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Abstract: The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV
therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant
concern. Therefore, there is a continuous need to discover and develop new, safer, and effective
drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention
as alternative sources of anti-HIV compounds or immunomodulators that can escape the current
barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that
can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in
the search for fungal species with the capacity to produce anti-HIV compounds. This review provides
insights into the recent research developments on natural products produced by fungal species,
particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study,
we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various
activity assays developed for gauging antiviral activity production from microbial sources since they
are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we
explore fungal secondary metabolites compounds that have been characterized at the structural level
and demonstrate their potential as inhibitors of various HIV-1 target sites.

Keywords: antiviral; endophytic fungi; human immunodeficiency virus-1; immunomodulation;
secondary metabolites

1. Introduction

The increasing number of people living with Human Immunodeficiency Virus (HIV)
remains a significant global public health concern. According to UNAIDS report, more than
38 million people worldwide were living with HIV in the year 2021. About 20.6 million
of these people living with HIV were in the Eastern and Southern Africa regions where
HIV-1 is the predominant strain [1]. Approximately, 75.5% people infected with HIV
globally are receiving antiretroviral therapy which indicate a remarkable progress [1]. The
introduction of combination antiretroviral (cARV) therapies has reduced HIV-1 from a fatal
disease to a manageable chronic condition owing to reduced probabilities of the disease
progression to acquired immunodeficiency disease syndrome (AIDS) and thus resulting in
a significant reduction to HIV-1-related morbidity and mortality [2]. Despite these gains,
about 650,000 people in 2021 succumbed to AIDS-related illnesses. Although a large extent
of these deaths could be a result of limited access to antiretroviral therapy in some regions,
some other factors includes the limited therapeutic effect since these drugs do not cure HIV
due to failure to eliminate latently integrated HIV proviral DNA in the host genome, which
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is capable of initiating replication to detectable levels once ARV treatment is interrupted [3].
Virological failure is reported in at least 20% of individuals receiving the first line of ARVs
in low- and middle-income countries [4]. The success story of the existing antiretroviral
regimens is hindered by the emergence of antiviral-resistant HIV-1 strains and adverse
side effects leading to non-adherence [4,5]. For example, long-term use of ARTs comes
with the risk of myopathy, lymphadepathy, cardiotoxic effects, and other hematologic
disorders [6–8]. The repeated use of ARTs may cause the evolution of viral mutations in
infected individuals leading to suppression of the bone marrow and high mitochondrial
toxicity [9]. Moreover, current antiviral drugs cannot inhibit the virus from replicating in
viral reservoirs. Human immunodeficiency virus continues to persist within latent cellular
reservoirs, which can become reactivated at any time to produce an infectious virus [10,11].
New therapies are therefore required not only for HIV suppression but also for containing
or eliminating HIV reservoirs.

One of the long-term research approaches that is gaining impetus is directed towards
implementing small molecule screens of naturally derived compounds, specifically to iden-
tify compounds that are effective for provirus reactivation in combination with previously
Food and Drugs Administration (FDA) approved drugs. Fungal species, especially endo-
phytic fungi associated with medicinal plants are rich sources of novel and bioactive small
molecular (secondary metabolites) compounds [12–15]. Although this review will focus
on all fungal metabolites, endophytic fungi are of particular interest since they represent a
largely unexplored niche. To date, no fungal metabolites have been approved as treatment
for HIV-1, although there are several early screening studies suggesting fungal derived
natural products to hold a high potential as anti-HIV therapies. Some of these studies
have been extensively reviewed by Linnakoski et al. [15] and Roy [16]. This review intends
to highlight structurally elucidated compounds derived from fungi/endophytic fungi as
alternative HIV treatment strategies that have the potential to expand HIV-1 treatment
options and escape existing treatment barriers. This review will explore the advances in
developing antiviral assays, which are vital to uncovering antiviral agents from microbial
sources. Furthermore, we propose comprehensive, whole replication antiviral screening as-
says as the most informative and unbiased approach for early drug development initiatives
that will assist in charting a future direction in the search for antiviral compounds from
microbial sources. Finally, we examine the potential of secondary metabolites derived from
endophytic/fungi as future antiviral agents that can be used as potentiators, inhibitors, or
latency-reversing agents to combat HIV.

