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Abstract: Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice.
The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest
levels of virus upon infection and being the ones later transformed by the virus due to repeated
rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim
of this study was to identify genes and molecular pathways dysregulated by MMTV expression in
mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary
epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with
cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of
gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes,
of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2,
Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of
these DEGs showed their involvement in many diseases, especially in breast cancer progression
when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular
pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed
to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes
identified in this study showed expression profile similar to that observed in the PyMT mouse model
of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene
expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV
expression, an observation similar to what was observed in the PyMT mouse model during tumor
progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results
with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to
activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways,
DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular
mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential
to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells
as an important model to study early transcriptional changes that could lead to mammary cell
transformation.

Keywords: mouse mammary tumor virus (MMTV); mammary epithelial cells; HC11 cells; mRNAseq;
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1. Introduction

Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus that belongs
to the genus betaretrovirus. MMTV has been known to cause mammary tumors in mice
since the early 19th century [1,2]. It is secreted in the mother’s milk by the mammary
epithelial cells and targets dendritic, B-, and T-cells in the Peyer’s patches found in the gut
of suckling pups [3]. The infected lymphocytes circulate within the animal and transport the
virus to the mammary gland where hormonal stimulation during puberty and pregnancy
leads to increased virus replication, infection/superinfection, and integration, leading to
insertional activation of growth promoting genes and eventually their carcinogenesis [4–6].
MMTV infects the host cells after binding with the mouse transferrin receptor1 (mTfR1)
using its envelope glycoprotein (Env) [7,8]. This interaction results in endocytosis of the
virus into a late, low pH endosomal compartment, which allows fusion of the virus with
the host cell membrane and release of the capsid into the cytoplasm [9]. The process of
uncoating initiates reverse transcription of the genomic RNA into complementary DNA
(cDNA), followed by its integration into the host genome, a process which occurs in the
most random manner amongst all retroviruses [4,10]. MMTV can also be transmitted
as an endogenous virus via the germline, and numerous strains of such endogenous
viruses have been identified, referred to as Mtvs [11]. Most of the endogenous strains of
Mtvs are observed to be defective, unable to cause mammary carcinogenesis; however, a
few non-mutated, replication-competent Mtvs observed in inbred mice cause mammary
tumors [3,12–14]. Whether exogenous or endogenous, different strains of MMTVs reveal
more than 95% similarity over their genomes other than the region encoding sag, which is
the most variable part of the viral genome [11,15,16].

It is well known that upon viral infection, the host triggers an innate immune response
against the virus as a defensive mechanism. This includes recognition of pathogens by
“pathogen-associated molecular patterns (PAMPs)”, such as those on double-stranded RNA
via triggering pattern recognition receptors (PRRs), including Toll-like receptors (TLRs),
Aim-2-like receptors, and cyclic GMP-AMP synthase (cGAMPs). The innate immune
response also includes pro-inflammatory cytokines, autophagy, and production of type
I/II interferons (IFN) by mediating NF-kB and/or JAK-STAT pathways [17–22]. Although
these mechanisms are not fully understood, it is known that early reverse transcription
activity of MMTV could be blocked either by stimulating PAMPs that sense the presence of
invading pathogens and trigger type I immune responses or by the activation of the host
apolipoprotein editing complex 3 (APOBEC3) [23,24]. In response, the pathogens also try
to evade such host defensive measures to continue their replication by exploiting the host
defense systems [25]. For instance, studies have revealed that MMTV requires the host gut
microbiota for its transmission after manipulating the bacterial lipopolysaccharides (LPS)
since LPS is recognized by TLRs that, in turn, activate immune-responsive cytokines [26–28].
That is why germ-free (GF) and antibiotic-treated mice remain free from MMTV infection
for many generations [27]. Thus, successful virus infection, replication, and pathogenesis
are intricately dependent upon interconnected virus-host interactions.

Upon infection, viruses can also inhibit apoptosis of host cells and dysregulate caspases
by encoding homologs of the anti-apoptotic proteins, such as Bcl-2, blocking apoptosis
signals by triggering expression of the tumor necrosis factor (TNF) family members, or
by inactivating IFN-induced protein kinase R (PKR) or p53 pathways that result in tumor
formation [29–31]. It is interesting to note that unlike other cancer-causing viruses, MMTV
does not encode any oncogene, and MMTV-associated carcinogenesis depends upon the
host immune response, viral strain, viral proteins, especially Env and Sag, host–immune re-
sponse modification by the virus, or the presence of endogenous Mtvs [32–35]. Furthermore,
MMTV may also be jumping the species barrier into humans since MMTV-like antigens,
virus particles, and sequences have been detected in the human milk, both in normal and
breast cancer samples [36–40]. Moreover, a cloned MMTV provirus has been shown to
effectively infect mouse as well as human cells [41,42]. Indeed, if this is true, there is a need
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to comprehensively study how MMTV expression affects the host cellular environment for
its benefit.

Despite significant research to understand MMTV–host interactions, considerable
work is still required to fully understand the underlying host molecular mechanisms
involved in pathogenesis and carcinogenesis after MMTV infection. In this study, we estab-
lished a mouse mammary epithelial cell line (HC11) stably expressing MMTV and used
high-throughput RNAseq to profile any changes in the mRNA levels that may contribute to
different molecular pathways associated with MMTV expression. HC11 are ideal mammary
epithelial cells frequently used for the study of MMTV replication, gene expression, and
virus–host interactions [43–45]. The HC11 cell line is also considered an excellent in vitro
model for prolactin-induced differentiation since these cells represent the natural character-
istics of stem-like epithelial cells resident in the mammary gland [46,47]. During the normal
life cycle of MMTV in the mouse, the mammary epithelial cells serve as the main targets
of MMTV infection cells that eventually give rise to the virus-induced breast tumors as
well [25]. The HC11 cell line was isolated from the mammary glands of a pregnant BALB/c
mouse and, thus, has been used extensively to study not only normal cell functions, such
as mammary cell proliferation, differentiation, and signaling pathways, but also mammary
cell transformation and milk production [8,46]. Interestingly, gene expression in these cells
in their stem-like state has been shown to be quite similar to that observed in human breast
cancer cells. Comparable expression of several genes and pathways in HC11 and breast
cancer cells suggests usefulness of the HC11 cell line in understanding the mechanism in-
volved in breast cancer [48–54]. It also suggests that HC11 cells are a novel tumor model for
testing anti-cancer and anti-inflammatory agents [55–57]. In addition to the identification
of differentially regulated genes (DEGs), we conducted network analysis to understand
interaction between DEGs that form biologically relevant networks perturbed by MMTV
expression. Thus, these results should help to better understand how MMTV exploits the
host molecular pathways to evade the innate immune responses, establish infection, and
induce cell transformation.

2. Materials and Methods
2.1. MMTV-Expressing Stable Cell Line

The normal BALB/c mouse mammary epithelial cells, HC11, were used to study the
effect of virus expression on HC11 gene expression. The HC11 cells used in this study
were a gift from Prof. Jeffery M. Rosen, Baylor College of Medicine, Houston, TX, USA.
The cells were maintained in complete growth medium containing RPMI-1640 (Hyclone,
Logan, UT, USA), 10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA), 5 ug/mL
insulin (Sigma-Aldrich, St. Louis, MI, USA), 0.01 ug/mL epidermal growth factor (EGF;
Sigma-Aldrich, St. Louis, MI, USA), and 1% penicillin–streptomycin. The molecular clone
of MMTV, HYB MTV [58] was used to transfect HC11 cells using HD Fugene transfection
kit according to the manufacturer instructions (Promega, Madison, WI, USA). Hygromycin-
resistant colonies were selected for two weeks using 200 µg/mL hygromycin and screened
for MMTV expression using Western blot analysis.

Protein lysates from HC11 and HC MMTV cells were prepared in RIPA buffer (10 mM
Tris–HCl (pH 8.0), 1 mM EDTA, 140 mM NaCl, 0.1% sodium deoxycholate 1% Triton X-100,
and 0.1% SDS) and quantified using Bradford assay (Bio-Rad Laboratories, Hercules, CA,
USA). A total of 40 ug protein was used for each sample to check for MMTV expression
on a 4–12% gradient SDS gel (GenScript ExpressPlus PAGE, Piscataway, NJ, USA) and
transfer was carried out overnight at 30V at 4 ◦C. The membrane was blocked for 1 h at
room temperature in 5% non-fat milk, followed by overnight incubation in rabbit poly-
clonal MMTV anti-Gag primary antibody (Rockland Immunochemicals Inc., Limerick, PA,
USA, 100–401-P12, USA) at a dilution of 1:1000 in 2% non-fat dry milk. The membrane
was incubated with the respective HRP-conjugated secondary antibody. The blot was
developed with ECL Plus Western blotting substrate (Thermo Fisher Scientific, Waltham,
MA, USA), and the resulting chemiluminescent signals were detected using Typhoon FLA
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9500. A similar procedure was followed for testing β-Actin (1:25,000 dilution of the primary
antibody (Sigma-Aldrich, catalogue no. A3854, St. Louis, MI, USA) in 2% non-fat dry milk.

2.2. RNA Extraction, mRNA Sequencing, and Gene Expression Validation Using Real-Time
Quantitative PCR (RT-qPCR)

Total RNA was extracted from undifferentiated HC11 cells in the presence and absence
of MMTV using the TRIzol Reagent (ThermoFisher Scientific, Waltham, MA, USA) and
quantified using Nano Drop as described previously [59]. Whole-cell RNA from two inde-
pendent passages of these cell lines was sequenced commercially by the Beijing Genomics
Institute (BGI, Hong Kong) using TruSeq library and DNBSEQ platform. The RIN values for
the RNA samples ranged between 8.5 and 9.5 as assessed by the Agilent 2100 Bioanalyzer.
Before sequencing, total RNA was treated with DNase I to remove any contaminating
DNA, and the mRNA was enriched using oligo dT magnetic beads. This was followed by
cDNA synthesis, end repair, addition of A and adaptor ligation, PCR, circularization, and
sequencing (https://www.bgi.com/wp-content/uploads/sites/4/2017/06/F17FTSAPJT0
170_FUNxovR_report_en.pdf, accessed on 23 November 2021). The average yield was
9.98 G data per sample, whereas average alignment ratio of the sample comparison genome
was 94.13%.

