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Abstract: Phages of highly pathogenic bacteria represent an area of growing interest for bacterial
detection and identification and subspecies typing, as well as for phage therapy and environmental
decontamination. Eight new phages—YpEc56, YpEc56D, YpEc57, YpEe58, YpEc1, YpEc2, YpEc11, and
YpYeO9—expressing lytic activity towards Yersinia pestis revealed a virion morphology consistent with
the Podoviridae morphotype. These phages lyse all 68 strains from 2 different sets of Y. pestis isolates,
thus limiting their potential application for subtyping of Y. pestis strains but making them rather
promising in terms of infection control. Two phages—YpYeO9 and YpEc11—were selected for detailed
studies based on their source of isolation and lytic cross activity towards other Enterobacteriaceae.
The full genome sequencing demonstrated the virulent nature of new phages. Phage YpYeO9 was
identified as a member of the Teseptimavirus genus and YpEc11 was identified as a member of the
Helsettvirus genus, thereby representing new species. A bacterial challenge assay in liquid microcosm
with a YpYeO9/YpEc11 phage mixture showed elimination of Y. pestis EV76 during 4 h at a P/B
ratio of 1000:1. These results, in combination with high lysis stability results of phages in liquid
culture, the low frequency of formation of phage resistant mutants, and their viability under different
physical–chemical factors indicate their potential for their practical use as an antibacterial mean.

Keywords: plague; bacteriophage; phage genome; phage typing; phage therapy

1. Introduction

Infectious diseases caused by highly pathogenic bacteria are still a challenge for
modern medicine. Relevant infections may occur due to natural outbreaks or through a
deliberate release during bio terroristic attacks by biological warfare agents.

The causative agent of severe acute disease plague is Yersinia pestis, a non-spore form-
ing, rod-shaped, and facultatively anaerobic microorganism in the family Enterobacteriaceae,
which is classified as a Class A select agent [1]. Only one serotype of Y. pestis is recognized,
while pathogenic strains can be divided into four biovars: Antiqua, Medievalis, Orien-
talis, and the recently described biovar Microtus. Y. pestis has three plasmids and several
virulence factors, including F1, Murine exotoxin, LPS endotoxin, coagulase, pesticin, and
plasminogen activator [2–5]. The disease caused by Y. pestis is highly contagious with
a short incubation period and infectivity in low doses, manifested mainly as a bubonic
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plague with a case-fatality ratio of 30% to 60% that can be developed to a more severe
form of a pneumonic plague that is always fatal if left untreated. Due to its potential of
person-to-person dissemination via aerosols and high lethality, Y. pestis can be used as a
warfare agent in aerosolized form [2].

Historically, the plague has caused several pandemics which have led to large numbers
of deaths. The plague was categorized as a re-emerging disease because of its reappearance
in several countries in the 1990s and reported human plague outbreaks, primarily in
Madagascar [6]. The plague also occurred in the past on the territory of Georgia where two
natural foci of the plague are distinguished: plain foothills and high mountainous. A total
of 46 strains of Y. pestis were isolated during the 1979–1997 period in these areas, while no
new isolates have been obtained in recent years [3,4,7].

Early diagnostics of the disease and treatment with antibiotics (streptomycin doxy-
cycline and fluoroquinolones) and supportive therapy are believed to be quite effective
in treating the plague, although the rapid identification of Y. pestis in patients with severe
plague, especially those with the aerosolized and dispersed form, and their treatment is still
a challenge, requiring parenteral antibiotics. [6,8–11]. In the last two decades, the problem
has been aggravated by the rise of multidrug-resistant strains of Y. pestis. In 1995, a strain
isolated in Madagascar exhibited resistance to first-rank drugs currently used for plague
treatment and prevention [12–15]. No plague vaccine for public use is currently available.
The prophylaxis of medical personnel and scientists is also problematic in case of a plague
outbreak. The US vaccine was discontinued in 1999, and besides, it was not protective
against the pneumonic plague. New vaccine(s) are under development [8,16,17].

All of the abovementioned indicate the necessity of the development and use of al-
ternative means for treatment and infection control of the plague. Interest in bacterial
viruses (bacteriophages) in general as well as to Y. pestis phages in particular has been
renewed in recent years. In the 1920s, at the beginning of the phage therapy era, Felix
d’Herelle used phage therapy against cholera and the bubonic plague [18–23]. Considering
the increasing incidence of antibiotic resistance of bacterial pathogens and the lack of novel
antibiotics, phages attracted serious attention as alternatives to antibiotics [21,24–26]. Phage
products are stable, safe, and considerably easier to produce and can be regularly modified
in response to changes in the susceptibility of target pathogens [27]. Bacteriophages can be
used as tools for bacterial detection and identification, subspecies typing, phage therapy
prophylaxis, and environmental decontamination [10,28–37]. All these directions were
intensively developed in Georgia at the G. Eliava Institute of Bacteriophages, Microbiology,
and Virology (Eliava IBMV) [24,38,39]. In addition to the elaboration and practical applica-
tion of therapeutic and prophylactic bacteriophages, the phage typing method was used
for epidemiological diagnostics and tracking of different medically important bacterial
infections [40,41]. Efficient phage typing schemes were elaborated by the Eliava scientists
for Salmonella Typhimurium and Pseudomonas aeruginosa [42,43].

A number of studies targeting phages lysing Y. pestis were performed at different
scientific centers worldwide. Out of three well-studied and widely used plague diagnostic
phages, two, namely φA1122 and the Pokrovskaya phage, are similar to E. coli phage T7,
display high lytic activities, and display a very broad lytic spectrum towards Y. pestis strains
of different origins, but also express activity to some strains of its closest phylogenetic
relative: Yersinia pseudotuberculosis. The US CDC recommends phage φA1122 as an impor-
tant diagnostic tool for the plague [10,44–47]. Another diagnostic phage-L-413C, isolated
from lysogenic Y. pestis strain 413 (biovar Medievalis), is much more specific. It is active
only against Y. pestis (as shown on 6000 global isolates) and very rare strains Escherichia
coli [10,48]. A combination of L-413C and ϕA1122 phages was shown to be highly effective
for the detection and identification of Y. pestis by using qPCR with primers specific for
phage DNA [10]. Five phages isolated at the Eliava IBMV on other hosts (Shigella sonnei,
S. Typhimurium, and Y. enterocolotica) expressed lytic activity towards Y. pestis and revealed
three distinct phage subtypes based on DNA restriction profiles [49].
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The genome analyses of a number of lytic and temperate phages active against Y.
pestis were reported [50–53]. Among them, the bacteriophages Berlin, Yepe2, Yep-phi,
YpP-R, YpP-G, YpsP-G, and ΦA1122 were shown to be of the Podoviridae morphotype.
The phages with this morphology have considerably small and conserved genomes, are
easy to propagate, and have short lytic cycles which make them promising for therapeutic
applications. The lytic bacteriophage PY100 with the Myoviridae morphology has a broad
host range within the genus Yersinia. Another genetically studied phage, L-413C, was shown
to be a temperate Y. pestis phage. Phage Yep-phi is routinely used as a diagnostic agent
for Y. pestis in China. The novel Y. pestis phage JC221 with the Myoviridae morphology has
important reference values for the study of environmental microecology and epidemiology
of plague foci [52]. The experimental Y. pestis phage mixture YPP-100 was shown to be
effective for surface decontamination [37]. However, the knowledge about the biocontrol
potential and therapeutic importance of Y. pestis phages has still to be extended.

The goal of the presented study was to isolate, characterize, and identify naturally
occurring bacteriophages active against Y. pestis and to evaluate the potential of their
application for plague epidemiology (strain subtyping) and for infection control.

2. Materials and Methods
2.1. Microbiological Media and Buffers

Different nutrient media and solutions were used: Brain Heart Infusion (BHI) broth
and agar (Liofilchem, Roseto degli Abruzzi, Italy); Cefsulodin–Irgasan–Novobiocin (CIN)
agar (Liofilchem, Roseto degli Abruzzi, Italy); Luria–Bertani (LB) agar and broth (Li-
ofilchem, Roseto degli Abruzzi, Italy); SM buffer containing 5.8 g NaCl, 2.0 g MgSO4·7H2O,
50 mL 1 M Tris-HCl, in 1 L dH2O, pH 7.4; PBS—phosphate-buffered saline, pH 7.4 (Sigma-
Aldrich, St. Louis, MO, USA); and M9 minimal medium standard (Sigma-Aldrich).

