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Abstract: Baculovirology has been studied on the African continent for the development of insect
virus-based biopesticides and, to a much lesser extent, vaccine production and delivery, since the
1960s. In this review, we focus only on baculoviruses as biopesticides for agricultural pests in Africa.
At least 11 species of baculovirus have been discovered or studied on the African continent, some
with several distinct isolates, with the objective in most cases being the development of a biopesticide.
These include the nucleopolyhedroviruses of Helicoverpa armigera, Cryptophlebia peltastica, Spodoptera
exempta, Spodoptera frugiperda, Spodoptera littoralis, and Maruca vitrata, as well as the granuloviruses of
Cydia pomonella, Plutella xylostella, Thaumatotibia (Cryptophlebia) leucotreta, Choristoneura occidentalis,
and Phthorimaea operculella. Eleven different baculovirus-based biopesticides are recorded as being
registered and commercially available on the African continent. Baculoviruses are recorded to have
been isolated, researched, utilised in field trials, and/or commercially deployed as biopesticides in at
least 13 different African countries. Baculovirus research is ongoing in Africa, and researchers are
confident that further novel species and isolates will be discovered, to the benefit of environmentally
responsible agricultural pest management, not only in Africa but also elsewhere.
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1. Introduction

Baculoviridae is a family of double-stranded DNA (dsDNA) viruses with more than
90 species divided into four genera: the alpha-, beta-, delta-, and gammabaculoviruses [1,2].
Baculovirus species are classified according to a new binomial naming system, while the
common names and abbreviations have not changed [3]. The genome comprises a sin-
gle circular dsDNA molecule with a wide range of lengths. The smallest genomes are
around 80 Kbp, as seen in Neodiprion lecontei nucleopolyhedrovirus (Gammabaculovirus
nelecontei) at 81,755 bp and 89 open reading frames (ORFs) [2]. The largest genomes
are around 180 Kbp, such as in Xestia c-nigrum granulovirus (Betabaculovirus xecnigri) at
178,733 bp containing 181 ORFs [4]. Baculoviridae viruses are characterised by the forma-
tion of occlusion bodies (OBs), with members falling into two morphological groupings.
Nucleopolyhedroviruses (NPVs) form large OBs, referred to as polyhedra, which range
from 0.6 to 2 µM. Granuloviruses (GVs) form smaller OBs ranging from 0.2 to 0.4 µM and
are referred to as granules [5]. The formation of OBs enables baculoviruses to persist under
normal environmental conditions for extended periods of time. The structural characteris-
tics of baculoviruses have been extensively studied and are reviewed in detail in several
publications (see, for example, [5,6]. Baculoviruses have a broad host range, infecting the
larval stages of insects in the orders Hymenoptera, Diptera, and Lepidoptera [1].

The structural and biological characteristics of baculoviruses make them well suited
for use as biological pesticides for the control of lepidopteran pests [7–10]. Over the past
several decades, multiple baculovirus species have been tested, formulated, and sold as
commercial biopesticides in various regions of the world. These regions primarily include
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South America, North America, Europe, and Asia [11–14]. As with elsewhere in the world,
baculoviruses have been investigated as vaccine production and delivery systems in Africa.
This specifically pertains to the development of a vaccine for the African horse sickness
virus, using a baculovirus expression system [15–18]. However, challenges with production
yields [19], the need for repeated boost inoculations [20], and the use of potent adjuvants to
enhance immunogenicity [21] have limited the usefulness and application of this type of
vaccine. Consequently, in this review, we chose to focus on the research and development
of baculoviruses into biopesticides for the control of important pests across the African
continent. At least 11 baculovirus species have been or are being investigated for use as
biopesticides in African countries, as shown in Figure 1. These investigations are broad and
include the isolation and identification of novel species, the evaluation of biological activity
under laboratory conditions, the determination of efficacy under field conditions, and the
formulation of baculoviruses as active ingredients in commercial products for large-scale
agricultural applications.
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Figure 1. Overview of African countries where baculoviruses have been isolated, researched, utilised
in field trials, and/or commercially deployed as biopesticides.

2. Baculoviruses
2.1. Alphabaculovirus Helarmigerae, Helicoverpa armigera Nucleopolyhedrovirus (HearNPV)

Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera) has previously been ranked
as the most important lepidopteran pest in South Africa [22,23]. Whether this is still so or
not is questionable; nonetheless, it remains a very important and potentially destructive
polyphagous pest on the continent. The first report of the occurrence of HearNPV in Africa
was by Whitlock [24], who documented the symptomatology, not only of NPV but also a
GV of the same insect, enabling the identification of the causative agent, based purely on
symptoms of infection. However, the viruses were identified using electron microscopy.
In laboratory bioassays, the LT50 with HearNPV was 5–8 days, whereas for HearGV, it
was 17–25 days, depending on the concentration applied [25]. Furthermore, GV-infected
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larvae could continue feeding for up to 35 days, precluding any potential for use in a
biopesticide [24]. Whitlock [26] also identified a degree of maturation immunity (from one
instar to the next) to HearNPV, now a well-known phenomenon.

Roome [27] was the first to explore the efficacy of HearNPV in field trials. This he did
against H. armigera on sorghum and cotton in Botswana. He found that a local isolate of
HearNPV was as effective as the chemical insecticide, carbaryl, and more effective than
commercial preparations of Helicoverpa zea NPV (HzNPV), Alphabaculovirus hezeae, and
Bacillus thuringiensis var kurstaki (Btk), in reducing damage on both crops. The addition of
molasses enabled a halving of the concentration of HearNPV applied, without any loss
of efficacy. Contrary to expectations, spraying in the evening was no more effective than
spraying in the day, possibly because the virus was protected against UV irradiation in the
parts of plants where the larvae fed.

