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Abstract: Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in various types of tumors
and functions as an oncogene; it could also be a potential target in tumor therapy. Meanwhile, the
high mortality of pancreatic adenocarcinoma (PAAD) largely depends on the limited effectiveness of
therapy. Based on the promising potential of PTTG1 in cancer treatment, we explored the influence
of PTTG1 on the treatment of PAAD in this study. The Cancer Genome Atlas Program (TCGA)
data showed that higher expression of PTTG1 was associated with higher clinical stages and worse
prognosis of pancreatic cancer. In addition, the CCK-8 assay showed that the IC50 of gemcitabine and
5-fluorouracil (5-FU) was increased in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells. The TIDE
algorithm indicated that the immune checkpoint blockades’ (ICBs) efficiency is poor in the PTTG1
high group. Furthermore, we found that the efficiency of OAd5 was enhanced in BxPC-3-PTTG1high

and MIA PaCa-2-PTTG1high cells and poor in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells.
We used the OAd5 expressing GFP for transduction. As a result, the fluorescence intensity was
enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and decreased in BxPC-3-PTTG1low

and MIA PaCa-2-PTTG1low cells 24 h after OAd5 transduction. The fluorescence intensity indicated
that PTTG1 increased OAd5 entry. The flow cytometry assay showed that OAd5 receptor CXADR
expression was enhanced by PTTG1. PTTG1 failed to further enhance OAd5 transduction in the case
of CXADR knockdown. In summary, PTTG1 enhanced OAd5 transduction into pancreatic cancer
cells by increasing CXADR expression on the cell surface.

Keywords: PTTG1; pancreatic adenocarcinoma; oncolytic adenovirus; CXADR

1. Introduction

Pituitary tumor-transforming gene 1 (PTTG1) regulates sister chromatid separation
during mitosis [1]. It also involves several cellular processes, such as DNA damage repair,
apoptosis, and metabolism [2]. Furthermore, PTTG1 is overexpressed and oncogenic in
many kinds of tumors, such as prostate, breast, liver, lung, and seminoma [3–7]. PTTG1
promotes tumor cell proliferation, invasiveness, epithelial–mesenchymal transition, and an-
giogenesis [8–10]. Given the critical tumor-promoting role of PTTG1 in tumor progression,
it is necessary to comprehensively understand its potential in therapy.

Pancreatic adenocarcinoma (PAAD) has exceptionally high mortality, with a median
survival time of six–nine months and a five-year survival rate of less than 10% due to
late diagnosis and limited effectiveness of treatment strategies [11,12]. Chemotherapy
is mainly used in locally advanced and in most borderline resectable tumors. However,
chemotherapy may induce tumor downstaging for some patients and convert unresectable
to resectable disease. Presently, the acceptable first-line therapies for pancreatic cancer are
5-fluorouracil [5-FU]-based FOLFIRONOX and gemcitabine plus albumin-bound paclitaxel.
However, due to chemoresistance, a significant proportion of patients with pancreatic
cancer present a poor prognosis [13].
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The term ‘immune checkpoint’ refers to molecules expressed on the surface of immune
cells that can be used to regulate cellular immune responses [14]. Tumor cells cause the
exhaustion and functional inhibition of anti-tumor immune cells through immune check-
points, thereby avoiding the killing effect of immune responses and achieving immune
escape. The basic principle of immune checkpoint blockades (ICBs) is to ease the inhibition
of immune checkpoints on immune cells and utilize the endogenous anti-tumor response
of the immune system to fight against diseases [14]. The frequently studied immune check-
points are cytotoxic T lymphocyte protein 4 (CTLA-4), programmed death 1 (PD-1), and
programmed death ligand 1 (PD-L1). CTLA-4 binding with ligands inhibits the activation of
T lymphocytes, so blocking CTLA-4 could increase T cell activation. PD-1 is expressed on T
and NK lymphocytes. PD-L1 is its primary ligand and can be produced by various cells such
as tumor cells, neutrophils, and macrophages. PD-1 binds to PD-L1, and PD-1 transmits
inhibitory signals within immune cells. Therefore, blocking PD-1/PD-L1 binding can en-
hance T cell activation and tumor immune response [15]. Immune checkpoint molecules are
critical modulators of initiating and terminating antitumor immune response [16]. Immune
checkpoint blockades have been proven successful in multiple cancers [17]. However, ICBs
using anti-CTLA-4 (NCT01473940, NCT02527434, NCT02558894, NCT02879318) and anti-
PD-1/PD-L1 (NCT01876511, NCT03214250, NCT02866383, NCT02323191, NCT03637491)
in clinical trials did not show efficacy in pancreatic cancer due to the immunosuppressive
tumor microenvironment of PAAD and multiple factors inducing resistance [18–20].