2.2. Bacterial Strains

The following bacterial strains were used in this study: the vaccine strain Y. pestis
EV76 (the collection of Eliava IBMV) as a standard/reference strain; 35 strains from the
collection of French Armed Forces Biomedical Research Institute (IRBA, Bretigny sur Orge,
France), including 2 strains of Y. pseudotuberculosis, 1 strain of Y. frederiksenii, and 32 strains
of Y. pestis of worldwide origin, among them 10 NCTC strains isolated from different
human and animal sources and 22 strains representative of diversity withinthe Y. pestis
species and mostly isolated on humans in the 20th century (Table S1); a set of 36 Y. pestis
strains from a collection of the National Center for Disease Control and Public Health
(NCDC, Tbilisi, Georgia), including 9 strains isolated from rodents Microtus arvalis and
27 from fleas (20 strains from Ctenophthalmus teres and 7 from Callopsylla caspius)collected
in Georgia in the Ninotsminda region during the period of 1979–1997 (Table S2). For
propagation of the Y. pestis strains, BHI broth and agar and selective CIN agar were used.
For isolation of phages and phage susceptibility studies, human isolates of different genera
and species of the Enterobacteriaceae family were used: 4 strains of Salmonella enteritidis,
6 of Salmonella Typhimurium, 4 of Salmonella Agona, 1 strain of each of Salmonella Paratyphi
A and Salmonella Oranienburg, 5 strains of Shigella flexneri, 4 of Shigella sonnei, 1 of Shigella
boydii, 21 of Escherichia coli, and 45 strains of Yersinia enterocolitica (O:3, O:5, O:6, O:8, and
O:9 serotypes) (Table S3). Enterobacteriaceae strains were propagated on LB and BHI broth
and agar. Strains of Y. pestis and Y. enterocolitica were grown at 28 ◦C and other species of
Enterobacteriaceae were grown at 37 ◦C.

The work on Y. pestis strains was conducted in the conditions of Biosafety Level 3 (in
the labs of IRBA, France, and NCDC, Georgia) while the laboratory experiments involving
strains of different Enterobacteriaceae species and also vaccine strain Y. pestis EV76 were
conducted in the BSL2 and BSL2+ labs (at the Eliava Institute of Bacteriophages, Georgia).
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2.3. Bacteriophages

Seventy phages from the Eliava IBMV collection specific to different enteric bacteria
(Salmonella spp., Shigella spp., E. coli, and Y. enterocolitica) were used along with 54 primary
phage isolates active against the Enterobateriaceae family obtained during this study, from
which 8 phages were consequently propagated on the Y. pestis EV76 strain. For propagation
and testing of phages, LB and BHI media were used.

2.4. Isolation and Primary Detection of Phages from Environmental Samples

A standard enrichment technique was used for the isolation of new bacteriophages
from different environmental samples collected from city effluents, soil, rivers, and lakes
located in different regions of Georgia [54]. Briefly, a mixture of water or soil suspension
(100 mL), appropriate overnight bacterial broth culture (1 mL), and 10 × BHI broth were
incubated at 28 ◦C overnight. After centrifugation and filtration through 0.45 µm cellulose
acetate membrane filters, the suspension was spotted on a streak of indicator bacteria on a
1.5% BHI agar plate. After drying of the phage drops, Petri plates were incubated at 28 ◦C
for 24–48 h. The results were assessed by the development of lytic reaction zones registered
as CL, complete lysis; SCL, semi-confluent lysis; OL, overgrown lysis in the presence of
single bacterial colonies on the spot; IPO/IPC, multiple opaque or clear phage plaques;
and R, resistant.

2.5. Purification and Propagation of Phages

The soft agar overlay method was used for the enumeration of bacteriophages and
to obtain pure phage lines [55]. Briefly, single phage plaques with different morpholo-
gies were picked up and transferred into 1 mL BHI broth containing 0.04% chloroform.
The obtained suspension was kept at room temperature for 30 min and after plating of
its serial 10-fold dilutions in BHI broth, new phage plaques were obtained on BHI agar
plates. The purification of phages was repeated three to five times until homogeneous
plaques were obtained for each phage isolate. Petri plates with semi-confluent lysis were
overlaid with 3 mL BHI broth and the upper 0.5% agar layer was collected, centrifuged
at 5000× g, and subsequently filtrated through 0.45 µm cellulose acetate membrane fil-
ters. The concentration of obtained phage stock was measured by the soft agar overlay
method [54,56].

2.6. Characterization of Bacteriophages Lytic to Y. pestis
2.6.1. Phage Virion Morphology

The phage nucleocapsid morphology was studied by transmission electron microscopy
(TEM) as described in [57] with some modifications. Samples, namely phage lysates in titers
of 1 × 1010 PFU/mL previously treated with distilled water during 24 h, were prepared
on Formvar/carbon film coated 300 mesh copper grids FCF300-CU (Electron Microscopy
Sciences, Fort Washington, PA, USA), negatively contrasted with 2% uranyl acetate, and
examined in the JEM SX100 (Jeol, Kotyo, Japan) at 80 KV and instrumental magnifica-
tion 40,000×. Phage particles were measured and the average size of the head and tail
were calculated.

2.6.2. Phage Host Range

The phage host range was determined by screening phages against strains of target
species using the phage spot test technique. Briefly, the lines of tested strains were per-
formed on 1.5% of BHI agar plates by striking 10 µL of bacterial suspension
(1 × 108 CFU/mL). After drying, the bacterial lines were spotted with 10 µL of each phage
(1 × 107 PFU/mL) and incubated at 28 ◦C for 24 h. The lysis intensity was registered as
mentioned in Section 2.4. The efficiency of plating (EOP) was calculated by dividing the
phage titer on the test strain by the titer of the same phage on its host strain. The phage
titer was determined by a soft agar overlay method [54].
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2.6.3. Lysis Stability of Phages in Liquid Culture

The lysis stability of phages was studied in liquid media on the host strain Y. pestis
EV76 according to the method of Appelmans [58]. Briefly, serial 10-fold dilutions of phages
with initial titers of 2 × 1010 PFU/mL were prepared in tubes with 4.5 mL of BHI broth
and to each dilution, 100 µL of host strain equal to 0.5 MFTS (McFarland Standards Kit,
bioMerieux, Marcy-l’Étoile, France) was added. The multiplicity of infection (MOI) in the
tubes ranged from 1000 to 0.0001. The tubes with phage and bacteria were incubated at
28 ◦C. The phage lytic activity was visually checked at 24 h and 48 h as well as after one
week by examining bacterial growth and comparing with MFTS tubes.

2.6.4. Viability of Phages in Different Solutions

The stability of phages was determined in different media and solutions, such as
BHI broth, SM buffer, and PBS. The phages were inoculated in test solutions at the final
concentration of 2 × 108 PFU/mL and kept at 4 ◦C in dark conditions with periodic
(24 h, 1 week, 2 weeks, 1 month, 6 months, and 1 year) checks of phage viability by the agar
overlay method [54].

2.6.5. The Frequency of Formation of Phage-Resistant Bacterial Mutants

The phage suspension with a titer of 108 PFU/mL in the amount of 0.2 mL of was
equally distributed on 1.5% BHI agar plates. When the liquid was dried, 0.1 mL of the
bacterial suspension in the concentration 107 CFU/mL was applied to the plate and, after
18–24 h of incubation at 28 ◦C, the number of formed phage-resistant bacterial mutants was
recorded. The frequency of mutation was calculated according to the formula: a = Kr/N,
where a—the mutation frequency, K—a constant number and equal to 0.3, r—the number
of generated phage-resistant mutants, and N—initial number of bacterial cells used in the
experiment [59].