More recently, Moore et al. [28] conducted field trials against H. armigera on citrus in
South Africa. Globally, Helicoverpa armigera is generally not recognised as a pest of citrus.
However, in South Africa, the infestation of blossoms and setting fruitlets is an annual
occurrence, often requiring spraying if the intervention threshold is surpassed [29]. Trials
were initially conducted on potted tomato plants within a greenhouse, in order to obtain
guidance on what concentrations to use in the field. In two field trials on Navel oranges, a
concentration of 7.26 × 105 OBs/mL (and a couple of higher concentrations) resulted in a
100% reduction in H. armigera infestation within 14 days or longer. Damage to fruit was
reduced by up to 84%, and rejection for export was reduced by up to 96%. These results
were better than those achieved with Btk, Neem oil, and various organophosphates in the
same trials. This work led to the development of the first commercially available HearNPV
product in Africa, namely Helicovir (River Bioscience, Gqeberha, South Africa) [30]. Subse-
quently, three more products have been registered: two based on a different (non-African)
isolate, Bolldex and Graboll (Andermatt Biocontrol, Grossdietwil, Switzerland), and one
based on an isolate from Kenya, Helitec (Kenya Biologics, Runyenjes, Kenya) [31], initially
registered in Ghana.

A few fundamental genetic and biological studies have been conducted on HearNPV
in Africa. Through restriction endonuclease (REN) analysis, Ogembo [32] showed that two
HearNPV isolates, one from South Africa, as originally reported by Whitlock [24], and one
from Kenya, differed genetically. Ogembo et al. [33] went on to show in a dose–response
study that both isolates had identical virulence to that of a commercial HzNPV prod-
uct, Gemstar, against first- and second-instar H. armigera, but that the HearNPV isolates
were more virulent than Gemstar against the third and fourth instars. Ultimately, the
South African isolate was the most virulent, including having the shortest time to death in
time–response assays. Ogembo et al. [34] expanded the study to include several additional
isolates from Kenya and isolates from Zimbabwe and Thailand. Of the 162 clones isolated,
25 were shown to be unique, using REN. Finally, the virulence of several of the clones was
compared, identifying the most promising candidate for biocontrol of H. armigera. Mtam-
banengwe [35] conducted full-genome sequencing with two novel isolates of HearNPV,
collected from the Eastern Cape and KwaZulu-Natal provinces in South Africa, demon-
strating their uniqueness in comparison with isolates described in studies from elsewhere.

Baillie and Bouwer [36] used next-generation sequencing (NGS) and denaturing
gradient gel electrophoresis (DGGE) to identify the genetic differences between seven
geographically distinct HearNPV isolates from South Africa. Depending on the gene, NGS
identified between 31% and 35% of SNPs that were non-synonymous and may thus affect
the biological function of the encoded proteins and therefore also the virulence of different
virus isolates. Baillie and Bouwer [37] also found that inoculation dose with HearNPV
against neonate H. armigera in bioassays significantly affected the genetic diversity of
harvested virus thereafter.

Grant and Bouwer [38] demonstrated that not only differences in virulence occur
between different HearNPV isolates but also different H. armigera populations respond
differently to the same isolate. For example, although median lethal doses (LD50) did not
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differ significantly between two field-collected and one laboratory-reared population, the
median lethal time (LT50) of the laboratory population was significantly shorter than the
LT50 of the field populations. Bouwer et al. [39] also showed that the larvae surviving
sublethal doses (LD25 an LD75) had significantly higher metabolic rates (respiration rates,
measured as the rate of CO2 production) than that of untreated larvae. The authors
postulated that this was due to a combination of viral replication, organ damage, and an
energy-intensive induced cellular immune response.

2.2. Betabaculovirus Cypomonellae, Cydia pomonella Granulovirus (CpGV)

Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), more commonly known as
the codling moth, is a worldwide pest of apple, walnut, and pear. Biological control
has long been implemented against C. pomonella, which includes entomopathogenic fungi,
viruses, nematodes, bacteria, and microsporidia [40]. The betabaculovirus Cydia pomonella
granulovirus (CpGV) is a highly efficacious and selective virus, which has been produced as
a commercial product in Europe and North America and utilised globally for the control of
C. pomonella since the early 1990s [41,42]. Two commercial products, Carpovirusine® (Arysta
LifeScience, Noguères, France) and Madex® (Andermatt-Biocontrol AG, Grossdietwil,
Switzerland), both of which are formulated with the Mexican CpGV isolate, are utilised
in South Africa for the control of C. pomonella [43]. However, the continued use of CpGV
in commercial products in Europe and the USA has led to the development of multiple
types of resistance in C. pomonella populations in these regions [44–50]. In response, novel
isolates have been continually formulated into new commercial products for use against
these resistant populations.

While no resistance has yet been observed in South African populations of C. pomonella,
a study was conducted by Motsoeneng et al. [51] to search for novel isolates that could
be utilised should the need arise, leading to the isolation of CpGV-SA. The genetic anal-
ysis of CpGV-SA indicated this isolate to be unique from previously identified isolates,
harbouring many unique single nucleotide polymorphisms (SNPs) [51]. Furthermore, the
biological activity of CrleGV-SA and CpGV-M against C. pomonella was determined and
compared. These isolates were found to have similar median lethal concentrations, LC50
and LC90 values at 1.6 × 103 and 1.2 × 105 OBs/mL for CpGV-SA and 3.1 × 103 and
2.8 × 105 OBs/mL for CpGV-M, respectively [52]. The LT50 for CpGV-SA and CpGV-M
against C. pomonella were also determined to be 135 and 136 h, respectively, with each isolate
applied at concentrations equal to their respective LC90 [52]. These results suggest that
CpGV-SA could be developed into a commercial biopesticide and utilised as an alternative
to or interchangeably with existing commercial biopesticides based on CpGV-M, both in
South Africa and in other African countries where C. pomonella is problematic.