Expression profiles of ten randomly selected genes identified by RNAseq were verified
by quantitative real time PCR (RT-qPCR). Towards this end, total RNA was converted
into cDNA by reverse transcribing 6 µg DNase-treated total RNA by MMLV RT (Promega,
Madison, WI, USA) according to manufacturer’s instructions, as described before [60]. The
cDNAs prepared were subjected to qPCR using 5X HOT FIREPol EvaGreen® qPCR Mix
Plus (ROX) (Solis Biodyne, Tartu, Estonia) and the QuantStudio 7 Flex real time system
from Applied Biosystems, ThermoFisher Scientific). KiCqStart® pre-designed primers from
Sigma, and some from other published studies were used according to manufacturer’s
directions or conditions listed in Table 1. β-actin was used as the endogenous control. The
PCR reactions were performed in either 96- or 384-well plates in duplicates containing the
primer mix and 1 µL cDNA, making the total reaction volume to 20 µL (96-well plate) or
10 µL (384-well plate) with DNase-Rnase free molecular biology grade water. All primer
pairs were initially tested to ensure that each pair gave a single band and a single peak
upon melt curve analysis.

Table 1. List primers and their details used in this study.

S. No. Gene Sequence Forward (F)/
Reverse (R)

Stock
Concentration

Working
Concentration

1 Brca1
GGGGAAAAGGTAGGTCCAAAC F 10 µM 100 nM

CTGCTTCAGCATTTGACTCGT R 10 µM 100 nM

2 Brca2
TCTTTCTCCGAGTATCAGGAAGT F 10 µM 300 nM

GCAGAAGTGTCAGTGAGAGTG R 10 µM 300 nM

3 Hipk3
ATGGCCTCACAAGTCTTGGTC F 10 µM 300 nM

GCACTACCTTTCGTGGAAGGAT R 10 µM 300 nM

4 Pten
TGGATTCGACTTAGACTTGACCT F 10 µM 50 nM

GCGGTGTCATAATGTCTCTCAG R 10 µM 50 nM

5 Rbl2
CTGTGCTCCTTACACGACGG F 10 µM 300 nM

GCGGCTAACACGTATTCTTCA R 10 µM 300 nM

6 Sqstm
AGGATGGGGACTTGGTTGC F 10 µM 300 nM

TCACAGATCACATTGGGGTGC R 10 µM 300 nM

7 Stat3
CACCTTGGATTGAGAGTCAAGAC F 10 µM 300 nM

AGGAATCGGCTATATTGCTGGT R 10 µM 300 nM

https://www.bgi.com/wp-content/uploads/sites/4/2017/06/F17FTSAPJT0170_FUNxovR_report_en.pdf
https://www.bgi.com/wp-content/uploads/sites/4/2017/06/F17FTSAPJT0170_FUNxovR_report_en.pdf
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Table 1. Cont.

S. No. Gene Sequence Forward (F)/
Reverse (R)

Stock
Concentration

Working
Concentration

8 Zeb1
CGCCATGAGAAGAACGAGGAC F 10 µM 300 nM

CTGTGAATCCGTAAGTGCTCTTT R 10 µM 300 nM

9 Zeb2
AAACGTGGTGAACTATGACAACG F 10 µM 300 nM

CTTGCAGAATCTCGCCACTG R 10 µM 300 nM

10 Zfpm2
GAGCCCGAAAATCTGAGCTG F 10 µM 50 nM

GCCGACTCTGAATCTTCCTTTCT R 10 µM 50 nM

11 β- Actin
TGTTACCAACTGGGACGACA F 10 µM 300 nM

CTGGGTCATCTTTTCACGGT R 10 µM 300 nM

2.3. RNAseq Data Pre-Processing

RNAseq was performed on control and MMTV-expressing HC11 total RNA samples
in duplicates, named CTRL1, CTRL2, MMTV1, and MMTV2, respectively. The raw data
were filtered using BGI in-house software known as SOAPnuke v1.5.2 [61], and the reads of
low quality, adaptor contamination, and excessively high levels of unknown base N were
removed (N > 5%). The Pearson correlation coefficients were calculated to compare the
quality of gene expression between each sample, which showed higher similarities between
each sample in each group (Figure S1). Principal component analysis (PCA) was used to
remove any outliers from samples. The filtered clean reads were next subjected to quality
control using FASTQ [62].

Finally, a total of 102.42 million reads (100 bp length) were generated for each sample
and subjected to quality control. Raw data were cleaned, which limited the read count to
101.6, 100.46, 102.45, and 102.45 million reads for CTRL1, CTRL2, MMTV1, and MMTV2
samples, respectively. The clean reads were aligned to the reference mouse genome se-
quence GCF_000001635.26_GRCm38.p6 (Mus musculus), with an average alignment of
94.13% using HISTAT2. The reference genes were aligned to the data using Bowtie2 [63].
The average alignment of the gene set was 81.98%, and a total of 17,346 transcripts were
detected (see Supplementary Data S1). The results were submitted to the BGI in-house
software Dr. Tom accessed through an online server for further analysis. The raw and
analyzed data (BioProject accession number: PRJNA915407) can be downloaded from the
server for data re-analysis and further processing.

2.4. Identification of DEGs

After sequencing and cleaning (adaptor removal), the raw data in fastq file(s) format
were analyzed using automated Dr. Tom software from BGI that allowed visualization
and analysis of raw data. Using this software, we retrieved 17,346 transcripts that were
further analyzed for quality control. The clean reads were mapped to the reference genes
using Bowtie2 v2.2.5, and RSEM v1.2.8 [64] was used to calculate gene expression level
of each sample. The DEseq2 method [65] (Q-value/ adjusted p-value ≤ 0.05) was used
to detect differentially expressed genes. The genes with adjusted p-value of ≤0.05 and
log2FC ≥ 2/≤ −2 were considered as differentially expressed genes (DEGs) and presented
in red (up-regulated) or green (down-regulated) throughout the manuscript. All of the
data were downloaded from Dr. Tom and re-analyzed using Microsoft Excel for any
discrepancies. Venn diagrams were drawn for the overlapping genes/transcripts using
the online platform Bioinformatics & Evolutionary Genomics from Van de Peer lab web-
site (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 19 February 2022).
Heatmaps were generated using Multiple Experiment Viewer v4.9.0 [66]. The volcano and
other plots used in this study were generated through Dr. Tom and were further improved
accordingly.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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2.5. Functional Enrichment of Gene Ontology (GO) and Pathway Analysis

The DEGs list was uploaded to DAVID (https://david.abcc.ncifcrf.gov/tools.jsp,
accessed on 22 February 2022) [67] for gene ontology (GO) and pathway analysis using
Mus musculus as the reference species. GO analysis plots genes according to their functions,
biological processes, cellular presence, and molecular functions. DAVID generated the
list of genes involved in several biological pathways using KEGG (Kyoto Encyclopedia
of Genes and Genomes: https://www.genome.jp/kegg/pathway.html, accessed on 12
April 2022) [68] and Reactome (https://reactome.org/, accessed on 14 April 2022) [69]
pathway databases. We also searched the Wikipathways (https://www.wikipathways.
org/index.php/WikiPathways, accessed on 26 April 2022) [70] for pathways associated
with the DEGs. All of these databases have limitations, and the DEGs whose GO or
pathways were not defined using these databases were further searched using GeneCards
(https://www.genecards.org/, accessed on 4 May 2022) [71] and Rat Genome Database
for mouse species (RGD: https://rgd.mcw.edu/wg/species/mouse/, accessed on 11 May
2022) [72]. The genes were sorted on the basis of the combined data from all these sources
and used for further analysis, unless otherwise stated. The genes without any verified
information were shown as “uncharacterized”.

2.6. Gene Sets/Pathways Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) v4.10 [73] was used to evaluate the possibility
of gene set associations with specific phenotypes. GSEA was performed using expres-
sion sets of whole genes rather than DEGs. The gene sets were retrieved from KEGG
database for individual pathways. GSEA run used the following parameters: 100 per-
mutations, “weighted” as enrichment statistic and “Signal2Noise ratio” as metrics for
ranking the genes. GSEA gives both significant and non-significant pathways on the basis
of nominal p-values and FDR q-values. GSEA uses FDR q-value < 0.25 for further analy-
sis (https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ#
Why_does_GSEA_use_a_false_discovery_rate_.28FDR.29_of_0.25_rather_than_the_more_
classic_0.05.3F, accessed on 22 June 2022). Due to this reason, some pathways with
p-value > 0.05 were also selected for further analysis. Pathways were further filtered down
by selecting the sets having family-wise error rate (FWER) p-value ≤ 0.2 (the probability of
making one or more false discoveries).

2.7. Construction of the Gene–Pathway Network, Protein–Protein Interaction (PPI) Network, and
Hub Gene Network

The significant pathways were interrogated for overlapping and unique DEGs repre-
senting individual pathways. The online database STRING v11.5 [74] was used to construct
PPI networks, while Cytoscape v3.8.2 [75] was used to view these networks and for con-
structing gene–pathway interactions networks. CytoHubba [76], a plugin of Cytoscape,
was used to detect the hub genes from network analysis, whereas MCODE [77] was used
to identify any significant module for PPI networks.

2.8. Functional Analysis of Hub Genes with Current Data

The online Comparative Toxicogenomics Database (CTD: http://ctdbase.org/, ac-
cessed on 13 April 2022) [78] was used to further explore association of the hub genes with
diseases of interest, whereas The Cancer Genome Atlas (TCGA: https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/tcga, accessed on 16 April
2022) was used for searching expression profile of key hub genes in cancer patients.