2.6.6. Phage Adsorption and One-Step Growth Cycle

The phage one-step growth cycle was studied by a standard methodology [54,56] with
some modifications. Adsorption was estimated by counting the numbers of non-adsorbed
phage particles. Briefly, 0.9 mL of bacterial culture (1 × 108 CFU/mL) was mixed with
0.1 mL of phage (1 × 10 7 PFU/mL). BHI broth mixed with the same amount of phage
was used as a phage control. Both tubes were incubated at 28 ◦C in a water bath. At
certain intervals (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 min), 0.1 mL samples from the
phage–bacteria mixture were diluted in 9.9 mL cold BHI broth with 0.4 mL chloroform and
afterwards were kept for 5 min on ice and the number of free phage particles was estimated
by the double layer method. The same procedures were conducted for phage control after
15 min. After incubation of the plates at 28 ◦C for 24 h, non-adsorbed phage plaques were
counted. The percent of adsorbed phages was calculated with the following equation:
100 − (Pn\P0 × 100), where Pn is the number PFU of non-adsorbed phages and P0 is the
number of PFU on the control plate.

For estimation of the phage latent period and burst size after completion of the prede-
termined period of adsorption, the samples were taken at 5 min intervals and the number
of phages in the test suspensions was determined by the double-layer agar method. The
obtained results were used to determine the latent period and burst size calculated ac-
cording to the following formula: (Pn2) × 100/(Pn1) − non-adsorbed phages/5), where
Pn1 is a diluted mixture of tested suspension in titer 2 × 103 PFU/mL and Pn2 is a
100 times diluted mixture of Pn1.

2.6.7. Phage DNA Extraction

For the isolation of DNA from bacteriophages, the concentrated phage suspensions
with the titer 1 × 1010 PFU/mL were used. DNA was extracted using QIAamp DNA
Mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. The
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DNA concentration was measured on a microvolume spectrophotometer Nano Drop One
(Thermo Scientific, Waltham, MA, USA).

2.6.8. Full Genome Sequencing of Phage DNA and Analysis

Libraries were prepared for Illumina sequencing with the NEBNext UltraII DNA kit
(New England Biolabs, Ipswich, MA, USA) after shearing with the M220 Covaris device
(Covaris, Woburn, MA, USA) accordingly to the manufacturer’s recommendations. After
size selection with AMPure beads (Beckman, Brea, CA, USA), sequencing was achieved
using an HT 2 × 150 bp cartridge on a NextSeq 550 instrument (Illumina, San Diego, CA,
USA). Samples’ fastq files were checked for quality by FastQC and reads were de novo
assembled using spades 3.15.3. Assembled phage genomes were annotated manually using
the Artemis [60] annotation tool. The putative open reading frames (ORFs) were predicted
by using GenemarkS 4.28 [61]. Putative functions of the ORFs were analyzed by PHROGs
and HHpred software [62,63]. The prediction of tRNAs was performed by using tRNAscan-
SE 1.3.1 software [64]. Geneious 7.1.9 software [65] was used for multiple alignments
and mapping. Comparative genomics were conducted using the Easyfig tool and VIP
tree [66,67]. Genome sequence identity was calculated by VIRIDIC [68]. PhageTerm was
used for the detection of phage termini. The genBank accession numbers for our nucleotide
sequences were BankIt2694355 Yersinia OQ828305 for Phage YpYeO9 and BankIt2694380
Yersinia OQ828306 for Page YpEc11.

2.7. Influence of Temperature, pH, Osmotic Pressure, and Disinfectants on Survival
of Bacteriophages

The influence of elevated temperature and variable pH on the viability of phages was
studied by a standard methodology [56]. Briefly, phages (1 × 107 PFU/mL) in BHI broth
test tubes were incubated at various temperatures (45, 50, and 60 ◦C). After 10 and 30 min,
the samples were collected to determine the number of infective phage particles by the soft
agar overlay method [54].

SM buffer, adjusted to different pH (2, 4, 6, 8, 10, and 12), was used to study the
influence of the hydrogen ion concentration on phage viability. Phages (1 × 107 PFU/mL)
were mixed with SM buffer with different pH and samples were collected at 15, 30, and
60 min to determine the number of infective phage particles by the soft agar overlay
method [54].

The same approach was used to determine the survival rate of phages after treatment
with sodium hypochlorite (5% bleach and its 1% dilution—1:5 v/v in distilled water). The
number of active phage particles was determined after 1, 10, and 30 min of exposure.

The influence of ionic strength and osmotic shock on phages was studied by Ander-
son’s method with some modification [56]. Phages diluted in saline were added to the
3.5 M sodium chloride (NaCl) solution to obtain the concentration 1 × 107 PFU/mL and
were then equilibrated for 30 min at 37 ◦C and the number of viable phage particles was
determined. Then, 0.1 mL of phage suspension in 3.5 M NaCl was quickly inoculated into
a 10 mL of distilled water and samples were taken immediately for measuring of viable
phage particles [54,69].

2.8. Subtyping of Bacterial Isolates by Phage Susceptibility Profiles

For subtyping experiments, 5 µL drops of phage suspension (1 × 108 PFU/mL) were
spotted on bacterial streaks on BHI agar plates. The plates were examined for lysis after
18–24 h incubation at 28 ◦C and 37 ◦C (according to the optimal growth conditions of tested
bacteria). The lytic reactions were registered as described above in Section 2.4. Bacterial
isolates were grouped together (phage groups) based on similar phage susceptibility
profiles [70]. Individual phages were compared based on their lytic spectrum and phage
susceptibility profiles within bacterial species and a phylogenetic tree was then constructed
(see Section 2.10).
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2.9. Phage Infection in Liquid Bacterial Culture (Challenge Experiments In Vitro)

The study of phage propagation in liquid microcosm was carried out in 50 mL glass
flasks with 30 mL of M9 synthetic medium enriched with 0.1% yeast extract. Three flasks
in each series contained (i) the target pathogen (control of bacteria); (ii) relevant phage
(phage control); and (iii) a mix of phage/bacteria (challenge mixture). Experiments were
conducted with phage/bacteria ratio of 100:1 and 1000:1. Samples from each tube were
collected at 0, 60 min, 2 h, 4 h, and 24 h to determine the number of viable bacteria and
infective phage particles by the soft agar overlay method [54].

2.10. Data Analysis

All measurements were carried out in triplicate for each sample. The numbers were
averaged to calculate a mean value and a standard error using Windows Excel descrip-
tive statistics program. Phylogenetic trees were constructed using FreeTree software [71]
based on a distance–matrix method such as the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA)-based approach and phylogenetic tree visualization software
(TreeView) [69,72] while VIP tree software was used to compare protein sequences [73].

3. Results
3.1. Testing of Activity of Existing Enterobacteriaceae Phages against Y. pestis EV76

Considering the possibility of cross-lytic reactivity between phages specific to different
Enterobacteriaceae genera [35,74] we performed initial screening of existing phages from the
Eliava collection, active against E. coli, Shigella spp., Salmonella spp., and Y. enterocolitica (O:3,
O:5, O:6, O:8, and O:9 serotype) on the standard strain Y. pestis EV76. In total, 70 phages,
the majority specific to E. coli (40 phages) and Y. enterocolitica (15 phages), were tested.
Screenings did not reveal the development of phage plaques on the Y. pestis EV76 strain.
Although a few lytic zones were observed initially on the bacterial lawn, no evidence of
phage propagation on the target strain was later obtained. These negative results prompted
us to proceed further with the search for new phages.

3.2. Isolation and Primery Characterization of Phages Lytic to Y. pestis EV76

Seventy-five enriched samples were obtained in order to isolate new active phages
against Y. pestis EV76 as a host strain, as well as strains of related genera and species
within Enterobacteriaceae (Y. enterocolitica, Shigella spp., Salmonella spp., and E. coli). For this
purpose, mainly water (rivers, lakes, and city effluents) and soil samples were collected
in different areas of Georgia (Tbilisi, Jandara, Sachkhere, Kazbegi, etc.). Examination
of primary samples enriched with Y. pestis EV76 did not reveal any phage lytic activity.
In contrast with these results, 54 primary phages were obtained through enrichment of
environmental samples with strains of different Enterobacteriaceae genera. Among them,
28 primary isolates were obtained on E. coli strains: 6 on S. sonnei, 1 on S. flexneri, and
19 phages were obtained on Y. enterocolitica. These primary phage lysates underwent
several series of propagation on the relevant hosts in liquid and solid media and then all
new phage isolates were checked on lytic activity to the Y. pestis EV76 strain. Five primary
phage isolates obtained on E. coli and one on Y. enterocolitica (O:9 serotype) showed lytic
activity towards Y. pestis EV76. Finally, after a series of propagation and cloning of six
primary phage isolates (some of them in mixtures) on Y. pestis EV76, eight phages were
obtained. Among them, seven phages were originally isolated on E. coli and one phage on
Y. enterocolitica (O:9 serotype). The naming of newly obtained phages lytic to Y. pestis EV76
was performed according to bacteriophage naming guidelines [75]. Thus, bacteriophages
active against Y. pestis originated from E. coli were designated as vB_YpEc56, vB_YpEc56D,
vB_YpEc57, vB_YpEc58, vB_YpEc1, vB_YpEc2, and vB_YpEc11, while phage originated
from Y. enterocolitica were designated vB_YpYeO9.
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3.2.1. Phage Plaque and Virion Morphology of Bacteriophages Active against Y. pestis

Out of eight newly isolated phages propagated on Y. pestis EV76 (average titer ranging
5× 109–1× 1010 PFU/mL), seven phages had formed similar plaques of a 4–6 mm diameter
with a clear center and narrow turbid hallow zone. The phages YpEc2 produced plaques of
the same morphology but were smaller in size (1.5–2 mm diameter).

