly associated with
rainwater, tires, and trash-like containers. By contrast, HH environments were mainly
associated with clean water (used for animal care and human sanitation) and the domestic
use containers like pots, drums, jerrycans, and small plastic containers. The extent to
which these ecological differences imply differences in control strategies should be further
evaluated. Meanwhile, we believe that though insightful vector control strategies have
been proposed to be applied in HH [33,43], the lack of inclusion of NH environments could
lead to a latent risk that continues the transmission cycle at a city level. Unfortunately, we
were unable to fit our data from the NH environment in Ukunda into a binomial logistic
regression model: possibly due to excessive randomness in the distribution of evaluated
risk factors, which could suggest that there are other factors involved that we could not
evaluate. As a result, the specific environmental factors relating to NH environments in
Ukunda remain uncertain. Unfortunately, we did not have data on other ecological vari-
ables like temperature for each environment, which would allow us to estimate differences
in other transmission-related parameters like vectorial capacity or a basic reproduction
number. Previous work in other locations has shown that temperature differs between
indoor and outdoor spaces, which surely influences transmission [44].

It is worth noting that sampling carried out on natural mosquito populations through
larval collections consistently showed a higher proportion of HH spaces with the presence
of mosquitoes than NH. This result was not a direct reflection of either the proportions of
structures with the presence of adults in Ukunda or adult abundance in both cities, which
is also supported by simulations. This result can challenge the idea of larvae and pupae
abundance as a direct representation of adult populations and, hence, transmission risk
in endemic locations, which is an idea that has been previously questioned based on the
results from other settings [45].

The same sampling effort was performed in both cities to avoid as much sampling
bias as possible. We would expect sampling to be biased toward finding vectors more
effectively in households compared to non-household environments since that is where
sampling methods have been most developed. We did not find such systematic bias in our
data because of: (1) a higher abundance of vectors in NH environments in Kisumu; and
(2) heterogeneous behavior in time in Ukunda.

Our simulations assumed that the human population size was the same for HH and
NH environments, which was estimated considering a HH-based number of inhabitants.
However, this is likely unrealistic since it is expected that some portion of the population,
like very young children and elders, spend most of their time in the HH; therefore, the
value of m could change and subsequently affect the vectorial capacity of populations. As a
result, m is a highly dynamic parameter that, although we attempted to capture it, depends
on many other factors that are beyond the scope of our analyses.

Human mobility is perhaps the most important feature of dengue transmission that
our model did not account for by focusing exclusively on the entomological component
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of the variation in risk between HH and NH environments. Specifically, human mobility
among different urban spaces is highly important for vector-borne disease transmission and
is an important area for future work. Consistently, Harrington and co-authors found that
more than half of the mosquitoes which were collected in four villages in Thailand fed on
people from other origins than those where the vectors were collected [46], indicating that
human movement plays a significant role in transmission. For this reason, we believe that
more realistic simulations involving the movement of people between both environments
could capture more accurately the relative infection risk between environments as well as
the true number of infections.

5. Conclusions

In conclusion, our results suggest that while households are important for maintain-
ing suitable conditions for dengue transmission, there is potential for infection risks in
environments outside the household due to a similar or even higher presence of vectors
in large cities. Such a presence of mosquitoes in both environments might be determined
by different ecological traits in relation to breeding places. These ecological differences
should be taken into account when designing vector control strategies in cities, which
should include both HH and NH environments. Failing to account for the DENV risk
in the NH environment may facilitate transmission even where HH control programs
are highly effective. By further incorporating variation in the human population size,
behavior, and mobility among environments, we could better understand the full scope
of NH environments to contribute to DENV transmission as well as identify levers for
effective control.

Supplementary Materials: The following supporting information can be downloaded at: https:
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