2.9. Prediction of miRNAs

The possible miRNAs that may target the identified hub genes were predicted using
miRDB database (http://mirdb.org/mirdb/index.html, accessed on 20 April 2022). All
miRNAs were investigated using the tab “Search by gene target” using “Mouse” as the
reference species.

https://david.abcc.ncifcrf.gov/tools.jsp
https://www.genome.jp/kegg/pathway.html
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
https://www.genecards.org/
https://rgd.mcw.edu/wg/species/mouse/
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ#Why_does_GSEA_use_a_false_discovery_rate_.28FDR.29_of_0.25_rather_than_the_more_classic_0.05.3F
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ#Why_does_GSEA_use_a_false_discovery_rate_.28FDR.29_of_0.25_rather_than_the_more_classic_0.05.3F
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ#Why_does_GSEA_use_a_false_discovery_rate_.28FDR.29_of_0.25_rather_than_the_more_classic_0.05.3F
http://ctdbase.org/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://mirdb.org/mirdb/index.html
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3. Results

To determine the effect of MMTV expression on normal mouse mammary epithelial
cell gene expression, we established a stable MMTV expressing cell line (MMTV) using
a replication-competent molecular clone of MMTV, HYBMTV [58] in the normal mouse
mammary epithelial HC11 cells, a spontaneously immortalized, non-tumorigenic cell clone
from the COMMA-ID mammary epithelial cell line isolated from the BALB/c mice [8,46].
Mammary epithelial cells are the main targets of MMTV infection in the mouse mammary
gland that ultimately give rise to the mammary tumors [25]. HC11 cells can be infected
by MMTV, but rather inefficiently [60]; therefore, we chose to create stably transfected
HC11 cells, where all our cells were expressing the virus. This increased our chances
of detecting subtle changes in MMTV-induced gene expression effectively. Furthermore,
MMTV does not show superinfection resistance [79]; therefore, these cells should still be
undergoing natural multiple rounds of “infection” with the virus produced from the stable
cells, creating an environment similar to the “naturally infected” mammary cell. Expression
of the MMTV structural polyprotein Gag was confirmed in these cells using an anti-Gag
polyclonal antibody (Figure 1a). Two independent passages (biological replicates) of the
HC11 cells (named CTRL1 and CTRL2 in this study) and HC11 cell expressing MMTV
(named MMTV1 and MMTV2) were used for mRNAseq analysis to determine how MMTV
affected various gene expression pathways in these cells.

Figure 1. Establishment of HC11 cells stably expressing mouse mammary tumor virus (MMTV)
and validation of their RNAseq data. (a) Western blot analysis of MMTV Gag gene expression in
normal mouse mammary epithelial HC11 cells stably expressing MMTV. β-actin was used as the
loading control. (b) RT-qPCR validation of RNAseq outcomes in MMTV expressing HC11 cells.
The relative quantitative (RQ) values (MMTV/CTRL) obtained from RT-PCR data were compared
with the relative (MMTV/CTRL) expression values of individual genes obtained from RNAseq data.
The genes with value < 1 represent down-regulated genes, while those with value > 1 represent up-
regulated genes, respectively, after MMTV expression. The red highlighted boxes depict up-regulated,
while green boxes show down-regulated genes in cells expressing MMTV when compared with
control HC11 cells.

RNAseq itself is a robust technique and may not require any additional validation [80,81].
However, to further confirm our findings, we selected 10 genes from the RNAseq data
belonging to different pathways and used RT-qPCR to check their expression in control
and MMTV-infected samples. Our RT-qPCR data showed that except for one gene, the
expression profile of the remaining nine genes was in accordance with the RNAseq data
(Figure 1b). These results agree with previous findings where comparative analysis between
RNAseq and RT-qPCR showed 15–20% non-concordance gene expression, which could be
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due to several factors, such as the level of expression, sensitivities of different assays, and
efficiency differences between PCR primers [80,81].

3.1. Identification of DEGs in MMTV Infected Mammary Epithelial Cells

RNAseq analysis revealed that of the 17,346 transcripts retrieved, both the con-
trol (CTRL) and MMTV-expressing (MMTV) samples shared 15,619 transcripts, whereas
900 transcripts were unique to CTRL and 827 to MMTV (Figure 2a and Supplementary
Data S2 and S3). Overall, the data quality was acceptable, as box plots exhibited the con-
fidence of the data within each replicate in both groups with fairly consistent medians
across all four samples (Figure 2b). As we used two biological replicates of the pooled
stable cell line, we averaged as well as leveraged the control and experimental groups.
Averaging and leveraging not only increase reliability but also the sensitivity of the data. It
should be noted that in most of the sequencing data, quality is preferred over quantity [82].
Gene expression levels found in our study confirmed both consistency as well as reliability
of the data. Expression levels of the DEGs were visualized by creating a heatmap of the
differentially up- and down-regulated genes (Figure 2c).

Figure 2. Summary of the gene expression analysis of the RAW and DEG data. After sequencing, a
total number of 17,346 raw transcripts were retrieved. In this study, 2 biological replicates of each
group were sequenced, and the average was taken to ensure the similarities within groups. For DEG
analysis, cross-sectional comparison was performed for each group. Initially, fully automated Dr.
Tom software from BGI was used to analyze the raw data as well as for the differential expression
calculations. (a) Venn diagram showing the expression of total (n = 17,346), overlapping (n = 15,619),
and unique transcripts (genes) between CTRL (n = 900; green circle) and MMTV (n = 827; pink circle)
groups. (b) Tukey box plots showing the comparison among the sample level distribution of gene
expression data post normalization for 4 samples. (c) Heatmap of the hierarchal clustered RAW data
representing expression profile of 17,346 transcripts in all groups. (d) Scatter plot of DEGs showing
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the expression profile of DEGs and non-DEGs. Red dots show up-regulated genes, whereas green
dots show repressed or down-regulated genes. The remaining (gray) were classified as non-DEGs.
(e) Mapping of differentially expressed genes. Up- (red) and down- (green) regulated genes with in
each comparison included in this study with fold change (FC) ≥ 2. (f) Heatmap showing the hierarchical
clustering patterns of the 965 differentially expressed genes with FC ≥ 2 among all groups.

Hierarchal clustering verified the equal data distribution within each sub-group,
thus verifying data consistency further. The unique transcripts within each group were
filtered out, and the remaining 15,619 common transcripts were mined for the differentially
expressed genes (DEGs). Dr. Tom used DEseq2 method to identify any DEGs between
two groups, and transcripts with fold change logFC ≥ 2, p-value < 0.05, and Q-value < 0.1
were identified as DEGs. Similar filters were used manually to verify the data. Scatter
plot showed the normal distribution of read-counts and significant genes with satisfying
values (logFC ≥ 2 and logFC ≤ 2, p-value < 0.05, and Q-value < 0.1) that were selected as
DEGs (Figure 2d). These genes are shown as red or green dots for up- and down-regulated
genes, respectively. A total of 965 genes were differentially regulated within both groups,
of which 249 (26%) genes were up-regulated (red), while 716 (74%) were down-regulated,
revealing a significant down-regulation of gene expression following MMTV expression
(green; Figure 2e; see Supplementary Data S4 for details). Finally, a volcano plot of all genes
shows the distribution of expression in these differentially regulated profiles (Figure S2).
As can be seen, nearly a third of the genes were observed to be highly down-regulated
compared with the upregulated genes.

3.2. Gene Ontology (GO) Analysis of the DEGs

GO analysis including functional, biological, cellular, and molecular functions of
the DEGs was performed either by Dr. Tom’s online module (https://biosys.bgi.com/,
accessed on 10 December 2021) or manually using DAVID v6.8 (https://david.ncifcrf.
gov/home.jsp, accessed 22 February 2022), an online server. For genes that were not
listed in either of these databases, several other online databases were used (including
GeneCards (https://www.genecards.org/, accessed on 4 May 2022), RGD (https://rgd.
mcw.edu/wg/species/mouse/, accessed on 11 May 2022), and STRING (https://string-
db.org/, accessed on 24 May 2022). For pathway annotation, KEGG (Kyoto Encyclopedia
of Genes and Genomes) database (https://www.genome.jp/kegg/pathway.html, accessed
on 12 April 2022) was used as a preliminary tool. The genes not listed in the KEGG
were then searched for their pathway association by using WikiPathways (https://www.
wikipathways.org/index.php/WikiPathways, accessed on 26 April 2022) and/or Reactome
Pathway (https://reactome.org/, accessed on 14 April 2022) databases. Every gene was
searched for its function, and the genes were placed in specific categories on the basis of the
accumulative information from all sources described above. The genes without any verified
information were shown as “uncharacterized”. Figure 3 shows the top ten annotations for
each category based on the number of genes in each set, while the remaining can be found
in Supplementary Data S5. Functional annotation analysis of the DEGs showed that most
of the genes belonged to membrane, glycoproteins, signaling, and metal-binding categories.
We found transport, signal transduction, organism development, transcriptional regulation,
cellular adhesion, proteolysis and cell differentiation, and proliferation as major biological
processes. Most of the DEGs were part of the cellular membrane, surface, and junctions,
especially the extracellular regions. Molecular functional characterization of the DEGs
showed their involvement in hydrolyzations, ion binding, and signal transduction and
function as catalysts and GTPase activators (Figure 3a).

https://biosys.bgi.com/
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://www.genecards.org/
https://rgd.mcw.edu/wg/species/mouse/
https://rgd.mcw.edu/wg/species/mouse/
https://string-db.org/
https://string-db.org/
https://www.genome.jp/kegg/pathway.html
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
https://reactome.org/
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Figure 3. Gene ontology (GO) analysis of the differentially expressed genes (DEGs). (a) Classification
of the DEGs based on their functional annotation, biological processes, cellular locations, and molecu-
lar functions. The top 10 sub-categories based on the number DEGs in each category are represented
in each graph. (b) Biological pathway classification of DEGs. The DEGs were grouped in different
pathways on the basis of the information gathered from different online pathways sources, including
KEGG, Wikipathways, and/or Reactome. Each bar shows the number of genes associated with the
subsequent pathway. (c) Overlapping genes in multiple pathways. The red bars display up-regulated,
while the green bars show down-regulated genes.