The TEM studies demonstrated that new phages expressing lytic activity towards Y.
pestis EV76, namely YpEc56, YpEc56D, YpEc57, YpEc58, YpEc1, YpEc2, YpEc11, and YpYeO9,
have a virion morphology consistent with the podoviridae morphotype, the isometric head,
and short non-contractile tail with different dimensions (Figure 1, Table 1).
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Table 1. Virion size and morphology of eight phage active against Y. pestis.

Phage Active against
Y. pestis

Morphotype
Phage Virion Size

Head nm Tail nm

YpEc57 podovirus 60 ± 2 × 60 ± 2 8 ± 1 × 4 ± 1
YpEc58 podovirus 50 ± 1 × 50 ± 1 18 ± 1 × 8 ± 1
YpEc2 podovirus 48 ± 1 × 48 ± 1 8 ± 1 × 4 ± 1
YpEc11 podovirus 60 ± 2 × 60 ± 2 12 ± 1 × 5 ± 1
YpYeO9 podovirus 60 ± 2 × 60 ± 2 16 ± 1 × 10 ± 1
YpEc1 podovirus 48 ± 1 × 48 ± 1 8 ± 1 × 4 ± 1
YpEc56 podovirus 55 ± 1 × 53 ± 1 18 ± 2 × 10 ± 2

YpEc56D podovirus 59 ± 2 × 59 ± 2 18 ± 2 × 10 ± 2

3.2.2. Lyses of Different Species of Enterobacteriaceae by Newly Isolated Y. pestis Phages

To better characterize and differentiate those eight phages active against Y. pestis EV76
with similar morphologies, we examined their lytic activity by a phage spot test against
the set of Enterobacteriaceae strains from the Eliava collection of E. coli (21 strains), Shigella
spp. (10), and Salmonella spp. (16), as well as against 45 isolates of different serotypes
of Y. enterolocitica. In addition, the EOP was determined for randomly selected strains
(Tables 2, S4 and S5).
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Table 2. Lytic activity of phages active against Y. pestis against different species of Enterobacteriaceae.

Bacterial Strains Total Number of
Isolates

Number of Strains Lysed by Phages Active against Y. pestis
YpEc57 YpEc58 YpEc2 YpEc11 YpYeO9 YpEc1 YpEc56 YpEc56D

E. coli 21 8/21 8/21 7/21 7/21 7/21 9/21 9/21 9/21

S. Typhimurium 6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6
S. Agona 4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4
S. Enteritidis 4 1/4 0/4 0/4 0/4 0/4 1/4 1/4 0/4
S. Paratyphi A 1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
S. Oranienburg 1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

S. sonnei 4 4/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
S. flexneri 5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
S. boydii 1 1/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Y. enterocolitica
serotype O:9 10 10/10 10/10 0/10 10/10 10/10 10/10 2/10 0/10

Y. enterocolitica
serotype O:8 6 1/6 0/6 0/6 1/6 0/6 1/6 0/6 0/6

Y. enterocolitica
serotype O:3 9 4/9 4/9 0/9 5/9 1/9 4/9 2/9 0/9

Y. enterocolitica
serotype O:6 11 2/11 1/11 0/11 3/11 1/11 2/11 0/11 0/11

Y. enterocolitica
serotype O:5 9 3/9 3/9 0/9 4/9 2/9 3/9 0/9 0/9

The lytic activity of eight new phages active against Y. pestis showed a high number
of susceptible hosts, lysing from 33.3% to 42.8% of E. coli strains. As for representatives of
Salmonella, only four phages, YpEc57, YpEc1, YpEc56, and YpEc56D, showed activity against
only S. Enteritidis, while the rest of the phages were inactive against all tested Salmonella
strains. The majority of phages active against Y. pestis showed identical lytic profiles against
Shigella species lysing mainly S. sonnei strains. Phage YpEc57 in addition to activity towards
S. sonnei and S. flexneri, also lysed one isolate of S. boydii. The same set of phages showed
more diversified lytic profiles towards Y. enterocolitica strains which were divided into
7 phages groups (each with 1 to 11 bacterial isolates) based on phage susceptibility profiles
(Table 3).

Table 3. Grouping of Y. enterocolitica strains of different serotypes by susceptibility profiles to phages
active against Y. pestis.

Phage
Group

Y. enterocolitica Strains

Susceptibility to Y. pestis Phage

Yp
Ec

57

Yp
Ec

58

Yp
Ec

2

Yp
Ec

11

Yp
Ye

O
9

Yp
Ec

1

Yp
Ec

56

Yp
Ec

56
D

1 O:9/8377, O:9/3289,
O:3/7077

2

O:9/806, O:9/38, O:9/16,
O:9/208, O:9/162,
O:9/718, O:9/426,
O:9/3228, O:5/171,
O:5/176, O:6/183

3 O:3/7577
4 O:3/121, O:3/19

5 O:8/675, O:6/268,
O:5/270

6 O:5/104
7 O:3/176, O:6/261

A grey box indicates a positive result of phage lytic activity: (CL, SCL, and OL) and an uncolored box indicates
a negative result. The total number of Y. enterocolitica strains was 45, out of which 22 strains appeared to be
non-susceptible to any of the tested phages.
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The screening results revealed that phages YpEc2 and YpEc56D were totally inactive
against the tested Y. enterocolitica strains. The rest of the six phages in total lysed 51.1% of
strains showing different lytic profiles. In particular, phage YpEc11 covered all serotypes of
Y. enterocolitica; considerably less active were phages YpEc57, YpEc58, and YpEc1 with each
lysing strains of five phage groups. The phage YpYeO9 and phage YpEe56 showed activity
toward strains of two phage groups. It should be mentioned that the strains in the majority
of phage groups were lysed with several phages; only two strains in phage group seven
turned out to be sensitive against phage YpEc11.

The difference in the lytic profiles of the studied eight phages in relation to the Y.
enterocolitica strain set was also reflected in the constructed UPGMA phylogenetic tree
(Figure S1).

3.2.3. Lytic Activity of Y. pestis Bacteriophages against Strains of Y. pestis and Yersinia spp.

In order to determine the lytic activity of eight selected phages active against Y. pestis
strains and for the selection of phages with a considerably broader host range, two different
sets of Y. pestis strains were used for phage screenings.

Initially, Y. pestis phages were tested against 36 strains with different sources and dates
of isolation from the collection of NCDC (Tbilisi, Georgia) (Tables 4, S2 and S6).

Table 4. Lytic activity of phages active against Y. pestis against set one of Y. pestis strains (Collection
of NCDC Tbilisi, Georgia).

Bacterial
Strain

Source of
Isolation

Total Number of
Strains

Susceptible to Phage Active against Y. pestis
YpEc57 YpEc58 YpEc2 YpEc11 YpYeO9 YpEc1 YpEc56 YpEc56D

Y. pestis
M. arvalis 9 9/9 9/9 9/9 9/9 9/9 9/9 9/9 9/9
C. caspius 7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7

C. teres 20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

The high coverage of Y. pestis strains from the NCDC collection (up to 100%) was
shown by the lytic activity of eight new phages active against Y. pestis. All strains appeared
to be susceptible to each of the tested phages and moreover, the lytic reactions were of a
similar grade (CL, SCL, or OL)

The host range of the tested phages was also evaluated by screening against another
set of 35 strains from the IRBA collection (Bretigny sur Orge, France), including 32 Y. pestis
strains, 2 Y. pseudotuberculosis, and 1 Y. frederiksenii (Tables S1 and S7).