Therefore, alternative therapies for PAAD are much needed to increase clinical ben-
efits. Oncolytic viruses target and destroy cancer cells while minimizing the toxicity to
normal cells. Currently, tumor immunotherapies have attracted increasing attention in the
treatment of advanced cancer. Among them, oncolytic viruses have attracted extensive
attention because of their high oncolytic effect and low drug resistance rate. Oncolytic
viruses are natural or engineered viruses that can specifically recognize and infect tumor
cells and selectively reproduce in tumor cells, thus directly inducing the lysis of malignant
cells, but not damaging normal cells [21]. After killing tumor cells, oncolytic viruses release
offspring ones, which infect nearby tumor cells again and repeat this process, thereby
killing a larger range of tumor cells [22]. Adenovirus is a common pathogen that can infect
multiple organs in the human body, but the clinical symptoms are quite mild [23]. Virus
DNA replication and capsid assembly take place in the nucleus, and the infected cells
split to release virus progeny. In addition, lysed tumor cells can also release new tumor
antigens, viral pathogen-associated molecular patterns (PAMP), and damage associated
molecular patterns to promote anti-tumor immune responses. Since adenoviruses can
infect a large number of epithelial cells, they are preferably used to construct oncolytic
viruses [24]. Oncolytic adenoviruses, especially oncolytic Ad serotype 5 (OAd5), are emerg-
ing choices for cancer treatments [25]. Adenoviruses are small non-enveloped viruses with a
30–38 kb linear double-stranded genome encapsidated in an icosahedral capsid [26]. OAd5
infects cells via the binding of viral fiber to the coxsackie virus and adenovirus receptor
(CXADR) on the epithelial cell surface. These OAd5 have proven promising efficacy and
tumor-selectivity in preclinical pancreatic cancer research.

However, for cancer cells that poorly express CXADR, the oncolysis efficiency of OAd5
is also very low. Therefore, understanding the chemotherapy, immunotherapy, and OV
resistance mechanism is significant for exploring innovative therapy alternatives.

This study found that PTTG1 expression was increased in pancreatic cancer tumor
tissues and was associated with poor prognosis. The half maximal inhibitory concentration
(IC50) of gemcitabine and 5-fluorouracil (5-FU) was raised in PTTG1-overexpressed pancre-
atic cells. The TIDE algorithm indicated that the ICBs’ efficiency is poor in the high PTTG1
group. The efficiency of OAd5 was enhanced in PTTG1-overexpressed pancreatic cells.
PTTG1 increased OAd5 entrance, but not replication, in cells. In addition, the expression of
OAd5 receptor CXADR was enhanced in PTTG1-overexpressed pancreatic cells. PTTG1
failed to further enhance OAd5 transduction in the case of CXADR knockdown. To our
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knowledge, this is the first study showing that PTTG1 enhanced OAd5 transduction into
cancer cells, and it has crucial implications for optimized OAd5 therapy.

2. Materials and Methods
2.1. Data Collection and Analysis of PTTG1 Expression

PTTG1 expression profiles and clinical information of pancreatic cancer are from the
Cancer Genome Atlas Program (TCGA) database (https://portal.gdc.com). For PTTG1
expression analysis in tumor and normal tissues, we used GEPIA 2.0 (http://gepia2.cancer-
pku.cn/#index) to analyze 179 tumor tissues and 171 normal tissues.

We used the ACLBI database (https://www.aclbi.com/static/index.html#/) to ana-
lyze the relationship between PTTG1 and WHO stages and survival. For PTTG1 expression
analysis in different WHO stages, we selected a total of 179 patients with completed stage
information. Statistical analysis and ggplot2 (v3.3.2) were completed using R program
v4.0.3; p < 0.05 was considered statistically significant. There was a distribution of clinical
characteristics in the samples from different groups. The abscissa represents samples from
different groups, and the ordinate represents the percentage of clinical sample information
in corresponding groups; different colors represent different clinical information. The
figure below represents the distribution of a clinical feature between two arbitrary groups,
and the significance p value was analyzed via chi-square test, where the value is displayed
as −log10 (p value). Marked with * indicates a significant difference in the distribution of
the clinical features between the two groups (p < 0.05).

According to the ACLBI database, 179 patients with overall survival, disease-specific
survival, and progression-free interval information were selected, respectively. Kaplan–
Meier survival analysis of the gene signature from the TCGA dataset and comparison
among different groups was made using log-rank test. For Kaplan–Meier curves, p-values
and hazard ratios (HRs) with 95% confidence interval (CI) were generated using log-rank
tests and univariate Cox proportional hazards regression. All the analysis methods and
R packages were implemented with R (foundation for statistical computing 2020) version
4.0.3. All patients were divided into two groups according to PTTG1 expression media. HR
represents the hazard ratio of the low-expression sample relative to the high-expression
sample. p value < 0.05 was considered statistically significant.

2.2. Immune Checkpoints’ Blockade Response

We used the ACLBI database (https://www.aclbi.com/static/index.html#/) to ana-
lyze the immune checkpoints’ blockade response. RNA-sequencing expression (level 3)
profiles and corresponding clinical information for pancreatic cancer were downloaded
from the TCGA dataset. Potential ICB responses were predicted with TIDE algorithm.
TIDE uses a set of gene expression markers to evaluate two different mechanisms of tu-
mor immune escape, including dysfunction of tumor-infiltrating cytotoxic T lymphocytes
(CTLs) and rejection of CTLs by immunosuppressive factors. TIDE score is high, ICBs have
poor efficacy, and survival after receiving ICB treatment is short.