We also searched for the involvement of the genes in biological pathways. Figure 3b
represents the accumulative information for every gene driven from different data sources,
as described above. Most of the DEGs were overlapping among many pathways (see
Supplementary Data S6). DAVID analysis found several signaling pathways associated with
DEGs, including calcium, metabolism, immune response, apoptosis, cell cycle, cytokine-
cytokine, PI3-Akt-mTOR, Egfr, Mapk, insulin, Wnt, focal adhesion, Tnf, glutathione, Notch,
and p53 (Figure 3b).

On the basis of the presence of numerous DEGs in multiple pathways, we generated a
list of up- and down-regulated genes that were present in at least five or more pathways.
We found 122 such genes, where 27 (22%) were up-regulated (red bars) and 95 (78%)
were down-regulated (green bars), maintaining the significant down-regulation of gene
expression observed earlier upon MMTV expression (Figure 3c; Supplementary Data S6).

Initially DEGs identified in our study were grouped into 54 known biological path-
ways; however, only a total of 38 gene sets (biological pathways) retrieved from KEGG
database were tested (Table 2; Supplementary Data S7 and S8). GSEA showed that 9 gene
sets were enriched (up-regulated) upon MMTV expression (the MMTV group), whereas
29 were enriched in the CTRL group (down-regulated) upon MMTV expression; Figure 3).
Further analysis showed that out of the nine pathways, six were significantly enriched
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upon MMTV expression (FDR q-values < 0.25), which was further narrowed down to three
on the basis of FWER p-values (<0.2), including Tnf, autophagy, and type II interferon
pathways. For the CTRL group, 25 pathways showed FDR q-values < 0.25. After with-
drawing PI3-AKT (as it shares the same genes as the PI3-AKT-mTOR pathway), we chose
13 pathways with FWER p-value < 0.2 (Table 2) for further analysis. These included the
Wnt signaling, hedgehog, focal adhesion, Rap1, metabolism, PI3-AKT-mTOR, prolactin,
Egfr, Hippo signaling, Ras signaling, inflammation, glutathione, and Vegf pathways.

Table 2. Gene sets/pathways enrichment in phenotypes MMTV and CTRL. Rows shaded in gray
show the significantly enriched pathways in both MMTV and CTRL phenotypes. ES: Enrichment
Score, NES: Normalized Enrichment Score, NOM: Nominal, FDR: False Discovery Rate, FWER:
Family-wise Error Rate.

Gene Sets Size ES NES NOM
p-Value

FDR
q-Value

FWER
p-Value

Gene sets enriched in MMTV phenotype.
TNF 110 0.34 1.37 0.222 0.215 0.170

Autophagy 137 0.24 1.37 0.000 0.159 0.170
Type II interferon 65 0.54 1.37 0.233 0.133 0.170

P53 70 0.23 1.25 0.000 0.169 0.451
Notch 57 0.24 1.23 0.240 0.164 0.570

Apoptosis 142 0.22 1.21 0.000 0.169 0.650
Cell cycle 121 0.23 1.13 0.245 0.284 0.950

NF
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Rap1 205 −0.35 −1.59 0.000 0.067 0.140
Metabolism 130 −0.66 −1.58 0.000 0.068 0.140

PI3−AKT−mTOR 395 −0.29 −1.56 0.000 0.080 0.140
Prolactin 76 −0.38 −1.54 0.000 0.076 0.140

EGFR 38 −0.69 −1.52 0.000 0.072 0.140
PI3−AKT 310 −0.30 −1.52 0.000 0.069 0.140

Hippo 148 −0.27 −1.51 0.000 0.073 0.140
Ras 221 −0.30 −1.49 0.000 0.070 0.140

Inflammation 46 −0.37 −1.49 0.000 0.071 0.140
Glutathione 46 −0.55 −1.45 0.000 0.075 0.180

VEGF 74 −0.36 −1.43 0.000 0.073 0.180
cAMP 190 −0.33 −1.39 0.000 0.086 0.350

Immune response 95 −0.47 −1.39 0.000 0.083 0.350
Estrogen 119 −0.34 −1.38 0.000 0.079 0.350
Calcium 219 −0.34 −1.32 0.000 0.097 0.450
AMPK 88 −0.22 −1.30 0.054 0.104 0.480
PPAR 70 −0.34 −1.27 0.000 0.107 0.480
mTOR 140 −0.19 −1.25 0.000 0.115 0.520

Chemokine 166 −0.24 −1.22 0.364 0.154 0.670
HIF−1 68 −0.19 −1.20 0.239 0.169 0.670
MAPK 300 −0.22 −1.20 0.000 0.164 0.670
FoXo 93 −0.23 −1.19 0.255 0.165 0.710

Insulin 130 −0.22 −1.07 0.352 0.339 0.930
TGFB 102 −0.23 −1.06 0.412 0.372 1.000

JAK−STAT 147 −0.26 −1.03 0.352 0.429 1.000
Cytokines 201 −0.25 −1.01 0.528 0.430 1.000
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3.3. Gene Enrichment Analysis for the DEGs Associated with Different Pathways

Following the DEGs identification, GSEA was employed to identify any changes in
the expression/trend of the biological pathways after MMTV expression. GSEA is a useful
tool that points out enrichment of a particular gene dataset within specific phenotypes on
the basis of change in overall expression of the dataset. Figure 4 shows the enrichment
plots of the top 16 pathways selected for further investigation, whereas Table 3 contains the
list of genes that were significantly enriched within each pathway (including both DEGs
and non-DEGs). Detailed information about GSEA and results interpretation can be found
on http://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html?_Interpreting_
GSEA_Results [73]. Here, we briefly described the method and terms used in GSEA in
our study. The enrichment score reflects the degree to which a gene set (or pathway) is
over-represented at the top or bottom of a ranked list of the genes. GSEA calculates the
enrichment score (ES) ES by walking down the ranked list of genes, increasing a running-
sum statistic when a gene is in the gene set and decreasing it when it is not. The magnitude
of the increment depends on the correlation of the gene with the phenotype. The ES
value is the maximum deviation from zero encountered in walking the list. A positive ES
indicates gene set enrichment at the top of the ranked list; a negative ES indicates gene set
enrichment at the bottom of the ranked list. A positive value indicates correlation with
the first phenotype, and a negative value indicates correlation with the second phenotype.
Any enrichment plot can be divided into three parts: (i) the peak point of the green line
represents the ES for a particular gene set, (ii) the middle of the portion (red–blue horizontal
and gray vertical lines) of the graph shows where the member of a subset falls in the ranked
list of genes, and (iii) the lower portion of the graph (gray) shows the distribution of
the gene set. The normalized enrichment score (NES) has been used primarily for the
enrichment results and accounts for any differences of gene sets among phenotypes. The
NES could be retrieved by dividing the actual ES by mean ES. Gene sets showing false
discovery rate (FDR) of <0.25 (or 25%) show that the result is likely to be valid three out
of four times. Thus, we selected the gene sets that had FWER p-value < 0.2 to ensure
significance and further reduce the number of data sets. However, it is important to keep in
mind that this does not mean that other datasets with FDR < 0.25 and FWER > 0.2 are not
significant. As GSEA goal is to engender a hypothesis, it is recommended to focus more on
FDR rather than FWER.

http://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html?_Interpreting_GSEA_Results
http://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html?_Interpreting_GSEA_Results
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Figure 4. GSEA enrichment plots depicting negatively and positively enriched pathways after MMTV
infection. A list of genes retrieved from KEGG pathways was used corresponding to the individual
pathway listed in this study. (a) Gene sets positively enriched in phenotype MMTV. These included:
TNF, Autophagy, and Type II interferon pathways. (b) Thirteen gene sets were negatively enriched
in the MMTV phenotype or positively enriched in the CTRL phenotype. These gene sets included:
Wnt, Hedgehog, Focal adhesion, Rap-1, Hippo, Egfr, Prolactin, PI3-Akt-mTOR, Ras, Metabolism,
Inflammation, Glutathione, and Vegf signaling pathways. In each graph, the upper green slope
corresponds to the enrichment score (ES), whereas the lower portion depicts the value of the ranking
metrics moving down the list of ranked genes. The black vertical lines show the location of the genes
in the gene sets in the provided list of genes.

Table 3. List of enriched (core) genes (p value < 0.05) in each gene set corresponding to each group.

Sr. No Pathway Enriched (Core) Genes

MMTV Group

1 TNF
Ccl2, Mmp3, Cxcl10, Icam1, Tnfrsf1b, Cxcl1, Fas, Tnfaip3, Ccl20, Vegfc, Creb5, Jag1, Lif, Traf5,
Vcam1, Pgam5, Nod2, Ptgs2, Atf4, Il1b, Traf3, Tab1, Cxcl2, Csf1, Mlkl, NF
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Bia, Pik3cb, Traf2,
Ccl5, Cebpb, Rela

2 Autophagy
Prkaa2, Rragd, Rab39b, Smcr8, Uvrag, Bcl2, Ern1, Atg14, Sqstm1, Eif2s1, Irs1, Rptor, Atg2b,

Ctsd, Dapk3, Igf1r, Deptor, Atg12, Pik3cb, Ppp2cb, Prkaa1, Irs2, Mapk10, Rragc, Nras,
C9orf72, Akt1s1, Mapk8, Rraga
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Table 3. Cont.