Screening against the IRBA collection also showed high lytic activity (100% of Y. pestis
tested strains) of all eight phages active against Y. pestis (Tables 5 and S7). On both sets
of strains, despite different geographic origins and sample types, phages revealed a high
intensity of lytic reaction (CL type). All phages but one (YpEc56D) were active against
the strain of one out of the two Y. pseudotuberculosis tested strains, while the Y. frederiksenii
strain appeared to be resistant to all screened phages. However, considering the low
number of tested strains, such findings cannot be generalized for the entire population of
these species.

Table 5. Lytic activity of phages active against Y. pestis against set two of the Yersinia strains (collection
of IRBA, France).

Bacterial
Strains

Source of
Isolation

Total Number of
Strains

Susceptible to Phage Active against Y. pestis
YpEc57 YpEc58 YpEc2 YpEc11 YpYeO9 YpEc1 YpEc56 YpEc56D

Y. pestis
Human isolates 28 28/28 28/28 28/28 28/28 28/28 28/28 28/28 28/28

Guinea pig 1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
not indicated 3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

Y. pseudotuber-
culosis Human isolates 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0/2

Y. frederiksenii Human isolates 1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
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The lytic activity of the same eight Y. pestis phages was also evaluated by EOP for
randomly selected Yersinia spp. strains from both NCDC and IRBA collections. It was
shown that the CL type of the lytic reaction corresponded to a high EOP (0.5–1.0), OL, and
SCl-to a medium EOP (0.1–0.5); and IP to a low EOP (0.001–0.1) (Tables S6 and S7).

After three rounds of screenings, two phages, YpYeO9 and YpEc11, were selected
for the next step, aiming for detailed studies of phages active against Y. pestis expressing
therapeutic potential. The selection was performed according to the following characteris-
tics: (i) different sources (samples) of isolation and primary host strains (species) (YpYeO9
was isolated on Y. enterocolitica serotype O:9 and YpEc11 was isolated on E. coli C) and (ii)
different profiles of lytic activity towards the Y. enterocolitica strains (phage YpEc11 showed
a broad lytic spectrum (lysed strains of all phage groups) while phage YpYeO9 showed
activity only against three phage groups).

3.3. Detailed Characterization of Selected Bacteriophages Active against Y. pestis
3.3.1. Whole Genome Sequencing of Phage Active to Y. pestis and Analysis

Phage YpYeO9 contains dsDNA and is 38,761 bp in length, CG content is 48.74%.
A total of 33,708 bp were identified as the gene coding region and in total, 41 ORFs
were predicted. Short (148 bp) direct terminal repeats were identified. Among 41 ORFs,
34 were functionally annotated. Genes with predicted functions were grouped as follows:
head and packaging module (9 predicted genes); tail morphogenesis module (4 predicted
genes); host cell lysis module (3 predicted genes) encompassing DNA and RNA metabolism
(11 predicted genes), 1 CDS was annotated as a head to tail connection, and 6 CDSs were
identified as auxiliary metabolic and host takeover genes (Figure 2). The phage genome
does not contain lysogeny control genes and no tRNAs were identified. Phage YpYeO9 was
identified as a T7-like phage and member of Teseptimavirus (Table S8).
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A blast similarity search revealed that YpYeO9 is highly similar to the phages YpP-R
and Enterobacter T7 (NC_001604.1). Studies of average nucleotide identity show that ANI
are 87% (YpP-R) and 88.5% (T7) which indicates that YpYeO9 belongs to a new species
(Figure 3).
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Figure 3. Intergenomic similarities heat map constructed by VIRIDIC showing the average nu-
cleotide identity between the following phages: YpYeO9, YpEc11 phage Berlin (NC_008694.1), Yepe2
(NC_011038.1), phiA1122 (AY247822.1), T7 (NC_001604.1), T3 (NC_047864.1), fPS-59 (NC_047935.1),
and YpP-R (JQ965701.1). Indeed, they are completely different to L-413C (NC_004745.1).

Phage YpEc11 contains dsDNA, is 39,896 bp in length, and the CG content is 45.95%.
A total of 35,604 bp were identified as gene coding region and a total of 44 ORFs were pre-
dicted. Among 44 ORFs, 30 were functionally annotated. Genes with predicted functions
were grouped as follows: head and packaging module (9 predicted genes); tail morphogen-
esis module (3 predicted genes); host cell lysis module (2 predicted genes) encompassing
DNA and RNA metabolism (11 predicted genes), 1 CDS was annotated as a head to tail
connection, and 4 CDSs were identified as auxiliary metabolic and host takeover genes
(Figure 4). The phage genome does not contain lysogeny control genes and no tRNAs were
identified. Phage YpEc11 is identified as a member of Helsettvirus (Table S9).
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Blast similarity search revealed that YpEc11 is highly similar to the phage fPS-59. A
study of the average nucleotide identity shows that ANI for those phages is 82.7% which
indicates that YpEc11 belongs to a new species (Figure 3).

A study of comparative genomics showed that Phages YpYeO9 and YpEc11 have a
similar genome organization as well as the following phages: phage Berlin, Yepe2, fPS-59,
phiA1122, T7, and T3 but are completely different to L-413C. The results were visualized
by easy fig software (Figure 5).

Comparative genomics results are fully compliant with the results of the viral pro-
teomic tree, constructed with VIP tree software (Figure 6).

3.3.2. Lysis Stability of Selected Bacteriophages Active against Y. pestis

The stability of phages active against Y. pestis in liquid culture, namely YpYeO9 and
YpEc11, was determined by the Appelmans method [58] using phage suspensions with
the initial titer of 2 × 109 PFU/mL. Both phages showed high lysis stability (Table 6). At
all phage–bacteria ratios, the clear lysis was registered during 24 h of incubation. After
48 h, both phages maintained the stabile lyses at all MOI’s and this was maintained for
up to one week in the case of phage YpEc11. The visible bacterial growth was detected in
reaction tubes with YpYeO9 phage–bacteria ratio 0.0001 but was still less than in control
tubes. The corresponding phage titer by Appelmans comprised 10−8 in 24 h and 10−7–10−8

in 48 h. The prolonged lysis stability maintained for up to one week is characteristic of
virulent phages.
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Table 6. Lysis stability of phages active against Y. pestis—YpEcO9 and YpEc11—in liquid culture on Y.
pestis EV76 (according to the method of Appelmans).

Lysis
Stability

Y. pestis
Phage

MOI of Y. pestis Phage and Y. pestis EV76 Y. pestis
EV761000 100 10 1 0.1 0.01 0.001 0.0001

24 h
YpYeO9 - - - - - - - - 0.5

MFTS *YpEc11 - - - - - - - -

48 h
YpYeO9 - - - - - - - 1 MFTS *

2 MFTS *YpEc11 - - - - - - - -

1 week
YpYeO9 - - - - - - - 2 MFTS *

3 MFTS *YpEc11 - - - - - - - -

* McFarland turbidity standard (MFTS). Regarding MFTS: 0.5 MFTS corresponds to 1.5 × 108 CFU/mL,
1 MFTS corresponds to 3 × 108 CFU/mL, 2 MFTS corresponds to 6 × 108 CFU/mL, and 3 MFTS corresponds to
9 × 108 CFU/mL. Average results of three parallel experiments are provided.

3.3.3. Viability of Phages in Different Solutions

The study of the viability and stability of phages is highly important to assess their
capabilities as infection control agents. The experimental investigations showed that titers
of phages YpYeO9 and YpEc11 in BHI broth, SM buffer, and PSB solution at 4 ◦C were stable
even after a 6-month period. The initial phage titer was decreased by 2–3 logs only after a
1-year period (Figure 7).
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Figure 7. The viability of phage active against Y. pestis in BHI broth, SM buffer, and PSB solution:
(a) phage YpYeO9 and (b) phage YpEc11. The results are the averages of three parallel experiments
with geometric SD shown as the vertical lines.