2.3. Cell Culture

The PAAD cell BxPC-3 was cultured in RPMI-1640 Medium (Gibco) supplemented
with 10% fetal bovine serum (FBS; BIOSUN) and 100 U/mL penicillin/streptomycin (Hy-
clone). The pancreatic carcinoma cell MIA PaCa-2 was cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM, Gibco) supplemented with 10% FBS, 2.5% horse serum, and
100 U/mL penicillin/streptomycin. The cells were cultured in 37 ◦C and 5% CO2 incuba-
tors.

2.4. Stable Cell Line Construction

Total RNA was extracted from BxPC-3 cells, then was reverse transcribed into
cDNA. The cDNA was used as a template for PCR amplification to obtain the coding
region of PTTG1. The primers used for PCR reactions are as follows: forward primer,

https://portal.gdc.com
http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://www.aclbi.com/static/index.html#/
https://www.aclbi.com/static/index.html#/
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5′-CTAGCTAGCatggctactctgatctatgttgat-3′; reverse primer, 5′-CGCGGATCCttaaatat
ctatgtcacagcaaacag-3′. The capital letters CTA at the start of forward primer and the
capital letters CGC at the start of reverse primer are the addition of terminal bases to reduce
asymmetric cleavage. The NheI-HF restriction sites are underlined in forward primer,
the BamHI-HF restriction sites are underlined in reverse primer. The lower case letters
are sequences that bind to the coding region of PTTG1. The amplified coding regions
were inserted into the pJET1.2/blunt vector (ThermoFisher Scientific, Waltham, MA, USA),
obtaining the pJET1.2-PTTG1 vectors. Then, the PTTG1 coding region was transferred
from the pJET1.2-PTTG1 to the plasmid pCMV-IRES-Neo/KanR using the Restriction
Enzyme Digestion and Ligation protocol. NheI-HF and BamHI-HF were used for digesting
JET1.2-PTTG1 vector, and T4 ligase was used for ligating PTTG1 coding regions into pCMV-
IRES-Neo/KanR vector. Then, we obtained the PTTG1 overexpression plasmids. For
constructing BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells, the PTTG1 overexpres-
sion plasmids were transfected into BxPC-3 and MIA PaCa-2 cells using LipofectamineTM
3000 (Life Technologies Corp, Carlsbad, CA, USA).

For constructing BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells, the guide RNA
(gRNA) for knocking PTTG1 using CRISPR/Cas9 was designed based on the genome GRCH38
(hg38, Homo sapiens) on the website https://www.benchling.com/crispr/. The gRNA tar-
gets the exon 1 of PTTG1, and its sequence was 5′-CCCATCCTTAGCAACCACAC-3′. The
CRISPR/Cas9 backbone was a gift from Feng Zhang through Addgene. The gRNA was
inserted in to the CRISPR/Cas9 backbone using BbsI-HF (NEB); the process was according
to a previous report [27]. The CRISPR/Cas9 vector was transfected into BxPC-3 and MIA
PaCa-2 cells.

Transfected cells were selected using 600µg /mL G418 (Life Technologies Corp, Hong
Kong, China) for BxPC-3-PTTG1high and BxPC-3-PTTG1low cells, and 500µg /mL G418 for
MIA PaCa-2-PTTG1high and MIA PaCa-2-PTTG1low cells. The G418 selection lasted for two
weeks, and the single-cell clones were amplified and verified using Western Blot Analysis
and flow cytometry assay. The stable cells were maintained in 250µg /mL G418.

2.5. Western Blot Analysis

For the detection of PTTG1 expression in BxPC-3 and MIA PaCa-2 cells, we prepared
BxPC-3-PTTG1high, MIA PaCa-2-PTTG1high, BxPC-3-PTTG1low, and MIA PaCa-2-PTTG1low

cells. Whole-cell lysates were prepared using RIPA buffer (Thermofisher Scientific), and
100 µg of total protein was run in 10% SDS-polyacrylamide gel and transferred onto
polyvinylidene fluoride (PVDF) membrane (Invitrogen, Waltham, MA, USA). The mem-
brane was blocked using 5% milk/Tris-buffered saline plus Tween 20 (TBST), followed by
incubation with the primary antibody against PTTG1 (Thermofisher Scientific). After wash-
ing with the TBST, the membrane was incubated with HRP-conjugated mouse anti-human
IgG secondary antibody conjugated to horseradish peroxidase. α-tubulin was used as the
internal control.

2.6. CCK-8 Assay

Cell viability was assessed using CCK-8 assay (Sigma-Aldrich, St. Louis, MO, USA),
and it was conducted following manuscripts’ instruction. For the detection of IC50 of
gemcitabine and 5-FU, BxPC-3-PTTG1high, MIA PaCa-2-PTTG1high, BxPC-3-PTTG1low, and
MIA PaCa-2-PTTG1low cells in 24-well plates were incubated with various concentrations
(0, 0.5, 1, 2, 5, 10, 20 nM) of gemcitabine and 5-FU for 72 h and then further incubated with
CCK-8 for 4 h.