Sr. No Pathway Enriched (Core) Genes

3 Type II interferon
Gvin1, Ccl2, Nlrc5, Gm4070, Pglyrp2, Ifit1bl2, Gbp6, Cxcl10, Gbp10, Ifit1, Ifi44, Ifit3b, Icam1,

Gbp9, Ifit3, Isg15, Oas1a, Rsad2, Ifi211, Cgas, Cxcl9, Usp18, Gbp4, Gm4951, Stat2, Havcr2,
Ifit2, Il1b

CTRL Group

1 WNT
Porcn, Fzd2, Lef1, Camk2a, Nfatc1, Wif1, Wnt1, Wnt11, Tcf7l1, Sfrp5, Rac3, Plcb4, Wnt10a,

Ctnnbip1, Wnt6, Fzd4, Camk2b, Vangl2, Sfrp1, Prickle2, Ccnd1, Plcb1, Nfatc4, Wnt4, Nfatc2,
Wnt10b, Nkd2, Sfrp2, Wnt5b

2 Hedgehog Evc, Arrb1, Bmp4, Stk36, Wnt1, Wnt11, Cdon, Hhip, Wnt10a, Gli1, Wnt6, Boc, Hhatl, Hhat,
Gas1, Ccnd1, Gli2, Wnt4, Bmp6, Wnt10b, Wnt5b

3 Focal adhesion

Flnc, Pip5k1c, Col6a2, Itgb1, Chad, Col6a1, Actg1, Erbb2, Pak1, Thbs2, Lamc3, Itga1, Itgb6,
Mylk2, Vegfd, ln2, Pik3r3, Myl9, Mylpf, Lamc1, Lamc2, Col9a3, Mylk4, Pik3cd, Itgb3, Itga6,
Col4a5, Rac3, Col9a2, Tnn, Col9a1, Cav2, Itga2, Pdgfra, Ibsp, Pdgfc, Pdgfb, Vtn, Cav1, Tnc,
Pdgfrb, Ccnd1, Col4a4, Itga10, Lama3, Col1a2, Lama2, Col1a1, Col6a3, Igf1, Pdgfd, Mylk

4 Rap1

Efna3, Pard6g, Vegfa, Pfn2, Plcb3, Magi1, Tek, Adcy1, Plcg1, Itgb1, Efna4, Actg1, Mapk12,
Dock4, Vegfd, Tln2, Lpar1, Fgfr2, Pik3r3, Itgb2, Afdn, Ralgds, P2ry1, Fgfr3, Adcy8, Lat, Lpar5,
Itgal Cnr1, Pik3cd, Map2k6, Itgb3, Tiam1, Angpt1, Rac3, Plcb4, Adora2b, Rgs14, Fyb, Pdgfra,
Pdgfc, Adcy5, Pdgfb, Kitl, Pdgfrb, Lpar4, Rapgef4, Plcb1, Sipa1l2, Calm4, Rapgef3, Rasgrp3,

Igf1, Calml3, Itgam, Pdgfd, Grin1

5 Metabolism

Sult4a1, Btn1a1, Adam8, Selenbp1, Cyp46a1, Pygl, Slc13a4, Dcxr, Bcat1, Vim, Ggt1,Gper1, Igf2,
Dpep1, Ndufa4l2, Cbr2, Pde5a, Ggt5, Gsta4,Nos1, Pdzd2, Slc38a3, Aox1, Gpd1, Galnt18,
Psapl1, Sardh, Mgat5b, Ak5, Gucy1b2, Aldh1a7, Gbgt1, Gcnt3, B3gnt8, Cyp2b19, Cyp2s1,

Ptgs1, Acss1, Pltp, Inpp5d, Sgpp2, Carns1, Gsta3, Fhit, Ces2g, Alas2, Ptges, Sord, Fn3k, Mgst2,
Dgki, Mest, Ces2f, Pde7b, Acsbg1, Aldh1l1, Col8a1, Atp12a, Pde9a, Cyp2d11, Hao2, Chst5,

Ggt6, Colgalt2, Aldoc, Rorc, Ces2e, Them5, Cyp2d34, Lipk, Arg1, Mgll, Galnt6, Alox12,
Xpnpep2, Tmlhe, Alox5ap, Aldh3b2, Gxylt2, Rassf9, Acsm3, Acot11, Cyp2w1, Ddc, Slc9a4

6 PI3-AKT-mTOR

Lamc3, Itga1, Ulk3, Itgb6, Ntf5, Myb, Vegfd, Hsp90b1, Prr5, Fgfr2, Pik3r3, Fzd2, Rxra, Cab39l,
Erbb3, Creb3l2, Fgfr3, Ppp2r3a, Wnt1, Lamc1, Nr4a1, Wnt11, Lamc2, Ghr, Pkn3, Col9a3,
Pik3cd, Gnb4, Gng11, Itgb3, Itga6, Bcl2l11, Col4a5, Angpt1, Cdkn1a, Col9a2, Tnn, Sgk2,
Wnt10a, Col9a1, Itga2, Pdgfra, Ibsp, Wnt6, Gng7, Pdgfc, Pdgfb, Fzd4, Eif4e1b, Vtn, Prlr,

Gngt2, Igf2, Syk, Tnc, Ppp2r2c, Pdgfrb, Ccnd1, Col4a4, Itga10, Chrm1, Lama3, Col1a2, Lama2,
Creb3l3, Creb3l4, Wnt4, Pik3cg, Grb10, Col1a1, Pik3ap1, Wnt10b, Col6a3, Igf1, Pdgfd

7 Prolactin Socs1, Mapk12, Thrsp, Pik3r3, Socs3, Socs2, Pik3cd, Btn1a1, Slc30a2, Pip, Prlr, Ccnd1, Cish,
Cyp17a1, Elf5, Slc16a7, Slc16a4

8 EGFR Cav2, Reps2, Pdgfc, Prlr, Cav1, Ddit4l, Nrarp, Rps6ka5, Ceacam1, Gucy1b2, Il16, Inpp5d,
Pik3cg, Grb10, Rasgrp3, Kprp, Mcf2l, Pigr, Ogn, Gprc6a, Cbs, Vipr1

9 Hippo
Birc2, Prkcz, Crb2, Fzd1, Pard6g, Wnt7b, Llgl2, Serpine1, Actg1, Tgfb1, Smad3, Tgfbr2, Gdf5,

Bmp4, Fzd2, Itgb2 Lef1, Tgfb2, Wnt1, Tead3, Wnt11, Tcf7l1, Dlg2, Ctnna3, Wnt10a, Wnt6,
Fzd4, Ppp2r2c, Ccnd1, Gli2, Wnt4, Bmp6, Wnt10b, Nkd2, Dlg4, Wnt5b

10 Ras

Plcg2, Calml4, Efna5, Pik3r2, Gngt1, Fasl, Ralbp1, Fgf21, Rasgrp4, Ntrk1, Pla2g2f, Efna3,
Vegfa, Foxo4, Tek, Gng2, Plcg1, Pld1, Efna4, Rasal2, Gm5741, Pak1, Ntf5, Vegfd, Fgfr2, Pik3r3,

Afdn, Ralgds, Fgfr3, Lat, Pik3cd, Gnb4, Rgl2, Gng11, Tiam1, Pla1a, Angpt1, Rac3, Gab2,
Pdgfra, Rasa4, Gng7, Pdgfc, Pdgfb, Pla2g2c, Gngt2, Igf2, Kitl, Pdgfrb, Calm4, Pla2g3, Rasal1,

Pla2g4e, Rasgrp3, Igf1, Calml3, Pdgfd, Grin1, Rasgrp1

11 Inflammation Il5, Lamc1, Lamc2, Fam13a, Ltb4r1, Vtn, Gcnt1, Col1a2, Col1a1, C1qtnf3, Ptprz1,
Alox5ap, Col3a1

12 Glutathione Gstt2, Gsta1, Gstm4, Gstm5, Gstk1, Gsto2, Mgst1, Idh2, Gstt1, Mgst3, Idh1, Gsta2, Gstm2,
Ggt1, Ggt5, Gsta4, Gstm1, Gsta3, Anpep, Mgst2, Ggt6

13 VEGF Mapk13, Ppp3cc, Akt3, Kdr, Pla2g6, Plcg2, Nos3, Pik3r2, Pla2g2f, Vegfa, Plcg1, Mapkapk3,
Mapk12, Sphk1, Pik3r3, Nfatc1, Pik3cd, Rac3, Pla2g2c, Nfatc4, Pla2g3, Nfatc2, Pik3cg, Pla2g4e
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3.4. Determination of the Interaction among Core Genes and Biological Pathways Involved upon
MMTV Expression

The top 16 significant pathways in both MMTV (n = 3) and CTRL (n = 13) phenotypes
depicted in Table 3 were further analyzed for the member genes within each pathway
and their interactions with other pathways. To do so, we constructed a pathway–gene
interaction (PGI) network using Cytoscape v3.8.2. As GSEA uses whole genes in the
pathway, either DEGs or non-DEGs, we removed the non-DEGs from the enriched genes
sets. The constructed PGI network was composed of 211 nodes (genes) and 258 edges
(Figure 5; Supplementary Data S9). The PGI network showed that many of the genes were
shared by multiple pathways, which confirmed our initial analysis that these genes could
be used as possible hub genes, i.e., genes that connect to more than 10 other genes belonging
to the genetic interaction network. Hub genes are critical since their dysregulation can not
only potentially disrupt the pathway itself but also isolate other nodes.

Figure 5. Networking among differentially expressed genes (DEGs) and pathways identified via
GSEA. The top 16 pathways were identified using GSEA. Cytoscape was used to create the network
using an organic layout. The network comprised 211 nodes and 258 edges. All genes included in this
figure showed significant up- or down-regulated changes (FC > ±2).

3.5. Identification of Hub Genes

To identify the hub genes, we used two methods that were combined later. First, we
identified the 45 most interacting DEGs at least present in two pathways, as shown in
Figure 5. Out of the 16 pathways, 15 were included in this interaction to find any central
pathway (discussed later). The prolactin pathway was filtered out due to the absence of
any connecting gene to other pathways.