2.3. Betabaculovirus Pluxylostellae, Plutella xylostella Granulovirus (PlxyGV)

Plutella xylostella granulovirus (PlxyGV), a betabaculovirus that infects the diamond-
back moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), was first discovered in 1970 by
Asayama and Osaki [53] from diseased larvae in Japan. Since then, additional isolates of
PlxyGV were identified from several countries, including China, Taiwan, India, Malaysia,
and of particular interest Kenya and South Africa. In field surveys conducted by Par-
nell et al. [54], 127 diseased P. xylostella cadavers collected from eight farms surrounding
Nairobi, Kenya, were examined for the presence of PlxyGV. Of these, 95 cadavers were
observed to be suffering from PlxyGV infections, from which 14 isolates with unique REN
profile patterns were distinguished. Subsequently, laboratory and small-plot field trials
were conducted by Grzywacz et al. [55] using several of these isolates, to evaluate their
efficacy against P. xylostella. Dose–response bioassays in the laboratory demonstrated an
LC50 ranging from 3.95 × 107 OBs/mL in the PlxyGV-Nya-40 isolate to 2.36 × 106 OBs/mL
in the PlxyGV-Nya-01 isolate, compared with the LC50 of the Taiwanese reference isolate
PlxyGV-Tw at 1.55 × 107 OBs/mL. Small-plot field trials were conducted using the PlxyGV-
Nya-01 isolate on Kale, at both high (3.0 × 1014 OBs/ha) and low (3.0 × 1013 OBs/ha)
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application rates and compared against an unsprayed control and a chemical insecticide
treatment [55]. Damage to crops by DBM was reduced below that seen in either the chemical
insecticide treatment or untreated controls for both PlxyGV application rates.

Field surveys across 92 sites in Benin were conducted in 2001, in which more than
5000 larvae were sampled and screened for PlxyGV [56]. PlxyGV was not detected in any of
these West African survey sites, resulting in the importation of the Kenyan isolate PlxyGV-
Nya-01 into Benin for evaluation. Dose–response assays conducted using the Kenyan
isolate against the Benin P. xylostella population resulted in an LC50 of 1.15 × 105 and
2.40 × 106 OBs/mL for the second and third instars, respectively. The LC50 was reported
to be considerably lower in the Benin population than that measured against the Kenyan
population, with Cherry et al. [56] hypothesising major differences in prior exposure to
PlxyGV by these different geographic populations as a contributing factor, as evidenced by
the complete lack of PlxyGV identified during these field surveys.

Abdulkadir et al. [57] isolated a South African isolate, PlxyGV-SA, from P. xylostella
larvae collected from a field site in the Eastern Cape Province, South Africa. Surface
dose bioassays of PlxyGV-SA against neonate P. xylostella larvae resulted in LC50 and LC90
values of 3.56 × 105 and 1.14 × 107 OBs/mL, respectively [58]. The LT50 for PlxyGV-SA was
measured to be 5.3 days, which is comparable to the 4.9 days recorded for the PlxyGV-Tw
isolate against neonate P. xylostella [58,59]. To date, the complete genome sequences of nine
PlxyGV isolates have been determined and uploaded to GenBank (NCBI), of which PlxyGV-
SA is the only African isolate [60]. The high degree of isolate variation identified in Kenya
by Parnell et al. [54] led to the suggestion that there has been a long association between
PlxyGV and DBM in Africa. With only a single African genome sequence currently available
and a multitude of African isolates already identified, much of the genetic diversity among
PlxyGV isolates in Africa remains untouched and unknown. Furthermore, PlxyGV is yet
to be developed into a commercial biopesticide, likely due to the lack of an artificial diet,
which is required for the mass rearing of P. xylostella larvae.

2.4. Betabaculovirus Cryleucotretae, Cryptophlebia leucotreta Granulovirus (CrleGV)

The false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is
an important agricultural pest in Africa south of the Sahara [61,62]. Although it is capable of
causing economic losses in citrus fruit (other than lemons and limes [63]), peaches, peppers,
pomegranates, and some other crops, its main status is phytosanitary in nature, due to
its endemism to Africa. A range of control options have been developed to manage the
pest [64–67], one of which is the Cryptophlebia leucotreta granulovirus (CrleGV) [68–70].
The genus of the host was previously Cryptophlebia, hence the name of the virus, but the
host name was changed to Thaumatotibia in the late 1990s [71].

The first discovery of CrleGV was from infected larvae found in the Ivory Coast
in the 1960s [72]. It was found that if the CrleGV contamination of T. leucotreta larvae
was not curtailed in a rearing facility, this could lead to the collapse of the culture [73].
Incidentally, the authors also noted a cypovirus (CPV) infection in the same laboratory
culture. A second CrleGV isolate was reported in diseased larvae from Cape Verde [74]. The
occurrence of a third isolate was reported from a laboratory culture of T. leucotreta in South
Africa in 1980 [75]. Fritsch and Huber [76], Fritsch [77], and Jehle et al. [78] demonstrated,
through REN analysis, that the three isolates were genetically distinct. Jehle et al. [78]
constructed a restriction fragment map covering almost the entire genome of the Cape Verde
isolate of CrleGV, identifying the position of the granulin gene through cross-hybridisation
with granulin coding fragments of CpGV [79]. Moore [68] described the discovery and
development of an additional novel CrleGV isolate, found infecting T. leucotreta larvae
in a mass-rearing facility in the Western Cape Province of South Africa. This isolate was
genetically characterised by Singh et al. [80]. Goble [81] further genetically characterised this
same CrleGV isolate, comparing it with another South African isolate. Restriction analysis
and partial amplifications of the granulin and ecdysteroid UDP-glucosyltransferase (egt) genes
revealed 99% and 98% nucleotide identities, respectively, between the two isolates. Most
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recently, Opoku-Debrah et al. [82] succeeded in inducing outbreaks of CrleGV in five
geographically distinct T. leucotreta laboratory cultures through the overcrowding of larvae.
This led to the isolation and genetic characterisation of five novel South African CrleGV
isolates. The single REN analysis of viral DNA and partial sequencing of granulin and egt
genes and multiple alignments of nucleotide sequences were used to demonstrate these
differences, leading to a proposal for two phylogenetic CrleGV-SA groups [82].