3.3.4. Frequency of Formation of Phage Resistant Mutants

Determination of the frequency of formation of phage-resistant mutants is an impor-
tant characteristic of phage activity that is usually linked with parameters of lysis stability
in liquid culture. The experiments involving phage YpYeO9 and YpEc11 were performed
on a solid medium according to the methodology of Chanishvili and Kapanadze (1967).
Both phages demonstrated a low frequency (1–2 × 10−6) of formation of phage-resistant
mutants. The obtained results in addition to the phage lysis stability data (Section 3.3.2)
indicate the virulent nature of studied phage.

3.3.5. The Phage One-Step Growth Cycle

The steps of phage–host interactions (adsorption, latent period, and burst size) for
phages YpEc11 and YpYeO9 were studied. The parameters of one step growth cycle (OSGC)
for both phages were determined on Y. pestis EV76 and on the primary hosts: E. coli
C (for the phage YpEc11 propagated on E. coli C and designated as YpEc11*E) and Y.
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enterocolitica O:9 (for the phage YpYeO9 propagated on Y. eneterocolitica O:9 and designated
as YpYeO9*Ye).

The experiments conducted on Y. pestis EV76 showed that for both phages, namely
YpEc11 and YpYeO9, the maximum adsorption time was 12 min with adsorption efficacies
of 74.5% and 68.1%, respectively. The latent period for YpEc11 was 90 min and 60 min for
phage YpYeO9. The burst size for the phage YpYeO9 was shown to be 85 PFU per infected
cell, which was higher in comparison with the burst size of phage YpEc11: 52 PFU per
infected cell (Figure 8).
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Figure 8. Phage–host interaction: (a) adsorption curve of YpEc11, YpYeO9, YpEc11*E, and YpYeO9*Ye
phage and (b) single-step growth curve of YpEc11 and YpYeO9 phage. The results are the mean
values of three independent tests. Standard deviations (SD) are indicated.

The adsorption parameters for phage YpEc11*E propagated on primary host E. coli C
and for the same phage propagated on Y. pestis EV76 strain (phage YpEc11) were shown
to be very similar regarding the adsorption time (12 min) and efficacy (70.3–74.5% for
YpEc11*E and YpEc11, respectively). The latent period for the YpEc11*E phage was shorter:
60 min and the burst size was bigger (72 PFU per infected cell) than for phages propagated
on Y. pestis EV76 cells.

The adsorption parameters for phage YpYeO9*Ye propagated on primary host Y.
enterocolitica O:9 serotype differed from the parameters for the same phage propagated on Y.
pestis EV76 strain (phage YpYeO9). In particular, the adsorption time for phage YpYeO9*Ye
was 8 min, with adsorption efficacy 87%. The latent period for YpYeO9*Ye phage was
shorter: 40 min and the burst size was bigger (92 PFU per infected cell) than for phages
propagated on Y. pestis EV76 cells.

3.4. Stability and Infectivity of Phages Active against Y. pestis in Different Environmental Conditions
3.4.1. Influence of Acidic and Alkaline Environment on Survival of Phage Active
against Y. pestis

The sensitivity of selected phages active against Y. pestis to various pH was studied
for 30 and 60 min exposure times (Figure 9).



Viruses 2023, 15, 1484 17 of 27

Viruses 2023, 15, x FOR PEER REVIEW 17 of 28 
 

 

3.4. Stability and Infectivity of Phages Active against Y. pestis in Different Environmental 
Conditions 
3.4.1. Influence of Acidic and Alkaline Environment on Survival of Phage Active against 
Y. pestis 

The sensitivity of selected phages active against Y. pestis to various pH was studied 
for 30 and 60 min exposure times (Figure 9). 

  
(a) (b) 

Figure 9. Survival of phage active against Y. pestis in acidic and alkaline environments during 
different exposure times: (a) 30 min exposure and (b) 60 min exposure. The results are the averages 
of three parallel experiments with geometric SD shown as the vertical lines. 

Both phages, YpYeO9 and YpEc11, showed their enhanced susceptibility to strong 
alkaline conditions (pH12) rather than to strong acidic conditions (pH2). Namely, at pH 
2 the titer of both phages was reduced by 2–3 log after 30-min and by 3–4 log after 60 
min exposure, respectively. In the strong alkaline conditions (at pH 12), the titer of 
phage YpYeO9 decreased by up to 6 log after 30 and 60 min exposure, while in the case 
of YpEc11 the viable phage count was reduced by 6.5 log in 30 min and was not detecta-
ble in 60 min. 

3.4.2. Influence of Temperature on Survival of Phage Active against Y. pestis 
The experiments on the thermal inactivation of phages active against Y. pestis were 

conducted by counting viable phages after 10 and 30 min exposure to the increasing 
temperature in the range from 28 °C to 60 °C (Figure 10). 

 

0

2

4

6

8

10

PH 2 PH 4 PH 7,4 PH 6 PH 8 PH 10 PH 12

YpYeO9 YpEc11

PF
U

/m
L

ex
pr

es
ed

 in
 lo

gs

0

2

4

6

8

10

PH 2 PH 4 PH 7,4 PH 6 PH 8 PH 10 PH 12

YpYeO9 YpEc11

PF
U

/m
lL

ex
pr

es
ed

 in
 lo

gs

  
(a) (b) 

 

0

2

4

6

8

10

28°C 37°C 45°C 50°C 60°C

YpYeO9 YpEc11

PF
U

/m
L

ex
pr

es
ed

 in
 lo

gs

0

2

4

6

8

10

28°C 37°C 45°C 50°C 60°C

YpYeO9 YpEc11

PF
U

/m
L 

ex
pr

es
ed

 in
 lo

gs

Figure 9. Survival of phage active against Y. pestis in acidic and alkaline environments during
different exposure times: (a) 30 min exposure and (b) 60 min exposure. The results are the averages
of three parallel experiments with geometric SD shown as the vertical lines.

Both phages, YpYeO9 and YpEc11, showed their enhanced susceptibility to strong
alkaline conditions (pH12) rather than to strong acidic conditions (pH2). Namely, at
pH 2 the titer of both phages was reduced by 2–3 log after 30-min and by 3–4 log after
60 min exposure, respectively. In the strong alkaline conditions (at pH 12), the titer of phage
YpYeO9 decreased by up to 6 log after 30 and 60 min exposure, while in the case of YpEc11
the viable phage count was reduced by 6.5 log in 30 min and was not detectable in 60 min.

3.4.2. Influence of Temperature on Survival of Phage Active against Y. pestis

The experiments on the thermal inactivation of phages active against Y. pestis were
conducted by counting viable phages after 10 and 30 min exposure to the increasing
temperature in the range from 28 ◦C to 60 ◦C (Figure 10).
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Figure 10. The survival of phage active against Y. pestis at different temperatures at (a) 10 min
exposure and (b) 30 min exposure. The results are the averages of three parallel experiments with
geometric SD shown as the vertical lines.

The optimal growth temperature for both phages YpYecO9 and YpEc11 was found to
be 28 ◦C. The same phage titer was maintained at 37 ◦C and 45 ◦C for 10 min, but prolonged
exposure time (30 min) led to 1 and 1.5 log reductions in phage counts, respectively. Both
10 and 30 min exposures at 50 ◦C resulted in an equal decrease (by 1.5 log) in viability for
the phage YpYeO9. As for phage YpEc11, the phage titer was decreased by 1.5 log in 10 min
and by 3 log in 30 min. Further increases in temperature (60 ◦C) during 10 min led to a
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reduction of viable counts of YpYeO9 and YpEc11 phages by 4–5.5 log, respectively, while a
30 min exposure decreased the number of viable phage particles below the detectable level.

3.4.3. Influence of High Ionic Strength on Survival of Phage Active against Y. pestis

The selected phage were tested for resistance to high ionic strength. It was shown
that the titers of YpYeO9 and YpEc11 phages were decreased by 2.6 logs and 3.0 logs,
respectively, after 30 min exposure to the 3.5 M NaCl solution (Table 7).

Table 7. Survival of Y. pestis phages YpYeO9 and YpEc11 in high ionic strength conditions and after
transfer in distilled water. The results are the averages of three parallel experiments.

Phage
Viable Phage Counts (PFU/mL)

Initial Suspension 30 min after Exposure to 3.5
M NaCl

After Rapid Transfer
to Distilled Water *

YpYeO9 1 × 10 7 8 × 10 3 8 × 10 3

YpEc11 2 × 10 7 5 × 10 4 5 × 10 4

* The titer calculated considering a 100-fold dilution of phages in distilled water (see Section 2.7).

