
MDPI Viruses, to be submitted (2023)

Supporting Information

Adeno-associated virus-like particles’ response to pH changes as
revealed by nES-DMA

Samuele Zoratto1, Thomas Heuser2, Gernot Friedbacher1, Robert Pletzenauer3, Michael

Graninger3, Martina Marchetti-Deschmann1, Victor U. Weiss1

1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria

2 Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, Vienna, Austria

3 Pharmaceutical Sciences, Baxalta Innovations GmbH (part of Takeda), Vienna, Austria

Keywords: nES GEMMA, DMA, VLP, AAV8, cryo-TEM, gene therapy.

Correspondence: Victor Weiss, Institute of Chemical Technologies and Analytics, TU Wien,

Getreidemarkt 9/164, A-1060 Vienna, Austria

E-mail: victor.weiss@tuwien.ac.at

Tel: +43 1 58801 151611

Figure S1

AFM analysis of filled VLPs at pH 5 and relative longitudinal and medial profile section of the

cluster (left panel) and one monomeric unit of AAV8 (right panel). Left panel: the profile

sections highlight the underlining globular nature of the individual particles forming the cluster.

Figure S2

nES GEMMA reversibility experiment of filled VLP preparation. From left to right: in the first

panel the VLP preparation has been analyzed at pH 7. In the middle panel, the aliquot was

spiked with 1 µL of acetic acid, changing the pH to ~3.6; substantial loss of particle detection

is noticeable. In the last panel, 2 µL of ammonium hydroxide are added to the aliquot, changing

the pH to ~8.6 and reestablishing the detection of monomeric VLP particles.

Python script:

The following script was employed to extract planar section from the cryo-TEM 2D averaged

images.

#!/bin/python3

#Python script created by Samuele Zoratto

#contact: samuele.zoratto@tuwien.ac.at

#import of necessary libraries

import numpy as np

import sys

import os

from PIL import Image

import PIL.ImageOps

import csv

import matplotlib.pyplot as plt

from datetime import datetime

#clean the shell

os.system("cls||clear")

#reads filename of the 2D image to convert to 3D and section

try :

 #check if the file is present from the command line

 image_2D = str(sys.argv[1])

 #check if the filename correspond to an existing file

 if os.path.exists(image_2D):

 print("File: "+image_2D+" found")

 else:

 print(">> Error: File not found! <<\n\nCheck:\n1- Spelling\n2- Absence of blank

characters\n3- If the file is in the same directory of this script!\n\nThe program will terminate")

 #terminate the script

 sys.exit(1)

except IndexError :

 #if the file was not provided, it asks for it

 print("No image filename provided in the command line. \nIn the future you can use the

following format:\n \n>> python 3D_section_from_2D_image.py [image name] [section

number: 0-255] \n \nEnter the filename to use: ", end = "")

 image_2D = input()

 print("\nFilename entered: "+image_2D)

 #check if the filename correspond to an existing file

 if os.path.exists(image_2D):

 print("File "+image_2D+" found! The program will continue\n\n")

 else:

 print(">> Error: File not found! <<\n\nCheck:\n1- Spelling\n2- Absence of blank

characters\n3- If the file is in the same directory of this script!\n\nThe program will terminate")

 #terminate the script

 sys.exit(1)

#reads the section number

try :

 #check if the number has been declared in the command line, if it is valid, and in range

 section_number = str(sys.argv[2])

 if section_number.isnumeric() and -1 < int(section_number) < 256:

 print("Section number in the correct range [0-255]: "+section_number)

 else:

 print(">> Error: Section number not valid! <<\n\nCheck:\n1- Spelling\n2- Number in

range [0-255]\n\nThe program will terminate")

 sys.exit(1)

except IndexError :

 #if the section number was not provided, it asks for it

 print("No section number provided in the command line. \nIn the future you can use the

following format:\n \n>> python 3D_section_from_2D_image.py [image name] [section

number: 0-255] \n \nEnter the section number to use [0-255]: ", end = "")

 try :

 section_number = input()

 print("\nSection number entered: "+section_number)

 if -1 < int(section_number) < 256 :

 print("Section number accepted")

 else :

 while True :

 print("The section number entered is not valid. Please insert a valid section number

[0-255]: ", end = "")

 section_number = input()

 print("\nSection number entered: "+section_number)

 if -1 < int(section_number) < 256 :

 print("Section number accepted")

 break

 except ValueError :

 print("\n\n>> ERROR <<\nA non-numeric value has been entered. The program will

terminate")

 sys.exit(1)

#generate the filename for the csv file

now = datetime.now()

datestring = now.strftime("%b-%d-%Y_%H%M%S")

#the filename generated will be in this format: Export_image.jpg_section123_May-30-

2022_125500.csv with current date and time

filename = str("Export_" + image_2D + "_section"+section_number+"_"+datestring+".csv")

try :

 file = open(filename,"w",newline="")

 writer = csv.writer(file)

 print("\nCSV file created: "+ filename)

except :

 print("\n\n>> ERROR <<\Impossible to create a file in the directory. Check disk space or

writing permissions.\nThe program will terminate")

 sys.exit(1)

#function to write the exported section in the csv file

def printArrayValuesInCSV(tobeprinted):

 for x in range(len(tobeprinted)):

 writer.writerow(tobeprinted[x])

#function to create a list of scattered points from an array

def createScatteredPoints(dataArray):

 dataList = []

 for x in range(len(dataArray)):

 for y in range(len(dataArray[0])):

 if dataArray[x,y] == True:

 dataList.append([x,y])

 return dataList

#open the 2D image, convert to grayscale, and invert the colors (black = 0 = baseline; white =

255 = highest elevation)

img = PIL.ImageOps.invert(Image.open(image_2D).convert("L")) #L converts to grayscale

#the image is converted in a numpy array, each pixel is converted in a value from 0 to 255

array = np.array(img)

#arrayBool will contain a True value, if the value of the numpy array in position [x,y] equals

the section number. In other words, for a given section number (heigth) only those value will

be selected.

arrayBool = array == int(section_number)

#conversion of the arrayBool in a list containing the data points (in x and y values) of the

selected section

newlist = createScatteredPoints(arrayBool)

#variables for the plot

x,y = zip(*newlist)

#writing of the array values in the csv file

printArrayValuesInCSV(newlist)

print("Section correctly exported into the csv file")

#close csv file

file.close()

#visualization of the plot

plt.scatter(x,y)

plt.title("Section n°" + str(section_number) + " of "+ str(image_2D))

plt.axis("equal")

print("\nTo terminate the program, close the plot window")

plt.show()