As can be seen, the resulting network contained 60 nodes and 115 edges (Figure 6a and
Supplementary Data S10). In the second approach, we selected the previously identified
122 DEGs in Section 3.2 that were present in at least 5 or more pathways at the start of the
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analysis, as shown in Figure 3. The STRING database was used to construct the protein–
protein interaction (PPI) network using these DEGs. This network revealed 95 nodes and
241 edges (Figure S3). The constructed network was then exported to Cytoscape, and
the CytoHubba application was used to find any central DEGs. CytoHubba identified 13
DEGs, of which 2 (Cxcl10 and Ccl2) were up-regulated, and 11(Acta2, Cd34, Col1a1, Col1a2,
Cxcl12, Eln, Igf1, Igf2, Itgam, Serpine1, and Thbs2) were down-regulated (Figure 6b). This
PPI network contained 13 nodes and 34 edges. Co-expression of the key DEGs identified by
CytoHubba was determined using STRING, which showed a strong interconnection among
all the key hub genes (Figure 6c). Thus, all of the identified key genes by CytoHubba were
also present in the identified significant pathways by GSEA.

Figure 6. Identification of key hub genes. The gene–pathway and protein–protein interaction
network analyses were conducted to find key hub genes, if any. (a) An interacting network among
the significant pathways and the DEGs was created using Cytoscape. The network comprised
60 nodes and 115 edges. (b) The up- and down-regulated 13 hub genes identified by the Cytohubba
plugin of Cytoscape through DEG PPI network identified by STRING. (c) The PPI network of 13
hub genes differentially expressed between CTRL and MMTV phenotype was constructed using
STRING with default settings. (d) By combining the outcomes from (a,b) analyses, 50 DEGs were
selected as potential candidates for hub genes. STRING divided them into 2 groups by means of
k-means clustering (Cluster 1: red, Cluster 2: green). For STRING networks, the turquoise lines
show known interactions from curated databases, the pink lines show experimentally determined
interactions, and the yellow, black, and light blue lines show text-mining, co-expression, and protein
homology interactions, respectively. The green, red, and blue lines show predicted interaction
among gene neighborhoods, gene fusions, and gene co-occurrence, respectively. The dotted lines
show interaction between two clusters. (e) The MCODE module of Cytoscape resulted in 12 most
interconnected genes that were selected as key hub genes.
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To find hub genes, we combined the key DEGs resulting from both approaches (DEGs
mentioned in Figure 6a,b). These 50 DEGs were submitted to STRING for any intercon-
nections, and the generated PPI network consisted of 44 nodes and 142 edges. K-means
clustering using STRING showed that this network could be divided into two main clusters
(Figure 6d and Supplementary Data S11). Cluster A (in red) contained 20 DEGs (Calml3,
Creb3l4, Dapk1, Dlg4, Ggt5, Ggt6, Grb10, Grin1, Gsta3, Gsta4, Igf2, Innpp5d, Mgs2, Myc,
Pik3cg, Plcb1, Prkaa2, Rpsd6ka5, Wnt4, and Wnt5b). Cluster B (in green) contained 24
DEGs (Acta2, Alox5ap, Angpt2, Ccl2, Cd34, Chad, Col1a1, Col1a2, Col6a3, Col9a2, Cxcl12,
Eln, Ibsp, Icam1, Ifit1, Igf1, Itga10, Itgam, Lama3, Pdgfd, Rasgrp3, Serpine1, Thbs2, and
Vim). Both clusters were exported to Cytoscape after removing 6 DEGs (Gucy1b2, Il18r1,
Nfatc2, Nfatc4, Nr4a3, and Pla2g3) not connecting to the main clusters, and the MCODE
plugin was used to determine any significant module with highly interconnected regions.
MCODE resulted in four significant modules (Figure S4), and the best module with the
highest score was selected (Figure 6e). This module contained 12 DEGs that could be
considered as key hub genes. Out of these, four (33.3%) were up-regulated (Angpt2, Ccl2,
Icam1, and Myc), while eight (66.7%) were down-regulated (Acta2, Cd34, Col1a1, Col1a2,
Cxcl12, Eln, Igf1, and Itgam), maintaining the overall down-regulatory effect on MMTV on
the expression of key hub genes.

To further analyze the known function of the genes, these genes were submitted to
the STRING database for clustering analysis via k-means, which resulted in three distinct
clusters based on their functions (Figure 7a and Supplementary Data S12). The subsequent
network comprised 12 nodes and 65 edges, with Cluster 1 comprising 5 genes (Angpt2,
Ccl2, Cd34, Icam1, and Itgam). Functional enrichment analysis using GO showed that
genes grouped in Cluster 1 are found in the extracellular region and are involved in cellular
extravasation, leukocyte migration, stimuli response, cell differentiation, stress response,
regulation of cell death, and immune response. Cluster 2 comprised four genes, including
Acta2, Col1a1, Col1a2, and Eln, genes that belong mainly to the extracellular matrix and
morphogenesis processes and are involved in protein digestion and absorption, focal
adhesion, proteoglycans in cancer, inflammatory response pathway, and dysregulated
miRNAs targeting insulin/ PI3-AKT signaling. Cluster 3 displayed three genes (Cxxl12,
Igf1, and Myc), associated mainly with cell proliferation, transcription, breast cancer,
transcriptional dysregulation in cancer, and proteoglycans in cancer. The CTDbase was
used to find any involvement of these genes in animal diseases. As expected, all of these
genes were involved in various diseases, such as cancer, diabetes, neoplasms, cardiovascular
diseases, leukemia, and neurodegeneration (Figure 7b).
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Figure 7. Functional analysis of key hub genes. (a) STRING was used to draw any functional similar-
ities among key hub genes. K-means clustering using STRING resulted in 3 clusters, represented as
red, blue, and green. The solid lines show interaction among the same group, while dotted lines show
interaction among different clusters and sub-components. For STRING networks, the turquoise lines
show known interactions from curated databases, the pink lines show experimentally determined
interactions, and the yellow, black, and light blue lines show text-mining, co-expression, and protein
homology interactions, respectively. The green, red, and blue lines show predicted interaction among
gene neighborhoods, gene fusions, and gene co-occurrence, respectively. (b) Functional enrichment
analysis and association of the key hub genes with known diseases. Genes were searched for the
molecular pathways using KEGG, Wiki, and Reactome pathway databases as well as other gene
databases. Association of these genes with diseases was searched in CTDbase, with only experiment
evidence option.
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3.6. Identification of Central Pathway Dysregulated after MMTV Expression

Although by using GSEA, we found 6 pathways up-regulated and 25 down-regulated
after MMTV expression, we selected the 16 top pathways on the basis of their strong statis-
tics (Figure 4 and Table 3). Gene pathways interaction network analysis (Figures 5 and 6a)
showed the central role of PI3-Akt-mTOR pathway, and most of the genes were connected
to this pathway. To further explore this pathway, we downloaded the already available
pathway map of PI3-AKT-mTOR from KEGG comprising 359 genes and examined the
overall gene expression, as observed in our study. We found 21 genes that were identified
as DEGs in our study. These included: Angpt2, Chad, Chrm1, Col1a1, Col1a2, Col6a3,
Col9a2, Creb3l4, Gm2436, Ibsp, Igf1, Igf2, Itga10, Lama3, Lpar4, Myc, Pdgfd, Pik3ap1,
Pik3cg, Prkaa2, and Thbs2. Interestingly, most of these genes are key members of several
pathways identified to be significantly dysregulated in our study. Except for Chrm1, Col6a3,
Col9a2, and Gm2436, every gene overlapped five or more times in all pathways included
in this study.

On the basis of DEGs identification and hub gene analysis, we modified the KEGG
PI3-Akt-mTOR pathway map by showing the overall change in gene expression in this
pathway (Figure 8). Our study shows that MMTV expression also significantly down-
regulated genes involved in other pathways, such as insulin, ECM regulation, Wnt, and
Ras signaling. The reduced expression of these genes. MMTV expression also induced the
expression of Myc and Prkaa2 (aka Ampk) that may, in turn, induce cell cycle progression.

Figure 8. Expression analysis of genes involved in PI3-AKT-mTOR pathway post MMTV expression.
The PI3-AKT-mTOR pathway was downloaded from the KEGG mouse pathways and was modified
accordingly. The up-regulated genes are shown in red, while the down-regulated in green seemed to
down-regulate Akt gene (a key gene of the PI3-AKT-mTOR pathway). Down-regulation of Akt could
result in induced apoptosis, NF
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P53 70 0.23 1.25 0.000 0.169 0.451 
Notch 57 0.24 1.23 0.240 0.164 0.570 

Apoptosis 142 0.22 1.21 0.000 0.169 0.650 
Cell cycle 121 0.23 1.13 0.245 0.284 0.950 
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WNT 140 −0.35 −1.83 0.000 0.030 0.000 
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Metabolism 130 −0.66 −1.58 0.000 0.068 0.140 
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EGFR 38 −0.69 −1.52 0.000 0.072 0.140 

PI3−AKT 310 −0.30 −1.52 0.000 0.069 0.140 
Hippo 148 −0.27 −1.51 0.000 0.073 0.140 

Ras 221 −0.30 −1.49 0.000 0.070 0.140 
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B, and p53 signaling that is also evident from our results, suggesting
that MMTV may up-regulate these pathways, as suggested by GSEA analysis. This figure was created
using KEGG “map04151 PI3K-Akt signaling pathway [68]” with copyright permission (230722).
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3.7. Prediction of mRNA-miRNA Interaction

MicroRNAs (miRNAs) are small non-coding RNAs involved in most biological pro-
cesses by regulating mRNA expression [83]. Recent studies have well documented the
regulatory role of miRNAs at both the transcriptome and/or proteome levels in various
diseases [84]. Therefore, we predicted possible candidate miRNAs that may regulate ex-
pression of hub genes identified in this study. A total of 708 unique miRNAs were predicted
for all hub genes using the miRDB database (see Supplementary Data S14). Further anal-
ysis showed that 58 miRNAs were predicted for at least three or more hub genes and
mRNA-miRNA interaction map was created for these transcripts using Cytoscape. This
map interaction contains 70 nodes and 192 edges (Figure 9).