2. The Biology of HIV and Currently Available Therapies for HIV Treatment

Human immunodeficiency virus infection begins when the viral glycoprotein gp120
binds to CD4+ receptors on the T helper cell [17]. Once attached, the CD4+ T cell and the
HIV capsid fuse, allowing the viral RNA, reverse transcriptase, integrase, and protease
to enter the cell [18,19]. Inside the host cell’s cytoplasm, the HIV RNA is converted into
HIV DNA, which is facilitated by the reverse transcriptase enzyme [20]. The reverse
transcriptase achieves this by transcribing viral RNA into dsDNA [17,21,22]. The viral
DNA is transported into the host cell nucleus, which is then incorporated into the host’s
genome with the help of the integrase enzyme [19].

Upon integrating the viral DNA into the host genome, the viral DNA can remain
latent for many years [17]. In the absence of virus latency, the virus undergoes replication,
utilizing the host machinery to produce long chains of viral proteins. The HIV proteins
and the viral RNA are transported to the host cell’s surface, where they assemble into
non-infectious particles [22,23]. After budding, the viral protease, mediates a proteolytic
cleavage of the viral capsid, resulting in a mature infectious virus particle (virion) [22,24,25].
Current treatment requires that people living with HIV stay on antiretroviral therapy
for life; otherwise, hidden HIV proviral DNA in cellular reservoirs will reactivate when
treatment is interrupted.
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There have been significant advances in the treatment, control, and prevention of HIV
since its discovery in the 1980s [26]. In 1987, the Food and Drug Administration (FDA)
approved its first drug, zidovudine (AZT), which initially failed in cancer screens, to treat
HIV [27]. The synthesis of this drug was inspired by a naturally discovered thymidine
from a marine sponge, Tectitethya crypta, known as sponge thymidine [28]. The discovery of
AZT has paved the way for several classes of antiretroviral drugs currently on the market.
The FDA classifies antiretroviral drugs for HIV infection into the following categories:
nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors, entry inhibitors—CCR5
coreceptor antagonist and HIV integrase strand transfer inhibitors [29–31].

Highly active antiretroviral therapy (HAART) has significantly reduced the morbidity
and mortality of HIV/AIDS. Antiretroviral therapy is currently recommended for all
adults infected with HIV, and it has also reduced mother-to-child transmission to less than
1% [32]. Bhatti et al. [18] showed that taking anti-HIV medication alone is less effective
than a combined ARV treatment regimen. A single-drug treatment allows the virus to
mutate over time and build resistance to the medication. In combination therapy, more
than one antiretroviral drug is administered concurrently to minimize the chances of
resistance development. Recommendations for initial regimens include two nucleoside
reverse transcriptase inhibitors, such as abacavir with lamivudine or tenofovir disoproxil
fumarate, in combination with a third active ARV drug. The third drug can be from one
of the three classes integrase strand transfer inhibitor (INSTI), a non-nucleoside reverse
transcriptase inhibitor, or protease inhibitor (NNRTI) with a pharmacokinetic enhancer [33].
The first-line regimen currently in use is the combination of dolutegravir, lamivudine
and tenofovir disoproxil fumarates. This is the combination of integrase and reverse
transcriptase inhibitors. Despite the combination therapy, there is still a problem of HIV-1
drug resistance and the combination is also not effective in eradicating the virus in the
latent reservoirs [34]. In fact, since the launch of potent ART, treatment recommendations
have continued to prescribe regimens that include two NRTIs plus a third drug as preferred
options [35]. The improved therapeutic and safety profile of treating all HIV-positive
individuals as soon as a diagnosis is confirmed is paramount as it decreases mortality and
increases life expectancy and the standard of treatment in antiretroviral therapy patients
living with HIV [36].

The development of drug resistance to currently available antiretroviral drugs is a
significant cause of treatment failure in HIV patients. The current antiretroviral thera-
pies are also associated with adverse side effects and cell toxicity which often leads to
non-adherence [37,38]. Resistance to NRTIs occurs through two mechanisms; (1) muta-
tions resulting in reduced incorporation of the NRTI into the growing DNA chain and (2)
enhanced removal of a drug from its attachment site at the end of the DNA chain [39].
These RT mutations allow ATP or pyrophosphate to bind adjacent to the bound nucleoside
analogue at the active site. High-energy ATP or pyrophosphate can attack the bond that
binds the drug to DNA, resulting in the drug’s liberation and termination of its effects. To
combat antiviral resistance, there is an urgent need for the development of new anti-HIV
drugs since approved ARVs are associated with various shortfalls such as toxicity and
rapid emergence of resistant strains.