E1B55K- and E3B-deleted OAd5 were purchased from the GeneChem company
(Shanghai, China). For the detection of cell viability after OAd5 transduction, BxPC-3-
PTTG1high, MIA PaCa-2-PTTG1high, BxPC-3-PTTG1low, and MIA PaCa-2-PTTG1low cells in
96-well plates were transduced with OAd5 in 10 vp/cell. Before CCK-8 assay, thaw the
CCK-8 in a water bath at 37 ◦C. Afterwards, add 10 µL of the CCK-8 reagent to each well of
the plate at 0, 24, 48, and 72 h after transduction. Incubate the plate for 2 h in the incubator.

https://www.benchling.com/crispr/


Viruses 2023, 15, 1153 5 of 17

CCK-8 assay was performed at an absorbance of 450 nm with a microplate reader (Tecan,
Männedorf, Switzerland). All experiments were performed three times.

2.7. Fluorescence Visualization and Quantification

24 h post OAd5 transduction, the visualization images were taken at GFP channel
using a Zeiss microscope (Axio Observer 7). 0, 24, 48, and 72 h after transduction, the
fluorescence intensity was measured using a Synergy2 Multi-Mode Microplate Reader
(BioTek, Hong Kong, China).

2.8. Flow Cytometry Assay

After transduction with OAd5, the fluorescence was monitored in FITC channel with
a flow cytometry assay (BD FACSCelesta). BxPC-3-PTTG1high, MIA PaCa-2-PTTG1high,
BxPC-3-PTTG1low, and MIA PaCa-2-PTTG1low cells were stained with FITC rabbit anti-
human CXADR (clone no. 271, Invitrogen) for 1 h at room temperature. After washing
with PBS 3 times, the expressions were measured with a flow cytometry assay.

2.9. Data Collection and Analysis of CXADR Expression

CXADR expression profiles and clinical information are from the TCGA pancreatic
cancer database. For CXADR expression analysis in tumor and normal tissues, we used
GEPIA 2.0 to analyze 179 tumor tissues and 171 normal tissues. We used the GEPIA
2.0 website to analyze the Spearman correlation between PTTG1 and CXADR mRNA
expressions based on TCGA Tumor, TCGA Normal, and GTEx databases.

According to the ACLBI database (https://www.aclbi.com/static/index.html#/),
179 patients with overall survival and disease-specific survival were selected for Kaplan–
Meier survival analysis. All patients were divided into two groups according to CX-
ADR expression media. All the analysis methods and R packages were implemented
using R (foundation for statistical computing 2020) version 4.0.3. p < 0.05 was considered
statistically significant.

2.10. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). Student’s t-test (two-tailed)
was used to analyze differences between two groups using R software (version: 3.6.2).
Nonparametric test was used to analyze differences between two groups whose data did
not conform to the normal distribution. Spearman’s rank correlation coefficient was used to
analyze the correlation between two factors. p < 0.05 was considered statistically significant:
* p < 0.05, ** p < 0.01, and *** p < 0.001. All data participating in statistical analysis, n ≥ 3.

3. Results
3.1. High PTTG1 Expression Correlates with High Clinical Stage and Poor Pancreatic Cancer Prognosis

We first assessed PTTG1 expression in pancreatic cancer from the TCGA database.
The analysis revealed that PTTG1 expression was higher in pancreatic cancer tumor tissues
than in normal ones (Figure 1A). Furthermore, the expression of PTTG1 was closely related
to the clinical stage, being higher in pancreatic cancer patients with relatively high stages
(Figure 1B). To evaluate the value of PTTG1 in predicting the prognosis of pancreatic cancer
patients, we analyzed the association between its expression and overall survival (OS),
disease-free survival (DFS), progression-free survival (PFS), and disease-specific survival
(DSS) in the TCGA cohort. Higher expression of PTTG1 was significantly associated with
shorter OS (Figure 1C) and DSS (Figure 1D) in pancreatic cancer. In addition, higher
expression of PTTG1 was also significantly associated with a reduction in PFS (Figure 1E)
in pancreatic cancer. The analysis indicates that PTTG1 is involved in disease progression
in pancreatic cancer.

https://www.aclbi.com/static/index.html#/
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Figure 1. The correlation between PTTG1 and Pancreatic Cancer Prognosis. (A) PTTG1 expres-
sion analysis in PAADa from TCGA database using GEPIA 2.0. 179 cases of pancreatic cancer
tumor tissues and 171 cases of normal pancreas tissues were used. (B) The association between
PTTG1 expression and the clinical stage was analyzed in the TCGA cohort. The association between
(C) PTTG1 expression and overall survival, (D) PTTG1 expression and disease-specific survival, and
(E) PTTG1 expression and progression-free survival were analyzed in the TCGA cohort. Hazard ratio
(HR) > 1 indicates the gene is a risk factor. HR (95% Cl), the median survival time (LT50) for different
groups. *: p < 0.05.