Figure 9. mRNA-miRNA interaction network. The mRNA–miRNA interaction map was constructed
using Cytoscape with 12 hub genes and 58 predicted miRNAs. Every miRNA presented here showed
interaction with at least 3 genes. The color of hub genes was selected based on the k-means clustering
of the genes using STRING.

Overall, most of the interactions were found for the Igf1 (n = 103), followed by Cxcl12
(n = 81), Col1a2 (n = 60), and Col1a1 (n = 59). The top predictions were found for mmu-
miR-6951–3p and mmu-miR-7116–3p (n = 6), followed by mmu-miR-3102–3p, mmu-miR-
466d-5p, mmu-miR-466k (n = 5), mmu-miR-126b-5p, mmu-miR-29a-3p, mmu-miR-29b-3p,
mmu-miR-29c-3p, mmu-miR-466i-5p, mmu-miR-466l-5p, and mmu-miR-7119–3p (n = 4).
These predicted miRNAs could be involved in the regulation of hub gene expression and
may represent possible targets in cancer progression.

4. Discussion

MMTV is a well-known tumor-inducing pathogen in mice. In recent years, it has
emerged as a potential pathogen in humans as well [35–39]. Therefore, it is important to
study virus–host interactions to understand the host defense mechanisms at play and how
the virus may evade such processes at the molecular level and spread within the host to
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cause disease. In the present study, we explored the host molecular pathways that may
regulate the replication and potential pathogenicity of MMTV in normal mouse mammary
epithelial cells, the key cells targeted by the virus for tumorigenesis. Our study is the first
of its kind that has not only deeply analyzed changes in host gene expression upon MMTV
expression but also identified key hub genes, downstream biological pathways, and gene
regulators (miRNAs) involved in multiple cellular pathways affected by MMTV infection
in the most relevant cells targeted by MMTV. Furthermore, our study presents predicted
interactions of the miRNAs with identified hub genes, an aspect that points to the complex
signatures induced upon MMTV infection. Thus, this study provides the foundational
framework to understand the molecular circuitry involved in MMTV infection of mammary
epithelial cells.

Our goal was achieved by conducting RNAseq that found 965 genes differentially
regulated upon MMTV expression (Figure 2). Of these, 26% genes were up-regulated, while
74% were down-regulated upon MMTV expression, revealing a global down-regulation
of gene expression induced by MMTV. To understand which molecular pathways were
affected by the virus, gene ontology was performed, and DEGs were grouped in several
biological pathways on the basis of the current literature. Most of the DEGs were involved
in transport, regulation of cell proliferation, proteolysis, transcriptional regulation, cell dif-
ferentiation, and signal transduction, which affected several molecular functions, including
receptor binding, metal ion binding, catalysis, and hydrolase activities (Figure 3). Initially
DEGs were grouped into 54 biological pathways on the basis of the available literature and
database entries and then were restricted to 38, as we were interested in KEGG pathways
for further analysis (Table 2; see Supplementary Data). Next, gene enrichment analysis
was used to explore the role of these pathways upon MMTV expression. GSEA identi-
fied 31 pathways significantly enriched upon MMTV expression. These 31 pathways were
further restricted to 16 on the basis of statistical values (Table 2). Of these, 3 pathways, in-
cluding TNF, autophagy, and type II interferon were up-regulated, while 14 (including Wnt,
Hedgehog, Focal adhesion, Rap1, Hippo, Egfr, Prolactin, PI3-Akt-mTOR, Ras, Metabolism,
Inflammation, Estrogen, Glutathione, and Vegf) were observed to be down-regulated after
MMTV expression (Figure 4 and Table 3). Gene–pathway interaction/networking map
revealed that other than Prolactin, the remaining pathways were interconnected with
each other via overlapping genes (Figure 5). Interestingly, most of the DEGs fell into
multiple pathways, with 122 genes present in 5 or more pathways (Figure 3). Meanwhile,
we also identified DEGs that were interconnecting significant pathways in this study
(Figures 5 and 6a). Of the 12 core hub genes, 4 were up-regulated (Angp2, Ccl2, Icam, and
Myc), and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and
Itgam) (Figure 6e). The CTDbase was used to find any association of these genes with
current diseases (Figure 7).

One may question why the HC11 cells were used for this analysis and not a more
suitable in vivo mouse system. The HC11 cell line represents the simplest way to study
the cellular/molecular changes after MMTV infection, especially since it retains the stem-
cell-like property of primary mammary epithelial cells with the ability to differentiate into
both ductal and luminal cells [46,47]. Normal mammary epithelial cells are also the final
destination of MMTV infection in mice, where large amounts of virus are produced for
passage to the progeny [3,12,13]. Consequently, these cells are the ones that eventually give
rise to breast tumors as a result of insertional mutagenesis, where viral enhancer elements
end up activating expression from growth promoting genes, such as Wnt1 and Fgf3 [25].
Under ideal circumstances, this study could have been carried out using a complex tissue
environment, such as the infected mouse mammary gland, but considering these glands
are composed of multiple cell types (epithelial (ductal, luminal), adipocytes, fibroblasts,
lymphocytes (T-, B-, and NK-cells), and others) and undergo constant changes throughout
the mouse lifespan (virgin, pregnant, lactating, and involution back to a non-lactating
state [85]), studying the effect of virus infection in such a complex milieu with appropriate
controls would have been difficult, to say the least, and would not have addressed what
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exactly happens in the mammary epithelial cells only. Hence, we chose the simplest cell
line system to identify the response of the mammary epithelial cells to MMTV expression
in the early stages of infection in a clear-cut manner without other confounding variables,
which was the main aim of our study.

To further characterize our data, we compared our results with already published
gene expression data in specific mouse models of breast cancer. Herschkowitz et al. [86]
compared genetic profiles of 13 most commonly used mouse breast cancer models with
human breast tumors and observed that not a single mouse model recapitulated all the
expression features of a given human subtype. However, the shared features could provide
a framework for improved understanding of MMTV-induced tumorigenesis. Therefore, we
looked at the various mouse models available and compared our results with two more
relevant models for which appropriate data were available.

In the first model, Cai et al. performed gene expression analysis on mammary tumors
in the PyMT mouse model, in which mammary tumors were induced by expressing the
polyoma middle T (PyMT) oncoprotein from the MMTV promoter [87]. The PyMT mouse
model has been widely used to study breast cancer and shares similar transcriptional and
morphological features with human breast cancer [86,88]. The authors analyzed mRNAseq
data from four distinct stages of mammary tumor development, starting from hyperplasia,
adenoma, early carcinoma, to late carcinoma. Characterization of the specific DEGs in the
PyMT mouse model revealed that many of these genes were also differentially regulated
in our study. Supplementary Data S15 represents the up- and down-regulated genes in
our study that were also observed in the PyMT mouse model. Moreover, six key hub
genes identified by our study (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, and Igf1) were also
significantly dysregulated in the PyMT mouse model. Cai et al. found down-regulation of
ECM, focal adhesion, insulin, PPAR, and metabolic pathways. We also observed similar
down-regulation of these pathways upon MMTV infection, except ECM that was not
included in our study (Table 2). Moreover, upregulation of p53 and cell cycle pathways
during tumorigenesis documented by Cai et al. was also observed in our study in MMTV-
infected HC11 cells (Table 2). Furthermore, categorization of common DEGs according
to their association with KEGG pathways revealed similar down-regulation of many of
these pathways in both our study and the Cai et al. study (Figure 10a). Considering that
Cai et al. observed that the expression profile of most of these DEGs remained similar
throughout cancer progression among the four stages of tumor progression, they suggest
that alterations to gene expression important to carcinogenesis happen early on and are
maintained throughout tumor progression.

Interestingly, similar to our results, they also observed an overall global down-
regulation of most genes (63–69%) in the four stages, changes that actually started in
the hyperplasia stage and continued during the later stages of tumor development [87].
Expression of one of the targets of their hub genes was the maintenance methyltrans-
ferase, DNMT1, that was significantly up-regulated consistently in the four stages of tumor
progression analyzed. Not so surprising, we made a similar observation that MMTV up-
regulates expression of the de novo methyltransferase, DNMT3L, an observation that may
explain the global down-regulation of gene expression observed in our data (Figure 2 and
unpublished observations).

This unexpected similarity in results between our cell line and their mouse model
suggests that similar to the PyMT oncogene, MMTV expression may initiate changes in
the HC11 cells that later predispose these cells to cell transformation. While MMTV does
not encode an oncogene, earlier studies have implicated MMTV Gag and Env proteins
with possible oncogenic properties, which may initiate these changes in the infected HC11
mammary epithelial cells early on [9,34,89]. This similarity could also be due to the stem-
cell-like property of the HC11 cells used, as has been documented by Thrasyvoulou et al.
2020. They showed that retrotransposition of HC11 and not the non-tumorigenic C127
mammary epithelial cells by the VL30 retrotransposon led to acquisition of mesenchymal
features by these epithelial cells, increased their cancer-stem-cell-like property, leading
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to tumorigenesis in BALB/c mice [90]. Together, these observations suggest that MMTV-
induced molecular changes in HC11 cells could represent early changes that may be
important for cell transformation and ultimate tumorigenesis. Thus, our findings reinforce
the conclusion that HC11 cells represent a valuable in vitro model system to study gene
regulation after MMTV infection.

Figure 10. Gene expression comparison among our study, the PyMT, and Wnt1 tumor models, as
well as human breast cancer data. (a) Networking among differentially expressed genes (DEGs)
and pathways identified commonly in our study and the study by Cai et al. using PyMT mouse
model [87]. The top 17 pathways were identified, sharing at least 5 or more common genes from both
studies. Cytoscape was used to create the network using an organic layout. The network comprised
156 nodes and 271 edges. Red and green ellipse shapes represent up- and down-regulated genes with
in KEGG pathways, respectively. The orange octagon shapes represent individual pathways. (b) Gene
expression analysis between our study and Wnt1 early mouse model. Red and green boxes represent
up- or down-regulated genes in both studies, respectively. (c,d) Functional analysis of key hub genes
with panel (c) showing expression of key hub genes retrieved from RNAseq expression from profiles
of all human breast cancer patients. The expression pattern of 12 hub genes in 10,967 human breast
cancer samples was analyzed. (d) Clustering of hub genes and human breast cancer samples from
the TCGA database. The expression pattern of the 12 hub genes in 1,084 samples was analyzed with
respect to gene expression and tumor stage. The figure shows only the cluster containing our data.
Red = up-regulated genes; Green = down-regulated genes.