In addition to the genetic characterisation studies, extensive biological assays have
been conducted. In dose–response assays with the Cape Verde CrleGV isolate (CrleGV-
CV) and five CV clones, Fritsch [77] determined that the LC50 ranged from 9.38 × 103

to 1.86 × 107 OBs/mL. Moore et al. [70] reported surface inoculation dose–response,
time–response, and detached fruit bioassays against T. leucotreta neonate larvae. LC50
and LC90 values were estimated as 4.09 × 103 and 1.18 × 105 OBs/mL, respectively. LT50
and LT90 values were estimated to be 4 days 22 h and 7 days 8 h, respectively. Opoku-
Debrah et al. [83] tested the virulence of five geographically distinct and two commercial
isolates of CrleGV against larvae from five T. leucotreta laboratory cultures of different re-
gional origins, in laboratory bioassays. They demonstrated that virulence is a very specific
relationship between host and pathogen, showing that certain isolates were significantly
more or less virulent against certain regionally distinct host populations. Consequently,
it could not be claimed that any particular isolate was more or less virulent, without
contextualising it by stating against which population the comparison was conducted.

The first use of CrleGV for the control of T. leucotreta was in Cape Verde in the 1980s,
where one small-scale field trial was reported on citrus and Spanish pepper [84]. Virus
concentrations of 108 and 109 OBs/mL were used, applied with skimmed milk powder and
a wetting agent. Damage by T. leucotreta was reduced by 77% in citrus and 65% in Spanish
pepper. Moore [68], Moore et al. [69], Kirkman [85], and Moore et al. [86] reported more
than 50 field trials with CrleGV against T. leucotreta on citrus in South Africa, spanning
from 2000 to 2015, the earlier trials leading to the registration of the first commercially
produced CrleGV product [69]. In a representative sample of 13 field trials, Moore et al. [86]
reported reducing T. leucotreta infestation of citrus fruit by between 30% and 92%, in field
trials with CrleGV. Efficacy was shown to persist at a level of 70% for up to 17 weeks
after the application of CrleGV. The addition of molasses substantially and sometimes
significantly enhanced efficacy. It was also established that CrleGV should not be applied
at less than ~ 2 × 1013 OBs/ha in order to avoid compromised efficacy [86]. In 2003,
the first CrleGV product was registered in South Africa for the control of T. leucotreta on
citrus, avocadoes, grapes, and other crops, namely Cryptogran (River Bioscience, Gqeberha,
South Africa) [69,87]. Subsequently, another two products have been registered and are
commercially available for use on a range of susceptible crops, i.e., Cryptex and Gratham
(both Andermatt Biocontrol, Grossdietwil, Switzerland) [88].

2.5. Alphabaculovirus Crypeltasicae, Cryptophlebia peltastica Nucleopolyhedrovirus (CrpeNPV)

Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), more commonly known
as the litchi moth, is an important pest of litchi (Litchi chinensis Sonnerat) in several sub-
Saharan and Indian Ocean countries such as Mauritius, South Africa, and Réunion Is-
land [89–92]. Marsberg et al. [93] initiated a laboratory culture of litchi moth, maintained
on T. leucotreta artificial diet [94]. Diseased larvae were collected and examined for the
presence of baculovirus infection. This resulted in the discovery of a novel nucleopolyhe-
drovirus, which was subsequently genetically and biologically characterised. The virus,
Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV), was examined using transmis-
sion electron microscopy, which revealed the presence of polyhedral occlusion bodies with
numerous singly enveloped nucleocapsids. The phylogenetic analysis of CrpeNPV based
on late expression factor 8 (lef-8), lef-9, and polyhedrin sequence data confirmed the isolate to
be a novel group two alphabaculovirus, with a genome length of 115,728 bp encompassing
126 ORFs (Marsberg et al. 2018). The biological activity of CrpeNPV in terms of median
lethal concentration and time was evaluated against its homologous host C. peltastica. An
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LC50 and LC90 of 6.46 × 103 and 2.46 × 105 OBs/mL and LT50 and LT90 values of 76.32 and
93.49 h were measured, respectively [93].

As discussed above, C. pomonella is a serious pest worldwide. The development of
several types of resistance toward existing biopesticides formulated with different CpGV
isolates has created additional challenges for control strategies in Europe and the USA.
A study by Wennmann et al. [95] examined the biological activity of CrpeNPV against
several laboratory-reared strains of C. pomonella, each of which exhibited different types of
resistance to CpGV infection. These included CpRR1, which exhibited type I resistance;
CpR5M, which exhibited type II resistance; CpRGO, which exhibited type III resistance;
and a susceptible strain CpS. Each resistance type reduces C. pomonella susceptibility to
certain CpGV isolates, such as in CpRR1, which exhibits reduced susceptibility to CpGV-M,
or CpRGO, which exhibits reduced susceptibility to CpGV-M and CpGV-S [44,49,50]. Each
population was tested against CrpeNPV and two CpGV isolates, CpGV-M and CpGV-E2,
the latter of which remains infectious to all these C. pomonella strains. CrpeNPV was shown
to be highly infectious to both susceptible and CpGV-resistant C. pomonella strains, with
biological activity similar to the resistance-breaking isolate CpGV-E2. CrpeNPV is currently
undergoing registration as a biopesticide for use in Europe for the control of C. pomonella
and Grapholita molesta (Busck) (Lepidoptera: Tortricidae) on pome fruit and stone fruit. It
was also recently registered in South Africa for use against C. pomonella on pome fruit, T.
leucotreta and T. batrachopa on macadamias, and T. leucotreta and C. peltastica on litchis (Sean
Thackeray, Personal communication [96]).