In the next stage, after the addition of distilled water to the reaction tubes with a
3.5 M NaCl solution containing phages YpYeO9 and YpEc11, both phages maintained their
titer. Despite the rapid and sharp decrease in osmotic pressure, the viability of the studied
phages remained unaffected.

3.4.4. Influence of Disinfectant on the Survival of Phages Active against Y. pestis

The testing of selected phages YpYeO9 and YpEc11 for sensitivity to commonly used
disinfectant, namely sodium hypochlorite (NaOCl), showed a reduction of the phage
infectivity by 3.5 log in the case of YpYeO9 and by 5 log for the phage YpEc11 after 1 min of
exposure to the 1% solution of NaOCl (Figure 11).
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Figure 11. The survival of phage active against Y. pestis in 1% sodium hypochlorite solution. The
results are the averages of three parallel experiments with geometric SD shown as the vertical lines.

The 10 min exposure to the same disinfectant did not reduce the viability of YpYeO9
and YpEc11 phages more: their titer remained practically the same while treatment of
both phages during 30 min totally eliminated the viable phage particles. As for treatment
with a 5% solution of NaOCl, the total inactivation of both phages was observed almost
immediately, within 1 min (results not included in Figure 11).
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3.4.5. Antibacterial Efficacy of YpYeO9 and YpEc11 Phage in Liquid Culture

Experimental infections of Y. pestis EV 76 in liquid culture with phages YpYeO9 and
YpEc11 and a mixture of these phages at different phage/bacteria (P/B) ratios were carried
out. In the case of the P/B ratio of 100:1 (Figure 12a), a gradual reduction in bacterial
counts was observed during the first 4 h (2.5 log reduction for phage YpE11, 1 log for
phage YpYeO9, and 3.6 log for the YpYeO9/YpEc11 mixture) although a considerably sharp
decline of viable bacterial cells was demonstrated initially for the phage mixture. After
24 h of exposure, similarly as for individual phages and their mixture, all bacteria were
found to be destroyed (the number of viable particles was reduced by 5 log and was below
the detectable level). It should be noticed that the number of viable bacteria in the Y. pestis
EV76 control was reduced by >1 log after 4 h and maintained at this level for 24 h.
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Figure 12. Antibacterial efficacy of phage active against Y. pestis in liquid microcosm: (a) phage/bacteria
100:1 and (b) phage/bacteria 1000:1. The results are the averages of three parallel experiments with
geometric SD shown as the vertical lines.

A much higher antibacterial efficacy was shown in the case of a P/B ratio of 1000:1
(Figure 12b). Similarly, for both individual phage and their mixture up to 2.5 log, a reduction
in comparison with bacterial control was shown in 2 h. After 4 h, only a 3 log reduction
in bacterial counts was registered for individual phages, while for the phage mixture no
viable bacteria were detected. For individual phages, the total disappearance of bacteria
was observed after 24 h.

4. Discussion

The plague still causes outbreaks worldwide, mainly in Africa, but also in Asia and
South America. The majority of human plague cases reported in the last two decades oc-
curred in small towns and villages or agricultural areas [76]. The treatment and prevention
of the plague is still a challenge.

The goal of the presented study was to isolate and characterize new phages active
against Y. pestis in order to determine their potential for practical applications such as the
detection/identification and subtyping of Y. pestis strains, infection control, and therapeutics.

The initial steps for phage isolation from water and soil samples on the host strain Y.
pestis EV76 were not successful despite intensive sampling and isolation attempts. This
can be explained firstly because the vaccine strain Y. pestis EV76 was the only target strain
available for the work in the BSL2 labs for isolation and propagation of Y. pestis active
phages. Secondly, the reason could be the low circulation of Y. pestis bacterium in the
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environment of Georgia during the last two decades, which usually is reflected in a low
abundance of corresponding specific phages [3].

Considering these circumstances, we proceeded with an indirect way of obtaining
active phages for Y. pestis by targeting related Enterobacteriaceae species such as E. coli,
Shigella spp., Salmonella spp., and Y. enterocolitica. We started with screening existing phages
active against the above-mentioned species towards Y. pestis EV76. In total, 70 phages with
primary specificity to Enterobacteriaceae species were tested but none of them showed lytic
activity on Y. pestis EV76.

Another approach intended to isolate new phages from environmental samples by
using the newly isolated as well as standard strains of E. coli, Shigella spp., Salmonella spp.,
and Y. enterocolitica as host strains in enrichment experiments. As a result, 54 primary
phage isolates were obtained and the lytic activity towards Y. pestis EV76 was expressed
by 8 phages, 7 of which were primarily active against E. coli and 1 to Y. enterocolitica O:9.
These eight phages, after propagation and purification on the Y. pestis EV76 strain, were
studied for a number of phenotypic characteristics as well as for genetic properties.

The primary comparative characterization of new phages active against Y. pestis was
conducted based on phage plaque and nucleocapsid morphology as well as on lytic activity
against a set of strains of different Enterobacteriaceae genera. The obtained results showed
quite a low diversity among studied Y. pestis phages. All 8 phages have similar plaque
morphologies on the host strain Y. pestis EV76 with a clear center and narrow hollow zone,
but slightly different in size. The virion morphology of each of the eight studied phages
was consistent with the podoviridae morphotype of tailed bacteriophages [77]. Phages
active against Y. pestis with the same morphology were described in different scientific
papers [37,53]. The phage host range is a very important characteristic used for the selection
of candidate therapeutic bacteriophages. Eight isolated phages active against Y. pestis were
tested for antibacterial activity in vitro against two sets of Y. pestis strains: from collections
IRBA (Bretigny sur Orge, France) and NCDC (Tbilisi, Georgia), as well as a mixed set
of strains of E. coli, Shigella spp., and Salmonella spp. and a set of Y. enterocolitica strains
with different serotypes (collection of the Eliava Institute, Georgia). An extremely broad
host range and similarly practically identical lytic profile for all 8 Y. pestis phages was
shown towards Y. pestis isolates from strain collections of NCDC and IRBA. As for the
species specificity of our phages, all 8 phages did not show activity against Y. frederiksenii
(1 IRBA strain) while 1 strain of Y. pseudotuberculosis (out of 2 IRBA strains) appeared to
be sensitive towards the majority of phages. As a result of the limited number of strains
of the above-mentioned species, we cannot provide a statistically reliable analysis of the
obtained data. According to other studies [78], some Y. pestis phages can be strictly specific
to Y. pestis, while the host range of other phages included also Escherichia coli and Yersinia
pseudotuberculosis.

The determination of the phage host range is important not only for therapeutic
purposes but also for subtyping of bacterial isolates. Phage typing was widely used to
identify and distinguish different strains within a given species when isolated from various
sources (clinical sample, food, water, and environmental) or geographical locations [32–34].

A very broad spectrum of tested phage revealed in the screenings on Y. pestis strains
indicated the low potential of application of these phages for grouping of Y. pestis strains
by phage susceptibility profiles and for further development of a. phage-based subtyp-
ing set for Y. pestis. A different and more promising situation was shown in the case
of Y. enterocolitica isolates of different serotypes against which all eight phages active
against Y. pestis showed diversified action. This allowed dividing these strains into
eight phage groups.

At the same time, based on the extremely broad lytic spectrum of the new phages active
against Y. pestis, we can propose their high potential for application as an effective and
ecologically safe means for infection control, particularly for the cleaning/decontamination
procedures to be conducted in different systems. Phages active against Y. pestis with a high
antibacterial potential have also been described by other authors [79].
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The studied eight new phages did not reveal a diversified action in screenings against
a set of E. coli, Shigella spp., and Salmonella spp. strains. Namely, all tested phages appeared
to be active towards E. coli, S. sonnei, and S. flexneri strains, but only three out of eight
phages—YpEc57, YpEc56, and YpEc56D—demonstrated lytic activity towards Salmonella,
particularly S. enteritidis and S. typhimurium. A similar spectrum of lytic activity for Y.
pestis phages was previously described by other investigators [78,80,81]. Interestingly, the
host range for some Y. pestis phages was restricted to Y. pestis strains, while some others
included different members of Enterobacteriaceae such as E. coli, Salmonella spp., Shigella
spp., Y. enterocolitica, and Y. pseudotuberculosis.