To further optimize therapeutic options and ensure a sustainable flow of new drugs
with novel mechanisms of action, there is a need to ramp up early drug development
initiatives. New antiviral drugs should meet specific criteria, such as not being susceptible
to current resistance mechanisms. This can be achieved by targeting sites independent of
the viral mutation development, such as those that target protein–protein interactions and
host-mediated immune response to infection. In addition, current antiretroviral drugs only
target the structural proteins of HIV. Thus, there is a need to develop novel antiretroviral
therapies that will also target accessory proteins to achieve a comprehensive therapeutic
approach. Advances have been made with small molecule metabolites, especially from
microorganisms such as fungi [12,40]. Although these studies are in the early discovery
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phases, there are promising developments that call for more focus on optimizing antiviral
screening assays and investment in developing hit compounds to lead compounds and
eventually, clinical trials.

3. Advances in Antiviral Screening Assays

The development of innovative and highly sensitive activity assays for screening
natural products with antimicrobial properties is a crucial step in identifying novel com-
pounds [41]. The selection of an adequate bioassay and its validation is important in the
initial stages of a drug development process (hit identification) for evaluating and prioritiz-
ing candidates for hit-to-lead optimization. Antiviral efficacy is difficult to determine since
different viruses must be evaluated using different cell systems, making it impractical to
devise a single assay for all viruses [42,43]. The use of high assay dosages, insufficient test
controls, and the inaccurate collection of targets and endpoints represent only a couple of
the main challenges facing antiviral screens. In addition to these factors, the effect of differ-
ent reaction parameters also needs to be considered when designing antiviral screening
experiments and interpreting output data [44]. The lack of standardization of method-
ologies contributes to widely contradictory outcomes, which presents a severe barrier to
developing antiviral drugs from phenotypic screens of small microbial metabolites.

Several antiviral screening assays have been described for testing the antiviral efficacy
of natural products, and these can be adapted at medium-to-high throughput formats [45].
Screening of inhibitor molecules using purified, or cell-surface-displayed HIV-1 proteins
has been demonstrated with the major HIV-1 enzymes (reverse transcriptase, protease and
integrase) to provide rapid results. Moreover, these single-protein assays are under research
and development for rapid screening of inhibitors against accessory proteins such a Vpu or
Vpr [46]. These assays are easy to perform and do not require highly specialized laboratory
facilities [47]. However, single-target systems using purified, or cell-surface-expressed
HIV-1 protein in vitro often leads to off-targets and cannot be replicated in cell culture
systems [46,47]. In addition, inhibitor screening using single target HIV-1 protein requires
each target assay to be set up separately which is costly and time-consuming. Ideally, a
preliminary assay (e.g., a full replication assay or in silico target binding assay) should be
conducted to predict the single target HIV-1 protein to choose for screening which can also
prevent wasting costly resources [46].

On the other hand, systematic cell culture-based assays have gained increasing interest
since they use chimeric pseudovirus particles that can be performed in level 2 biosafety
laboratories and provide reliable results. The pseudovirus is constructed using a reporter
gene such as luciferase and envelope proteins from a pathogenic virus-like HIV-1. These
are displayed on the surface of a benign carrier virus such as Vesicular Stomatitis virus [48].
Mononuclear cells are infected with a chimeric pseudovirus and incubated with different
concentrations of compounds [49]. The viral replication activates the reporter gene, and
the activity can be measured in a calorimetric or fluorometric assay [50]. The EC50 values
(reciprocal dilution needed to avoid virus-induced cytolysis by 50%) are used to express
viral activity. Luciferase assay (measuring luciferase activity) is one example of a more
rapid single-round infectivity assay that is widely used to assess the activity of compounds,
including those from microbial natural products (e.g., fungal extracts) in HIV-1 strains [49].