2.6. Alphabaculovirus Spexemptae, Spodoptera exempta Nucleopolyhedrovirus (SpexNPV)

The larval stage of the African armyworm moth, Spodoptera exempta (Walker) (Lepi-
doptera: Noctuidae), is regarded as a devastating cyclical and migratory crop pest of maize,
wheat, sorghum, and other staple crops in a large portion of sub-Saharan Africa [97]. The
first finding of an NPV disease in the larvae of S. exempta was attributed to Graham [98]
in Brown and Swaine [99]. The latter reported surveys and laboratory studies with the
virus, concluding that its occurrence was widespread in field populations of S. exempta,
particularly where there were pest outbreaks [99]. Odindo [100] concluded that epizootics
in Kenya were highest in sites of high larval density, wide fluctuations in daily tempera-
tures, and high humidity. In sites of high incidence, the epizootic led to larval population
collapse within 3 weeks of the outbreak. Vilaplana et al. [101] examined the prevalence of
covert infection of NPV in field populations of S. exempta, in Tanzania. They found that
virtually all the insects collected in the field were positive for SpexNPV DNA, and 60%
of these insects had transcriptionally active viruses. This was so, even in the absence of
pest outbreaks, suggesting that SpexNPV is not only transmitted horizontally, but also
vertically, at extremely high levels in field populations of S. exempta and can maintain a
persistent infection without obvious symptoms. This was supported by the finding that
similarly high levels of virus DNA and RNA were detected in an S. exempta culture that
had been maintained in the laboratory for 5 years [101]. Subsequently, Graham et al. [102]
developed a real-time quantitative polymerase chain reaction (qPCR) procedure for the
specific detection and quantification of SpexNPV. They used this assay for the quantification
of covert virus infection in asymptomatic larvae, concluding that viral load peaked in early
instars (up to 6 days post-hatch), and decreased markedly with larval age, particularly
during the final two instars.

Brown et al. [103] were the first to provide a physical map of SpexNPV, constructed
using a range of restriction enzymes, and it showed a genome size of 131.89 Kbp. More
recently, Redman et al. [104] cloned an isolate of SpexNPV in vivo, identifying at least
17 genetically distinct genotypes, which varied in size from approximately 115 to 153 Kbp.
Subsequently, Escasa et al. [105] reported fully sequencing the genome of a SpexNPV isolate,
collected in Tanzania in the 1970s, and thus very likely the same isolate as investigated by
Redman et al. [104]. The genome was 129.5 Kbp.
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Harrap et al. [106] established a laboratory culture of S. exempta, field-collected in
Kenya, from which an NPV infection was isolated. Subsequently, Cherry et al. [107]
developed and optimised an in vivo production system for SpexNPV. The larvae of S.
exempta were reared in individual cells (17 × 17 × 40 mm) on an artificial diet that had
been sprayed with a range of concentrations. The maximum yield obtained per larva was
3.29 × 109 OB per larva after 7 days of incubation. LT50 values fell with an increase in dose,
being as short as 5.5 days when using 1 × 107 OB/cell. A virus production protocol was
refined and prescribed in detail by Mushobozi et al. [108], including guidelines for the
formulation and application of the virus preparation.

McKinley et al. [109] found that this virus was cross-infectious with the fall army-
worm, S. frugiperda (Smith) (Lepidoptera: Noctuidae). However, rather than being directly
pathogenic to the heterologous host, it appeared to trigger the homologous virus through
stress induction. Odindo [110], through a series of dose–response and time–response bioas-
says with third-instar S. exempta and its virus, established the LD50 as 48 OBs per larva and
the LT50 to range from 146 to 221 h, depending on the dosage applied.

A project managed by the Natural Resources Institute in the UK was launched in
1996 to develop and evaluate the use of SpexNPV as a biopesticide alternative to chemical
control [111]. The project ran for at least a decade [112]. Field trials demonstrated that both
the ground and aerial application of SpexNPV to armyworm outbreaks on pasture could
initiate virus epizootics and population collapse [113,114]. SpexNPV was effective when
applied at 1 x 1012 OB/ha if applied early during an outbreak and before larvae reached
the fourth instar. Mass mortality was apparent 3–10 days after application. Efficacy in
field trials in northern Tanzania, with doses as low as 1 x 1011 OB/ha, ranged from 22% to
around 90% [115]. These differences in efficacy were attributed to the presence or absence
of Wolbachia, which was related to an increase in the virulence of SpexNPV, contrary to
most other findings with Wolbachia [112]. It was concluded that SpexNPV was sufficiently
effective to replace a chemical pesticide strategy for controlling S. exempta [114]. Conse-
quently, a large biopesticide production facility for SpexNPV was built in Arusha, Tanzania,
from 2008 to 2011 [116]. Despite this, the field production of the virus was conducted
instead, based on the Brazilian system for production of the Anticarsia gemmatalis NPV
(AgNPV), Alphabaculovirus angemmatalis [117,118]. This was deemed technically feasible
because of the large synchronous outbreaks of larvae at high densities that are a feature
of this pest [113,114]. Unfortunately, the facility never became fully operational, despite
the compelling arguments made in favour of the programme [119]. This was partly due to
a subsequent decline in the pest status of S. exempta and the arrival of S. frugiperda [120],
which superseded the latter in research and management efforts.