3.2. Increased PTTG1 Expression Correlates with Chemotherapy and Immunotherapy Resistance

Chemotherapy is among the primary therapies for pancreatic cancer, and gemcitabine
and 5-fluorouracil (5-FU) are the primary chemotherapy medicines. To further explore
the influence of PTTG1 on chemotherapy, we assessed the IC50 of gemcitabine and 5-
FU in PTTG1 overexpression and knockdown cells. First, we overexpressed PTTG1 in
BxPC-3 and MIA PaCa-2 cells (Figure 2A). The IC50 of gemcitabine (Figure 2B) and
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5-fluorouracil (5-FU) (Figure 2C) increased in PTTG1-overexpressed BxPC-3 (BxPC-3-
PTTG1high) and MIA PaCa-2 (MIA PaCa-2-PTTG1high) cells. Then, we knocked PTTG1
in BxPC-3 and MIA PaCa-2 cells (Figure 2D). Correspondingly, the IC50 of gemcitabine
(Figure 2E) and 5-fluorouracil (5-FU) (Figure 2F) decreased in PTTG1 knockdown BxPC-3
(BxPC-3-PTTG1low) and MIA PaCa-2 (MIA PaCa-2-PTTG1low) cells. Furthermore, we pre-
dicted potential ICB response with the TIDE algorithm in pancreatic cancer, finding that
the ICBs’ efficiency is poor in the PTTG1 high group (Figure 2G). The results indicate that
chemotherapy and ICBs are not suitable remedies in pancreatic cancer patients with high
PTTG1 expression, and we should explore alternatives for treating PAAD.
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(C) 5-fluorouracil (5-FU) in PTTG1-overexpressed BxPC-3 (BxPC-3-PTTG1high) and MIA PaCa-2
(MIA PaCa-2-PTTG1high) cells. (D) Knocked down PTTG1 in BxPC-3 and MIA PaCa-2 cells using
CRISPR/Cas9. The IC50 of (E) gemcitabine and (F) 5-fluorouracil (5-FU) in PTTG1 knockdown
BxPC-3 (BxPC-3-PTTG1low) and MIA PaCa-2 (MIA PaCa-2-PTTG1low) cells. Cell viability was
measured using CCK-8 assay. All IC50 experiments were conducted in triplicate. (G) The ICB
response with TIDE algorithm in PTTG1high and PTTG1low groups of pancreatic cancer. NC: parental
cells without treatment. Mock: cells transfected with pCMV-IRES-Neo/KanR backbone vectors.
PTTG1high: cells overexpressing PTTG1. Null: cells transfected with CRISPR/Cas9 backbone vectors.
PTTG1low: cells knocking PTTG1. **: p < 0.01.
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3.3. PTTG1 Enhanced Oncolytic Adenovirus Efficiency in Pancreatic Cancer Cells

Due to the potential of oncolytic viruses in cancer treatment, we tried to further explore
the impact of PTTG1 on the efficiency of OAd5 in killing pancreatic cancer cells. We first
constructed BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells stably overexpressing
human PTTG1, with their negative control cells (Mock) stably carrying the backbone vector.
We transduced BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells with the OAd5 in
10 vp/cell, then detected cell viability using a CCK-8 assay within 3 days post-transduction.
Interestingly, we found that BxPC-3-PTTG1high (Figure 3A) and MIA PaCa-2-PTTG1high

(Figure 3B) cell viability were increased compared with the relative Mock cells. No-
tably, the viability in BxPC-3-PTTG1high (PTTG1high-OAd5) and MIA PaCa-2-PTTG1high

(PTTG1high-OAd5) cells was significantly decreased compared with the relative Mock cells
(Mock-OAd5), indicating that the efficiency of OAd5 was enhanced by PTTG1 overexpres-
sion in BxPC-3 and MIA PaCa-2 cells.
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Figure 3. Influence of PTTG1 on OAd5 efficiency on pancreatic cancer cells. (A) BxPC-3-PTTG1high,
(B) MIA PaCa-2-PTTG1high, (C) BxPC-3-PTTG1low, and (D) MIA PaCa-2-PTTG1low cells were trans-
duced with OAd5, cell viability was monitored using CCK-8 assay 0-, 24-, 48- and 72-h post-
transduction. Mock: cells transfected with pCMV-IRES-Neo/KanR backbone vectors. PTTG1high:
cells-overexpressing PTTG1. Mock-OAd5: cells carrying pCMV-IRES-Neo/KanR backbone were
transduced with OAd5. PTTG1high-OAd5: cells overexpressing PTTG1 were transduced with OAd5.
Null: cells transfected with CRISPR/Cas9 backbone vectors. PTTG1low: cells knocking PTTG1.
Null -OAd5: cells carrying CRISPR/Cas9 backbone were transduced with OAd5. PTTG1low-OAd5:
cells knocking PTTG1 were transduced with OAd5. All experiments were conducted in triplicate.
Nonparametric test was used to analyze differences between two groups. All data are mean ± SD.
*: p < 0.05. **: p < 0.01. ***: p < 0.001.