In addition to the PyMT mouse model, the MMTV-Wnt1 mice are also used for study-
ing breast cancer development [91]. This model is especially relevant to MMTV biology
since up-regulation of Wnt1 expression via MMTV insertion is one of the main mechanisms
of MMTV-induced tumorigenesis in mice [25]. Wnt gene family members are responsible
for not only regulating cell growth and differentiation but also renewal of stem cells. Wnt
signaling happens canonically through Frizzled (Fzd) and low-density lipoprotein (LDL)
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receptor-related proteins (LRP) and non-canonically through calcium, Jnk, and Src, result-
ing in developing two types of tumors, Wnt1 early, and Wnt1 late. Wnt1 early tumors show
higher expression of genes from both the canonical and non-canonical Wnt signaling and
EGFR signaling pathways compared with Wnt1 late tumors [92–94]. Comparison of our
data with these studies revealed that our results were more similar to those observed in the
Wnt1 early tumor stage than Wnt1 late tumors. A closer comparison of 76 genes from the
canonical and non-canonical Wnt1 signaling pathways that were differentially regulated
in the Wnt1 early tumors revealed that 50% of these genes were expressed in a similar
manner to our study, while 41% were down-regulated, and only 9% were up-regulated,
revealing that most of these genes were either similarly expressed or down-regulated in
MMTV-expressing cells (Figure 10b and Supplementary data S16 represents expression
profile of these genes in our study). Interestingly, there was a significant down-regulation
of inhibitors of Wnt signaling, Nkd1/2, Sfrp1/2/5, and Dkk2/3/4, and up-regulation of
Wnt activation genes, Frat1 and Frat2, in our study compared with Wnt1 early tumors, but
expression of the Dishevelled family members (Dvl) that is activated by Wnt signaling was
not changed (Figure 10b) [95]. This observation suggests that MMTV may induce Wnt sig-
naling by a combination of down-regulating its inhibitors and up-regulating its activators.
Furthermore, Nkd2 expression has been found to activate EGFR ligand. The EGFR pathway
was found to be activated in Wnt1 early tumors [96], and as expected, down-regulated in
our study. Meanwhile, expression of other EGFR family oncogenes, Erbb2 (HER2) and
Erbb3 (HER3), was also down-regulated in our study (Supplementary data files S2 and
S3). Overall, these results suggest that upon expression, MMTV promotes Wnt signaling
irrespective of its well-known ability to activate it via insertional mutagenesis, perhaps as
an early response to cell transformation.

To further investigate the precise expression of our hub genes, we then analyzed
and compared their expressions in the RNAseq studies conducted on humans with breast
cancer since; unfortunately, these data were not available for mouse mammary tumors.
Therefore, the human Cancer Genome Atlas (TCGA: https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga, accessed on 16 April 2022) was
searched for the expression of the hub genes identified in our study in human breast cancer
patients. TCGA contains RNAseq data of 10,967 cancer patients, of which 1,084 are breast
cancer patients having cancer at different stages (Supplementary Data S13). First, we
examined the overall expression of the hub genes in all cancers and found that these genes
were significantly expressed in most cancers, whether they were specific to the breast tissue
or otherwise (Figure 10c). Then, the data were filtered for breast cancer patients with the
ID “BRCA”. Our analysis revealed that most of the human breast cancer samples were of
cancer stage M0 (no evidence of distance metastasis), with variable tumor stages, mostly T1
(tumor is <2 cm across) and T2 (tumor is >2 cm across). The expression profile of hub genes
was variable in human samples; however, expression of Cd34, Icam1, Acta2, Eln, Cxcl12,
Igf1, and Myc was consistent with and similar to our study (Figure 10d). Interestingly, the
expression profile of Ccl2, Col1a1, Col1a2, and Itgam was very close to most of the breast
cancer samples, with a degree of variability among samples. Although little is known about
their role in terms of MMTV infection, we may map their expression profile changes during
MMTV infection through observations made previously for other viruses. Most of the
hub genes identified in this study have direct association with cellular immune response
upon pathogen infection. We observed an up-regulation of type II interferon pathway
and down-regulation of genes associated with inflammation and immune response. This
agrees with the general observation that the first objective of any pathogen is to bypass or
dysregulate cellular immune systems [97,98]. Supplementary File S1 describes a detailed
relevance of the identified hub genes in this study to the viral infection and MMTV biology.

Although many biological pathways, including apoptosis, autophagy, cell cycle, Tnf,
interferon, p53, Notch, ECM, Wnt, Hedgehog, focal adhesion, and Egfr, were dysregulated
after MMTV expression, we recognize PI3-Akt-mTOR as one of the key pathways connect-
ing many other pathways. To further explore the changes in PI3-AKT-mTOR pathway after
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MMTV expression, we analyzed this pathway from the KEGG database by superimposing
our data on its map (Figure 8). This pathway contains most of the genes already defined as
DEGs and hub genes in our study (Figures 5 and 7). Activation of this pathway has been
well known during viral entry and in cancers, especially breast cancer [99,100]. Activation
of this pathway not only controls cell survival, metabolism, growth, and motility but also
induces resistance against anti-cancer therapies by inducing tumor growth [101]. Inhibition
of this pathway has been suggested as an important step not only to control viral entry
but also cancer progression [100,102]. Various stimuli, including growth factors, cytokines,
and hormones could activate the PI3K cascade. In most cancers, PI3K can be regulated by
decreased expression of Pten (a direct antagonist of PI3K) [103] or induced expression of
PIK3CA (a gene encoding PI3K). In our study, expression of Pten was above normal after
MMTV infection, showing that down-regulation of PI3K pathway was from some other
stimuli. We also found significant down-regulation of PIK3CG, the catalytic subunit of
PI3K. Down-regulation of PIK3CG can impede the PI3K/AKT/mTOR pathway that has
been suggested as a possible therapy in cancer [104]. We also found several genes as DEGs
that may regulate PI3K signaling upon activation (Figure 7). Most of these DEGs were
down-regulated in our study, including Igf1, Igf2, Pdgfd, Col1a1, Col1a2, Bcap, Pik3cg,
Rasgrp3, Wnt4, and Fasl. PI3K activation blocks Gsk3b signaling that further blocks Myc
expression. Thus, enhanced expression of Myc in our study could be a reason for reduced
PI3K signaling.

While we found most of the important cellular pathways of the host down-regulated
upon MMTV expression, some pathways were also up-regulated. These pathways are
also important in cancer progression and were associated with cell cycle arrest, cell repair
(e.g., p53 pathway) [105], apoptosis [106], tumor suppression, Notch pathway [107]), an-
giogenesis, host immune response (Tnf signaling) [108], type II interferon signaling [109]),
cellular immunity, stress response, and inflammation (NFκB signaling [110]). Thus, manip-
ulation of these pathways by MMTV in the host could provide advantages to the virus to
escape from the host innate and induced immune response and cause pathogenesis, aspects
that need further exploring. Moreover, we also predicted miRNAs that may regulate
the expression of important genes dysregulated during MMTV entry. Viruses are able to
regulate host miRNA environment that, in turn, can alter host cellular mRNAs to achieve
their targets [111]. In future studies, we hope to identify such miRNA dysregulated upon
MMTV infection.

In conclusion, we find that upon MMTV expression in mammary epithelial cells, most
of the DEGs and pathways dysregulated were associated with host defense mechanisms.
Disruption of these pathways by MMTV could be taken as a possible mechanism to bypass
the host immune system mounted by the cells to tackle MMTV infection. While a limitation
of this study is that it was performed in a cell line, conducting this study in mammary
epithelial cells isolated from MMTV-infected mammary glands would not have been
possible due to technical issues of how to isolate these cells and which cell type to focus
on since they differentiate and de-differentiate with time and hormonal status, showing
a heterogenous phenotype at the molecular and cellular levels. Despite this limitation,
we observed a similar down-regulation of gene expression pathways in HC11 cells after
MMTV expression as those observed in the PyMT mouse model, and comparison with
Wnt1 mouse model provided further insights into how MMTV expression may activate
the Wnt1 signaling to predispose the mammary epithelial cells to cell transformation.
Finally, most of the hub genes identified in our study were also found to play a role in
human breast cancer. The identified hub genes post MMTV expression and predicted
miRNAs targeting these hub genes may play critical roles in the progression of MMTV
infection and cell transformation and could be used as possible diagnostic and disease
progression biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v15051110/s1, Supplementary File S1: Hub Genes and Their Relevance
to Viral Infections and MMTV Biology; Figure S1: Pearson correlation graph of four samples se-
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quenced in this stud; Figure S2: The volcano plot of all DEGs in MMTV/CTRL group; Figure S3: The
protein-protein interaction (PPI) network for 122 DEGs present in five or more pathways; Figure S4:
Screenshot of the modules produced after using MCODE; Date S1: 17346 genes; Date S2: 16519
CTRL; Date S3: 16446 MMTV; Date S4: 965 DEGs; Date S5: GO analysis; Date S6: 122 high ranked
genes; Date S7: KEGG pathways; Date S8: 38 KEGG pathways; Date S9: DEGs and KEGG Network-
ing; Date S10: 45 Hub genes_Pathways; Date S11: 50 STRING hub genes; Date S12: 12 key hub
genes; Date S13: TCGA data; Date S14: Predicted miRNAs; Date S15: PyMT genes; Date S16: Wnt
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