2.7. Alphabaculovirus Spofrugiperdae, Spodoptera frugiperda Nucleopolyhedrovirus (SfNPV)

Spodoptera frugiperda is native to tropical and subtropical regions of the American
continents, stretching from Argentina in the south to southern Florida and Texas in the
north [121,122]. It was first reported as an invader in Africa in 2016, appearing in Nigeria,
Sao Tomé, Benin, and Togo [123]. It was most recently confirmed to be in more than
30 African countries, including as far south as South Africa [124]. Spodoptera frugiperda is
highly polyphagous [125,126] but is mainly a pest of maize, followed by sorghum, cotton,
sweet corn, and sugarcane [127]. It is considered a devastating pest throughout much of
Africa, causing estimated yield losses in maize on the continent of USD 9.4 billion [128].
Despite this, surprisingly little research has been conducted on the Spodoptera frugiperda
nucleopolyhedrovirus (SfNPV) on the continent, possibly because a notable body of re-
search from elsewhere already exists (e.g., see [129–135]). Consequently, a commercial
preparation of SfNPV, Fawligen (AgBiTech) was relatively rapidly registered in Africa,
initially in Kenya [127]. An SfNPV isolate has also now been reported from Africa (Nige-
ria) and has been genetically characterised [136], showing a close relatedness to isolates
described from the Americas, particularly from Brazil [137].
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2.8. Alphabaculovirus Spolittoralis, Spodoptera littoralis Nucleopolyhedrovirus (SpliNPV)

Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae), the Egyptian cotton leafworm, is
a polyphagous insect of important crops in Africa, Mediterranean Europe, and countries in
the Middle East [138,139]. The baculovirus-based control of S. littoralis has a long history
in Africa, with early field trials and evaluations dating back to the 1980s [140,141]. Field
trials of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) were conducted by Top-
per et al. [140] against S. littoralis in Egypt, to compare formulations, spraying techniques,
and virus efficacy. Although no difference was found between the spray technique and for-
mulation, a significant reduction in leaf damage was measured in the SpliNPV treatments
compared with an unsprayed control application. Large-scale field trials further showed
decreased leaf damage for the SpliNPV treatment as compared to the control; however, no
difference in cotton yield was observed. This lack of difference was attributed to low levels
of damage, with virus treatments only applied to fields that exceeded a predetermined egg
mass per ha threshold.

In field trials conducted in 1988 and 1990, Jones et al. [141] evaluated the use of a
wettable powder formulation of SpliNPV for the control of S. littoralis. Three different
virus concentrations were applied and compared against the traditional method of control,
which involved the collection of egg masses by hand. The analysis of the 1988 field trial
showed a significant reduction in mean leaf damage 14 days after treatment for both the
egg collection and the two highest NPV concentrations as compared to the control. The
NPV treatments further showed a significant reduction in mean leaf damage 14 days after
spraying as compared to the control and egg collection treatments in the 1990 field trials.
The highest NPV concentration maintained a significant reduction in leaf damage 21 days
after application. In both the 1988 and 1990 field trials, a clear dose-dependent response
was observed, with higher doses correlating with reduced leaf damage.

More recently, a study by Adel-Satter et al. [142] evaluated the resistance to different
pyrethroids and biocides in several geographically distinct strains of S. littoralis, collected
from isolated field populations in Egypt across three cotton seasons (2006, 2007, and
2008). Included among the biocides tested were several formulations of an NPV that
infects S. littoralis (presumably SpliNPV). The results obtained showed that all field strains
were highly susceptible to the NPV biocide, while high levels of resistance to pyrethroid
insecticides were observed. The results from this study strongly support the use of NPV-
based biocides for the control of S. littoralis in Egyptian cotton fields, either as a replacement
to conventional insecticides or for strategic use in integrated pest management (IPM)
programmes. Furthermore, research by Alfy et al. [143] investigated interactions between
Bacillus thuringiensis subsp. mexicanensis (Btm) on SpliNPV, applied against S. littoralis.
The virus was isolated from larvae collected at the Nubaria Agricultural Research Station,
Egypt, with semi-field trials conducted in 2017 and 2018. The control of S. littoralis by
SpliNPV alone and in combination with Btm was evaluated. Synergistic interactions were
observed, with the combination of Btm and SpliNPV providing the highest measurement
of S. littoralis larval mortality. Although a commercial bioinsecticide using SpliNPV has
been formulated and sold under the name Littovir (Andermatt Biocontrol, Switzerland)
in several European countries, the virus is yet to be developed into a product for use in
African countries.

2.9. Betabaculovirus Choccidentalis, Choristoneura occidentalis Granulovirus (ChocGV)

The citrus leafroller, Choristoneura occidentalis (Walsingham) (Lepidoptera: Tortricidae),
is native to South Africa but more widely distributed throughout sub-Saharan Africa,
with records from Gambia, Kenya, Mozambique, Zimbabwe, Sierra Leone, Tanzania, and
Zambia [144]. In South Africa, it is recognised as a pest of citrus, avocado, coffee, and
various ornamentals [145,146]. It should not be confused with the North American species
of the same name, C. occidentalis (Freeman). The citrus leafroller was moved from the
genus Archips to Choristoneura by Razowski [147]. However, based on a phylogenetic study,
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Fagua et al. [148] recommended its transfer to the genus Cacoecimorpha or possibly even a
reversion to Archips (Giovanny Fagua, Personal communication [149]).