To further validate the influence of PTTG1 on OAd5 efficiency, we knocked PTTG1 in
BxPC-3 (BxPC-3-PTTG1low) and MIA PaCa-2 (MIA PaCa-2-PTTG1low) cells using CRISPR/Cas9
technology. We transduced BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells with OAd5
in 10 vp/cell. Consistently with the results from PTTG1 overexpression cells, PTTG1
knockdown decreased cell viability compared with cells carrying CRISPR/Cas9 backbone
vectors (Null). Importantly, BxPC-3-PTTG1low (Figure 3C) and MIA PaCa-2-PTTG1low

(Figure 3D) cell viability capacity were significantly decreased compared with the relative
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Null cells. The abovementioned results indicate that PTTG1 overexpression enhanced OAd5
efficiency, while PTTG1 knockdown reduced OAd5 efficiency. However, the underlying
mechanism is unclear and needs further exploration.

3.4. PTTG1 Increased the Entry of Oncolytic Adenovirus into Pancreatic Cancer Cells

We then measured GFP expression in BxPC-3 and MIA PaCa-2 cells after OAd5 trans-
duction. The results showed that the fluorescence intensity was enhanced in
BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells (Figure 4A) and decreased in
BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells (Figure 4D) 24 h after OAd5 trans-
duction. However, the magnitude of the difference in GFP intensity from the control
group did not further increase in (Figure 4B) BxPC-3-PTTG1high and (Figure 4C) MIA
PaCa-2-PTTG1high cells or decrease in (Figure 4E) BxPC-3-PTTG1low and (Figure 4F) MIA
PaCa-2-PTTG1low over time. Because OAd5 mainly replicates 24–48 h after transduction,
the results indicate that PTTG1 might increase OAd5 entrance into pancreatic cancer cells,
but it does not play a role in its replication.
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Figure 4. PTTG1 Increased OAd5 entry into pancreatic cancer cells. (A) BxPC-3 and MIA PaCa-2
cells overexpressing PTTG1 were transduced with OAd5 24 h post-transduction; GFP was detected
using fluorescence microscope. Each image displayed is a merged bright field and fluorescent image.
Fluorescence intensity in (B) BxPC-3 and (C) MIA PaCa-2 cells was measured 0-, 24-, 48- and 72-h
post-transduction. (D) BxPC-3 and MIA PaCa-2 cells with PTTG1 knockdown were transduced with
OAd5 24 h post-transduction; GFP was detected using a fluorescence microscope. Fluorescence
intensity in (E) BxPC-3 and (F) MIA PaCa-2 cells with PTTG1 knockdown was measured 0-, 24-,
48- and 72-h post-transduction. All experiments were conducted in triplicate. Nonparametric test
was used to analyze differences between two groups. All data are mean ± SD. ns: not significant.
**: p < 0.01. ***: p < 0.001.
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3.5. PTTG1 Increased CXADR Expression on Pancreatic Cancer Cells

We further explore the mechanism underlying the enhancement of OAd5 entrance
into cells by PTTG1. Because CXADR is the main receptor on the cell surface for OAd5
entrance into cells, we detected its expression on PTTG1 high- and low-expressed cells
using flow cytometry (FCM). The results showed that CXADR expression was enhanced in
BxPC-3-PTTG1high (Figure 5A,C) and MIA PaCa-2-PTTG1high (Figure 5B,D) cells. Further-
more, we found that CXADR expression decreased in (Figure 5E,G) BxPC-3-PTTG1low and
(Figure 5F,H) MIA PaCa-2-PTTG1low cells.
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Figure 5. Influence of PTTG1 on CXADR expression on pancreatic cancer cells. CXADR expres-
sion on BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells was detected using flow cytometry.
(A,B) The representative histogram is shown. Mean fluorescence index (MFI) of CXADR expression
on (C) BxPC-3-PTTG1high and (D) MIA PaCa-2-PTTG1high cells was analyzed. CXADR expression
on BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells was detected using flow cytometry. (E,F) The
representative histogram is shown. MFI of CXADR expression on (G) BxPC-3-PTTG1low and (H) MIA
PaCa-2-PTTG1low cells was analyzed. All experiments were conducted in triplicate. Nonparametric
test was used to analyze differences between two groups. All data are mean ± SD. **: p < 0.01.
***: p < 0.001.
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3.6. The Enhancement of Oncolytic Adenovirus Entry into Cells by PTTG1 Was Dependent on CXADR