Further experimental studies aimed at the detailed phenotypic and genetic charac-
terization of phages, including full genome sequencing, were performed on two phages:
YpYeO9 and YpEc11. These phages were selected based on different primary bacterial hosts
used for their isolation (E. coli and Y. enterocolitica) and also on different phage lytic profiles
demonstrated by these phages on the set of Y. enterocolitica strains.

A study of biological properties of the new phages active against Y. pestis, including
the initial steps of the host–phage interaction, frequency of formation of phage-resistant
mutants, and durability under different environmental conditions (pH, temperature, ionic
strength, disinfectant, and viability in different solutions) are important for the assessment
of their potential for practical application as antibacterial agents to be used for control
of infections caused primarily by Y. pestis. Reported lytic Yersinia phages are mostly
Podoviruses, as our new phages, although Myoviruses were also described, such as PST,
ΦJA1, PY100, JC221, and fD1 and a novel type of dwarf Myovirus fEV-1 [22,50,52,78].
Until now, the majority of existing Y. pestis phages are routinely used for the diagnosis of
plague. As for phage application as therapeutic agents for Y. pestis infection, a number of
experimental animal studies were conducted. Vagima et al. (2022) used a mouse model
for pneumonic plaque to assess the phage therapy potential using known phages ΦA1122
and PST [26]. Phage application significantly delayed mortality and limited bacterial
proliferation in the lungs but could not prevent bacteremia. To compensate for the certain
insufficiency in treatment, the combination of these phages with the antibiotic ceftriaxone
was used which led to the survival of all infected animals, thus demonstrating a synergistic
protective effect. For use of phages for the treatment of plague or any other serious bacterial
infection, besides some important phenotypic features (host range, lysis stability, etc.) they
need to be proven to be lytic and to be stable under different physical–chemical conditions.

For therapeutic applications, the knowledge of the genomic characteristics of candidate
phages is especially important to avoid carriage of certain genes encoding virulence factors,
integrases, etc. Genome sequencing showed that phage YpYeO9 contains dsDNA of
38,761 bp in length with GC content 48.74% and the phage YpEc11 also contains dsDNA of
a similar size (39,896 bp in length) and lower GC content of 45.95%. Genome sequencing
demonstrated that genomes of YpYeO9 and YpEc11 phages do not contain lysogeny control
genes and no genes encoding tRNAs, which indicates the lytic-only nature of both new
phages lysing Y. pestis strains. Phage YpYeO9 was identified as a T7-like phage, member
of Teseptimavirus genus of the order Caudovirales, in the family Autographiviridae, and in
the subfamily Studiervirinae. The phage YpEc11 was attributed to the Helsettvirus genus
of the same order and family. Both phages based on the Blast similarity search were
highly similar to phages YpP-R, Enterobacter T7 (NC_001604.1), and fPS-59, but nucleotide
identity showed that phages YpYeO9 and YpEc11 belong to a new viral species. A study of
comparative genomics showed that phages YpYeO9 and YpEc11 have genome organizations
similar to phages Berlin, Yepe2, phiA1122, T7, and T3, while they are completely different
from L-413C phage. This study also enabled the determination as to whether our phages
contained any genes that are considered “undesirable” for phage preparations to be used
for food safety, surface decontamination, and human clinical applications [37]. None of our
two fully sequenced phage contain genes encoding integrases and also genes responsible
for bacterial virulence factors.
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The lytic nature of YpEc11 and YpYeO9 phages is in agreement with their phenotypic
characteristics, such as the high lysis stability (up to 1 week) in liquid culture and low
frequency of formation of phage-resistant mutants (1–2 × 10−6). The one-step growth
cycle parameters for phages YpYeO9 and YpEc11 showed considerably short adsorption
times (12 min) and moderate to high adsorption efficacies (68.15–74.5%), followed by a
60–90 min latent period and sufficient burst size (85 PFU–52 PFU, respectively). These re-
sults are within the range of infection kinetics data, somewhere in the middle, obtained for
other phages lytic to the Enterobacteriaceae family. For example, the burst size of Podovoridae
phages of Enterobacteriacerae was reported to be as low as 12 PFU [82] and as high as
187 PFU/cell [83,84]. Phages with different morphotypes, for example T4-like phages
active against Y. pseudotuberculosis, have a latent period of 50–55 min and burst size
44–65 PFU [85].

Reviewing other phenotypic properties, which are considered important for practical
applications [86], we should mention the high stability of YpEc11 and YpYeO9 phages in
BHI broth, SM buffer, and PSB during a 6-month period, their viability under acidic and
moderately alkaline conditions, and their resistance to drastic changes in osmotic pressure.
In addition, moderate thermo-tolerance (up to 60 ◦C) of tested phages was shown as was
their considerable durability against acidic conditions (especially phage YpeYeO9), rather
than strong alkaline conditions.

We studied the sensitivity of Y. pestis phages to commonly used disinfectants in clinical
and laboratory practices such as bleach (sodium hypochlorite) which has strong sporocidal
and virucidal activities. The high susceptibility of YpEc11 and YpYeO9 phages to 1% and
5% concentrations of NaOCl was shown to be comparable with the inactivation rate of
Picornaviruses, non-enveloped small size icosahedral viruses [87,88]. Interestingly, the
host organism, Y. pestis, known as a non-spore-forming bacterium, is highly susceptible to
similar concentrations of sodium hypochlorite [89,90].

To assess the potential of YpYeO9 and YpEc11 phages and their mixture for efficient
biocontrol (rapid elimination) of Y. pestis infection in a water environment, the experi-
mental studies were performed in a liquid microcosm with Y. pestis EV76. We conducted
experiments in the semisynthetic M9 medium at 28 ◦C in the conditions that can ensure
the propagation of Y. pestis. By observation of other investigators [91,92], in a nutrient
restricted environment such as tap water and at low temperature Y. pestis can enter a viable
but non-culturable (VBNC) state, while its supply with sufficient nutrients supports not
only persistence but also propagation of Y. pestis in the water samples even at 4 ◦C. In
our experiments, we used an inoculum of Y. pestis of 105 CFU/mL (final concentration
in the microcosm) that can be comparable with natural microbial contamination levels
(103–106 CFU/mL) of surface waters [93,94] and also is in the same range used in the above-
mentioned studies on Y. pestis survival and propagation in water environments [91,92].
For the final outcome, the killing effect of phages the phage/bacteria (P/B) ratio as well
as the combined activity of two phages was found to be important. In the case of a P/B
ratio of 100:1, more gradual reductions in bacterial counts in the first 4 h were observed
for individual phages, but by 24 h the total clearance of bacteria was shown for YpYeO9
and YpEc11 phages and their mixture. Much higher antibacterial efficacy was registered
in experiments with the P/B ratio 1000:1 although there was a difference in time required
for a total reduction in the number of bacterial counts. A faster decrease in viable bacterial
counts was achieved by a mixture of phage (4 h) compared to individual phage (24 h).
Although in the conditions of high MOIs we cannot exclude the possibility of lysis without
(LO), considering the lysis development in 4 h (for phage mixture) and 24 h (for individual
phages) it would be challenging to classify this as rapid premature lysis that is one of the
main attributes of the LO [95]. It should be mentioned that efficient phage-based removal
of enteric bacteria in liquid systems and from solid surfaces at high MOI was demonstrated
by Turki et al., 2012, and Abuladze et al., 2008 [30,96]. The MOI of 100:1 and 1000:1 was
also shown to be effective in our previous studies on the application of phages in water
microcosms and glass surfaces contaminated with S. aureus and P. aerugionosa [97].
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The results presented and discussed above describe the phenotypic characteristics
as well as genomic parameters of two new phages with podoviral morphotypes, namely
YpYeO9 and YpEc11, which were initially isolated on E. coli and Y. enterocolitica and sub-
sequently propagated on Y. pestis EV76. Based on genome analysis, these two phages
were shown to be a new species within the family Autographiviridae. The YpYeO9 and
YpEc11 phages demonstrated a broad lytic spectrum and wide range of Y. pestis strains and
still showed activity to strains of some other Enterobacteriaceae species. These properties
in conjunction with the peculiarities of phage–host interactions, viability under different
physical–chemical factors, and strong antibacterial activity in liquid culture indicate the
potential of YpYeO9 and YpEc11 phages for their practical use as antibacterial agents and
means for reduction or elimination of highly pathogenic bacteria such as Y. pestis from
contaminated environments.
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