Smith and Graça [150] reported infected C. occidentalis larvae from citrus in Eswa-
tini (Swaziland). Upon electron microscopic inspection, the disease was determined to be
caused by a granulovirus. However, the causative organism was only morphologically char-
acterised, and it was therefore not determined whether this was a novel granulovirus and
what its relatedness is to the more recently described Choristoneura occidentalis granulovirus
(ChocGV), characterised and described by Escasa et al. [151] from the North American host
species. Due to the disparity in host nomenclature, it is highly likely that these are two
distinct baculovirus species and that the name for this African species should thus not be
ChocGV. This must be resolved. No further work has been reported, and consequently, its
potential for exploitation as a control agent against C. occidentalis must still be determined.

2.10. Alphabaculovirus Mavitratae, Maruca vitrata Multi-Nucleopolyhedrovirus (MaviMNPV)

The legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae), is an
important pest of cowpea (Vigna unguiculata (L.) Walp. (Fabales: Fabaceae) in West Africa.
Srinivasan et al. [152] evaluated the efficacy of a Taiwanese isolate of Maruca vitrata multi-
nucleopolyhedrovirus (MaviMNPV) against M. vitrata in semi-field caged experiments at
IITA, in Benin. Maruca vitrata larval mortality increased by 78.8% following the application
of MaviMNPV at a concentration of 2 × 1013 OBs/ha, 7 days after spraying, as compared to
an untreated control application. The authors also noted the detection of M. vitrata larvae
with apparent MaviMNPV symptomatology at a site 150 km from where the semi-field
trials were conducted. MaviMNPV had not previously been detected or released into
the open in Benin. Srinivasan et al. [152] evaluated whether the M. vitrata parasitoid,
Apanteles taragamae Viereck (Hymenoptera: Braconidae), was involved in the transmission
of MaviMNPV. It was found that the partial or complete body contamination of A. taragamae
with MaviMNPV resulted in the transmission of the virus to M. vitrata, as compared to
control treatments where the parasitoid was not contaminated.

Laboratory and field trials were further conducted by Sokame et al. [153] using the
same Taiwanese isolate of MaviMNPV in Benin. Experiments evaluated the effect of combin-
ing the virus with different botanical oils against M. vitrata. The laboratory results showed
a significant decrease in the mean survival time (MST) of M. vitrata when MaviMNPV was
applied alone, decreasing from 14+ days in the control to 8.0 ± 2.1 and 5.0 ± 0.8 days at con-
centrations of 3 × 104 and 5 × 106 OBs/mL, respectively. The MST was further decreased
to 2.0 ± 0.2 days when MaviMNPV (at a concentration of 5 × 106 OBs/mL) was combined
with Azadirachta indica (neem) oil at 0.5%. A similar synergistic interaction was observed
when evaluating the percentage mortality induced by MaviMNPV, increasing from 56.7%
when applied alone at a concentration of 5 × 106 OBs/mL to 97.5% with the addition of
0.5% A. indica oil. A significant reduction in damage (30.7 ± 4.2% to 13.6 ± 1.0%) and loss
(24.8 ± 3.5% to 7.2 ± 0.6%), and an increase in yield (523.0 ± 28.2 to 875.1 ± 47.8 Kg/ha) of
M. vitrata grain was further demonstrated by Sokame et al. [153] during the first of two
growing seasons in 2011 when using MaviMNPV as compared to control treatments in the
field. Although MaviMNPV outperformed the botanical oils evaluated during this growing
season, treatment with the chemical deltamethrin was observed to provide the greatest
degree of M. vitrata control. The combination of MaviMNPV with A. indica oil did, however,
significantly reduce grain loss to 1.7 ± 0.3%, which was comparable to the chemical control,
indicating an additive or synergistic interaction. No statistically significant results were
obtained from field trials conducted during the second growing season.

2.11. Betabaculovirus Phoperculellae, Phthorimaea operculella Granulovirus (PhopGV)

The baculovirus Phthorimaea operculella granulovirus (PhopGV) was discovered
in Australia in 1964 [154], although the first report in Africa was by Broodryk and Pre-
torius [155] in South Africa. The virus is known to infect at least six species within the
family Gelechiidae, some of which are important pests of solanaceous crops worldwide.
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These are the potato tuber moth, Phthorimaea operculella (Zeller); the Guatemala potato
tuber moth, Tecia solanivora (Povolny); the tomato leaf miner, Phthorimaea absoluta (Meyrick);
Eurysacca quinoa (Povolny); Symmetrischema tangolias (Gyen); and Paraschema detectendum
(Povolny) [156–160].

Substantial genetic analyses have been conducted on PhopGV, with partial sequence
data available for most isolates and complete genome sequence data available for at
least 12 isolates, including two from Africa [156,159,161]. These studies have resulted
in each PhopGV isolate being assigned to either one of five groups based on partial egt
gene sequences or one of four groups based on whole-genome sequence analysis. This
excludes PhopGV-SA, which did not cluster within the four groups. At least 10 African
PhopGV isolates have been reported, all of which originated from infected P. operculella
larvae [155,156,156,161–164].

The evaluation of the first known African PhopGV isolate by Broodryk and Preto-
rius [155] showed a significantly lower survival of P. operculella larvae when treated with
PhopGV as compared to an untreated control application. Subsequently, field trials of
PhopGV as spray and powdered (combined with magnesium silicate) formulations for the
control of P. operculella were evaluated by Salah and Aalbu [163] in Tunisia. In their first
experiment, PhopGV was applied to the soil surface as a spray at 50, 75, 88, and 94 days
after the emergence of the plants, with tubers evaluated weekly from four weeks prior to
harvest for P. operculella damage. The second experiment involved the utilisation of the
powdered formulation of PhopGV, with the powder applied to elevated soil surfaces 50
and 75 days after the emergence of the plants. Damage by P. operculella was evaluated
at harvest by assessing 100 tubers per treatment. A significant reduction in P. operculella
tuber damage was recorded for the spray formulation at only 6% damage, as compared
to a control (no spray) at 19.77% damage, and a water-only spray at 29.33% damage. The
powdered formulation was not significantly different from the control (no spray), at 14.33%
tuber damage recorded. The effect of these treatments on stored potatoes was further
examined, with both the spray and powder formulations reducing P. operculella damage
after 30 days of storage.