To further investigate the role of CXADR in PTTG1 in promoting OAd5 entrance
into cells, we knocked CXADR in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells
using CRISPR/Cas9 technology. To validate the role of CXADR in PTTG1-mediated
OAd5 entrance, we used the CXADR-knocked BxPC-3-PTTG1high (Figure 6A,B) and MIA
PaCa-2-PTTG1high (Figure 6C,D) cells during OAd5 transduction. Then, GFP intensity assay
showed that BxPC-3-PTTG1high (Figure 6E,F) and MIA PaCa-2-PTTG1high (Figure 6G,H)
cells failed to further enhance OAd5 transduction in the presence of CXADR knockdown.
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Figure 6. Enhancement of OAd5 entry into pancreatic cancer cells by PTTG1 was
CXADR-dependent. CXADR was knocked in (A,B) BxPC-3-PTTG1high and (C,D) MIA
PaCa-2-PTTG1high cells using CRISPR/Cas9 technology. The cells were transduced with
OAd5 24 h post-transduction, and fluorescence in (E) BxPC-3-CXADRlow and (G) MIA
PaCa-2-CXADRlow cells was photographed using a fluorescence microscope. Fluorescence intensity
in (F) BxPC-3-CXADRlow and (H) MIA PaCa-2-CXADRlow cells were measured 0-, 24-, 48-, and
72 h post-transduction. All experiments were conducted in triplicate. Each image displayed in
(E,G) is a merged bright field and fluorescent image. All experiments were conducted in triplicate.
Nonparametric test was used to analyze differences between two groups. All data are mean ± SD. ns:
not significant. **: p < 0.01. ***: p < 0.001.

3.7. CXADR Expression Correlates with PTTG1 Expression in Normal and Malignant
Pancreatic Tissues

The in vitro experiment proved that PTTG1 could improve the expression level of
CXADR on the surface of pancreatic tumor cells, so we further assessed CXADR expres-
sion in pancreatic cancer from the TCGA database. The analysis revealed that CXADR
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expression was higher in pancreatic cancer tumor tissues than in normal ones (Figure 7A).
Then, we employed Spearman rank correlation to explore the relationship between PTTG1
and CXADR in normal and malignant pancreatic tissues. As a result, the expression of
CXADR was positively correlated with PTTG1 in pancreases and pancreatic cancer tissues
(Figure 7B). To assess whether the CXADR expression influenced the prognosis of pancre-
atic cancer, we analyzed the association between its expression and overall survival (OS),
disease-free survival (DFS), progression-free survival (PFS), and disease-specific survival
(DSS) in the TCGA cohort. Higher expression of CXADR was significantly associated with
shorter OS (Figure 7C) and DSS (Figure 7D) in pancreatic cancer. The analysis indicates
that CXADR is involved in disease progression in pancreatic cancer.
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Figure 7. The correlation between PTTG1 and CXADR in normal and malignant pancreatic tissues.
(A) CXADR expression analysis in PAAD from TCGA database using GEPIA 2.0. The two groups
include 179 cases of pancreatic cancer tumor tissues and 171 cases of normal pancreas tissues. (B) The
Spearman rank correlation between PTTG1 and CXADR mRNA expressions in normal and cancerous
pancreatic tissues. The analysis was performed at the GEPIA 2.0 website based on the merge data
from TCGA Tumor, TCGA Normal, and GTEx databases. (C) CXADR expression and overall survival,
(D) PTTG1 expression and disease-specific survival were analyzed in the TCGA cohort. Hazard ratio
(HR) > 1 indicates the gene is a risk factor. HR (95% Cl), the median survival time (LT50) for different
groups. *: p < 0.05.
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4. Discussion

PTTG1 is overexpressed in many tumor types, predicts poor prognosis, and is asso-
ciated with therapies. For example, the blockade of PTTG1 enhances radiation-induced
antitumor immunity in lung adenocarcinoma [28]. It might predict immunotherapy re-
sponse in renal cell carcinoma [29], and could represent therapeutic targets in prostate
medical research and clinical studies [30]. However, PTTG1 has not been extensively
studied in pancreatic cancer. Our study examined PTTG1 expression levels, tumor stage,
and grade using TCGA data from UCSC Xena. We found that overexpression of PTTG1
predicts a higher grade of pancreatic cancer. Additionally, we found that higher expression
of PTTG1 was significantly associated with shorter OS, DFS, PFS, and DSS in pancreatic
cancer. These results indicate that PTTG1 might influence disease progression in pancreatic
cancer patients.

The current remedy for pancreatic cancer mainly relies on surgery and chemother-
apy [31,32]. Gemcitabine [33] and 5-FU [34–36] are among the main chemotherapeutic
choices for patients with unresectable pancreatic cancer. However, we found that IC50 of
both gemcitabine and 5-FU were higher in PTTG1-overexpressed BxPC-3 and MIA PaCa-2
cells. Meanwhile, IC50 of both gemcitabine and 5-FU decreased in PTTG1 knockdown cells.
Therefore, treating pancreatic cancer patients with high PTTG1 expression is difficult using
gemcitabine and 5-FU. Of course, other chemotherapies might effectively treat patients
with high PTTG1 expression, but this needs further exploration.

ICB-based immunotherapy is a promising cancer therapy for activating anti-tumor
immune response, and it has been used in clinic for treating cancer patients [37]. We
wondered whether ICBs could treat pancreatic cancer patients with high PTTG1 expression,
so we analyzed the ICBs’ response with the TIDE algorithm in pancreatic cancer. It is disap-
pointing that the ICBs’ efficiency is poor in high PTTG1 patients. Based on our research,
both chemotherapy and ICBs might not be promising treatments for pancreatic cancer
patients with high PTTG1 expression. Although immunotherapy for pancreatic cancer
has made some progress, including ICIs, most are ineffective in pancreatic cancer patients.
Therefore, potential alternatives should be explored for pancreatic cancer treatment.

Oncolytic viruses are a breakthrough in immunotherapy after ICIs. Ad is commonly
used to construct oncolytic viruses due to its low pathogenicity and ease of genome modifi-
cation. OAd5 is the most widely used oncolytic virus, with high transfection efficiency and
the ability to generate high titer viruses effectively [38]. Oncolytic viruses could selectively
propagate in and induce the lysis of malignant cells and represent an emerging new class
of cancer therapeutics [39]. Numerous oncolytic viruses are under preclinical or clinical
investigations, and multiple oncolytic viruses are based on genomic alterations of serotype
5 adenovirus [40,41]. Clinical trials have proved that OAd5 is safe in cancer patients and
specifically eliminates tumor cells with minimized toxicity to normal cells [42].

Adenovirus type 5-based oncolytic viruses have shown potential in preclinical studies
and early phase clinical trials with pancreatic cancer patients [43]. To improve tumor
specificity and safety, the alterations contain a deletion of E1B55K [44,45], E3B [46], or
the pRb-binding E1ACR2-region [47–49]. However, of course, the efficiency is poor for
OAd5-transducing cancer cells that are deficient or poorly expressing adenovirus primary
receptors. We infected PTTG1-overexpressed and -knocked BxPC-3 and MIA PaCa-2 cells
and measured cell viability to analyze OAd5 efficiency. OAd5 efficiency was increased
in PTTG1-overexpressed cells but poor in PTTG1-knocked cells. The OAd5 we used in
this research could express GFP. We found that the fluorescence intensity was increased
in PTTG1-overexpressed cells and decreased in PTTG1-knocked cells 24 h after OAd5
transduction. However, the magnitude of the difference in GFP intensity from the control
group did not further increase over time. This is an exciting phenomenon.

At 24 h post-infection, nearly 80% of wild-type-infected cells were in S-phase [47];
we hypothesized whether PTTG1 remarkably increased OAd5 entrance into pancreatic
cancer cells. Because CXADR is the primary receptor mediating OAd5 entrance into
cells [50], we analyzed their expressions on PTTG1 over- and low-expressed cells. CXADR
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expression was enhanced in PTTG1 overexpressed BxPC-3 and MIA PaCa-2 cells and
decreased in PTTG1 low-expressed cells. To further explore the role of CXADR in PTTG1-
mediated OAd5 entrance, we added the CXADR inhibitor in cell supernatant during OAd5
transduction and found that PTTG1 could not enhance OAd5 transduction. Therefore, our
research first showed that PTTG1-mediated OAd5 transduction was through increasing
CXADR expression. Of course, our experimental results cannot completely rule out whether
PTTG1 affects the replication of OAd5, and whether PTTG1 can also affect other factors
that affect the entry of OAd5 into cells. Another question worth further investigation is
whether PTTG1 directly increases the expression of CXADR or indirectly affects CXADR
through other factors.

Using comprehensive analysis of the data of normal pancreatic tissues and pancreatic
cancer tissues, we found that the expression of PTTG1 was positively correlated with
CXADR. However, by analyzing the data of pancreatic cancer tissues alone, we did not
find that the expression of PTTG1 was correlated with CXADR (data not shown). This
might be since PTTG1 can influence CXADR at the precancerous stage, while it has a
minimal impact on CXADR during the progression stage of the tumor. This also explains
why the expression level of PTTG1 is higher in tumor tissue of patients in higher grades,
while CXADR is not related to the grade of pancreatic cancer. This also indicates that the
expression level of CXADR would not further increase with the progression of the tumor.
Of course, the relationship between CXADR and prognosis is still quite close. Our partial
results of CXADR for prognosis are consistent with those of PTTG1. The high expression of
CXADR and PTTG1 in cancer is significantly correlated with the short OS and DSS, further
demonstrating the close relationship between the two factors.

This study found that, although high expression of PTTG1 might reduce the efficacy
of chemotherapy and ICBs, it was consistent with previous reports that PTTG1 could
functions as a potential target in tumor therapy for various types of cancer, such as breast
cancer [8], ovarian cancer [51], pituitary adenoma [52], and prostate cancer [30]. However,
PTTG1 could also improve the effectiveness of OAd5. This study indicates that in clinical
practice, patients can undergo puncture to obtain a very small amount of tumor tissue and
detect the expression of PTTG1, indicating whether OAd5 treatment can be prioritized
over chemotherapy. To further improve accuracy, CXADR expression on the surface of
tumor cells can be detected to determine whether to use OAd5. This study also suggests
that, in order to more accurately improve the efficacy of OAd5, a gene set that affects
various therapies can be established. By detecting the expression of this gene set, it can be
determined whether patients are suitable for chemotherapy, ICBs, and OAd5 therapy to
achieve precision treatment.

5. Conclusions

In summary, PTTG1 enhances OAd5 entrance into pancreatic cancer cells through
increasing CXADR expression on the cell surface. In the process of using oncolytic virus to
treat pancreatic cancer, if priority is given to patients with a high expression of PTTG1 in
tissues, it may provide additional benefits.
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