Recently, several new African PhopGV isolates were identified in diseased larvae orig-
inating from Tunisia, Kenya, and South Africa [156,161]. Ben Tiba et al. [156] characterised
five isolates: three from Tunisia, one from Kenya, and one from Yemen. A discriminating
dose of 1.8 × 105 OBs/mL was utilised to evaluate the biological activity of all five isolates
against neonate larvae from two geographic P. operculella populations (Italy and Tunisia)
and a P. absoluta population. The highest and lowest mortalities were observed against the
P. absoluta population, with PhopGV-Tu1.11 having the highest measured mean mortality
at 70.3% and PhopGV-Ym14 the lowest measured mean mortality at 11.7%. The mean
mortality of these isolates ranged between 34% and 60% against neonate larvae from either
of the P. operculella populations. These results suggest that PhopGV could be utilised as
a biopesticide for the control of both P. operculella and P. absoluta in Africa. The recent
development of PhopGV into the biopesticide Tutavir (Andermatt Biocontrol, Switzerland)
in Europe suggests that this virus has commercial potential, which may prompt further
research and development in African countries.

3. Conclusions

The exploration and investigation of baculoviruses for development as biopesticides
for the management of agricultural pests have been pursued in Africa since the 1960s,
when the occurrence of a CrleGV isolate was first reported in T. leucotreta larvae in the
Ivory Coast [72]. Since then, the occurrence of at least a further series of 10 baculovirus
species has been reported in agriculturally important pests, with numerous distinct isolates
of some of these species (Table 1). To date, at least 11 baculovirus products have been
registered and made commercially available for use in Africa, several of these being based
on African isolates and produced in Africa. However, to date, there are only two known
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commercial baculovirus biopesticide production facilities in Africa: River Bioscience in
South Africa and Kenya Biologics in Kenya.

Table 1. Overview of baculovirus species researched and/or utilised in Africa for the control of
important agricultural pests.

Virus Country of Origin Targeted Host Activities Field Trial Crops Number of
Isolates 2 Isolate References

ChocGV Eswatini C. occidentalis LT - 1 [150]

CpGV South Africa C. pomonella LT, BA, BD 1 - 2 [43,51]

CrleGV Cape Verde, Ivory
Coast, South Africa T. leucotreta LT, BA, FT, BD

Citrus, Spanish
pepper, Avocado,

Grape
9 [72,74,75,80,82]

CrpeNPV South Africa

C. peltastica,
C. pomonella,
G. molesta,

T. batrachopa,
T. leucotreta

LT, BA, FT, BD

Citrus, Pome
fruit, Stone fruit,

Macadamia,
Litchi

1 [93]

HearNPV
Botswana, Kenya,

Ghana, South
Africa, Zimbabwe

H. armigera LT, BA, FT, BD Sorghum, Cotton,
Tomato, Citrus 39 [24,27,28,32,34–36]

MaviMNPV Benin M. vitrata BA, FT Legume 1 [152]

PhopGV Kenya, South
Africa, Tunisia

P. operculella,
P. absoluta LT, BA, FT Potato, Tomato 10 [155,156,159,161–164]

PlxyGV Benin, Kenya,
South Africa P. xylostella LT, BA, FT Kale 15 [54,57]

SfNPV Kenya, Nigeria S. frugiperda LT, BD 1 - 2 [127,136]

SpexNPV Tanzania, Kenya S. exempta,
S. frugiperda LT, BA, FT, BD Pasture 2 [105,106]

SpliNPV Egypt S. littoralis FT Cotton 2 [140,142]

LT = laboratory testing, BA = biological assay, FT = field trials, BD = biopesticide development. 1 Biopesticides
developed outside of Africa with non-African isolate. 2 Estimated isolate number based on individual reports.

Africa is a continent of high biological diversity, with the estimated plant and insect
diversity for the Afrotropics second only to the Neotropics [165]. Thus, the small number of
baculoviruses studied on the continent and exploited for the biological control of important
lepidopteran pests must be considered the tip of the iceberg. The relatively recent discovery
of the first NPV in the grapholitini tribe of tortricids [93] is considered a breakthrough of
seismic proportions in the world of agricultural baculovirology. The grapholitini tribe con-
sists of several globally important agricultural pests, such as the codling moth, C. pomonella;
the false codling moth, T. leucotreta; the oriental fruit moth, G. molesta; the litchi moth,
C. peltastica; and a couple of species of macadamia nut borer, T. batrachopa and C. ombrodelta.
This NPV, CrpeNPV, has an excitingly broad host range, being virulent against most [93], if
not all of these species, including C. pomonella resistant to its own granulovirus, CpGV [95].

Work on baculovirology in Africa is continuing, and if it retains a large exploratory
component, it is likely that in the near future, a suite of novel species and isolates will
emerge. Furthermore, production costs in Africa are much lower than in industrialised
countries [116]. It should therefore be possible to produce baculovirus biopesticides at a
much more affordable price than is the case with those produced outside of the continent
and imported into Africa, creating an opportunity both for increased local uptake and for
biopesticide exports. It is critical that this endeavour be encouraged and funded across the
continent, in order to prepare for the growing global move towards more environmentally
sustainable means of farming, with reduced chemical inputs, driven by initiatives such as
the European Green Deal and Farm to Fork Strategy [67,166].
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