An alternative single-round phenotypic assay replaces the luciferase indicator gene
with the enhanced green fluorescent protein (GFP) gene and uses the HIV-1 CXCR4 or CCR5
tropic envelope instead of the MLV envelope [50,51]. Production of the virus is carried out
similarly in HEK 293T cells, but infection is done in primary CD4+ T cells, the assay target
cells of HIV-1 in vivo, rather than transformed cell lines. Infecting primary CD4+ T cells
has the advantage of allowing measurement of drug inhibition by HIV-1 entry inhibitors
such as enfuvirtide. In contrast, cell lines such as 293T must be transfected with the CD4+
T cells and the CXCR4 or CCR5 coreceptors to allow for HIV-1 envelope-mediated entry.
Infectivity (number of GFP-expressing cells) can then be measured using flow cytometric
quantitation [51,52].
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The cell-culture-based assays have been expanded to cover other less-targeted viral
proteins of HIV involved in forming viral structures and replications [53]. The p24 is a
specific HIV structural protein that forms most of the virus core. This protein is secreted in
the blood serum of an infected person and is therefore also recognized as an early biomarker
of viral infection [54,55]. A study was undertaken to evaluate the anti-HIV activities of the
Morus alba plant extract, mulberroside C, and extracts of endophytes isolated from the M.
alba plant sample using in vitro assays [56]. In this study, peripheral blood mononuclear
cells (PBMC) were infected with HIV, and the anti-HIV activity of mulberroside C was
evaluated using HIV-1 p24 enzyme-linked immunosorbent assay (ELISA). While cell-
culture-based viral inhibitor screening assays provide reliable results and any target can be
engineered into the viral reporter gene, they are still limited to incorporating one target at
a time which is laborious and costly [56]. The other challenge for single-target assays in
determining viral inhibition is that they cannot evaluate the virus’s efficient replication,
genetic diversity, and complex invasion strategy.

Recently, unbiased HIV-1 screening assays representing complete replication stages
have been reported. These assays include the time of addition (TOA) assay reported by
Daelemans et al. [47]. This assay is based on the principle that viral replication occurs in
sequential stages that can be timed. The compound target site can be predicted based on
its relative position in comparison with the reference drug used as the training set on the
time scale. Another HIV-1 complete replication assay incorporating an accessory protein,
Vif, was reported [57,58]. A summary of medium-to-high throughput screening assays
that have been used successfully in screening small molecular metabolites is provided in
Figure 1 [54–66]. Developing these replication assays to represent all possible target sites in
the HIV-1 genome will allow for rapid and unbiased screening of natural microbial products
against various targets and save costs and time for hit identification [64,65]. Furthermore,
full replication assays will also provide insight into protein–protein interactions, and
thus increase the early small molecular compound screening capacity for future viral
inhibitors [61,66–76].
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4. Advances in Developing Fungal-Derived Small Molecular Inhibitors for Major
HIV-1 Target Sites

The fungal kingdom presents a great source of small therapeutic compounds with
antibacterial, antifungal, and antiviral properties [77]. Unlike plant-derived secondary
metabolites, fungal secondary metabolites can be scaled-up at a reasonable cost and time
due to the availability of well-established industrial production parameters using fungal
species [16]. Fungi from unique ecological niches, such as those found in the inner tissues
of healthy plants, known as endophytic fungi, have been of great interest over the last
two decades given their potential for use in drug development. The endophytes often
reside within their host plants without causing any harm to the host plant [78]. In addition,
secondary metabolites from microbial sources in novel niches, such as endophytic fungi,
present compounds with structural complexities that cannot be matched by synthetic
molecules, making them excellent candidates for new drug development. Fungal secondary
metabolites often exhibit novel mechanisms of action that can escape already established
mechanisms of drug resistance by microbial pathogens [79,80]. While the exploration of
fungal compounds exhibiting antiviral activities is an emerging field, there have been
several compounds revealed to possess high potential as viral inhibitors in several early
screening programs as reviewed by Roy et al. [16] and Linnakoski et al. [15]. At this stage,
there are currently no anti-HIV compounds derived from fungal sources in the clinical
pipeline and almost all compounds are at an early discovery stage (hit identification).
Although fungi have been widely explored as a source of active secondary metabolites,
recent genome data suggest that what is currently known represents only a small perceptible
part of a much larger reservoir. There is more biosynthetic potential that has not been
explored [81–84]. Thus, there is plenty of scope for finding many potential anti-HIV drugs
by exploring novel microbial species such as endophytic fungi.

5. Fungal Compounds as HIV-1 Cell-Surface Receptor Attachment Inhibitors

The fungal kingdom has been shown as a potential source of several bioactive com-
pounds targeting the HIV-1 cell surface receptor attachment proteins. For instance, two
novel chemokine receptor (CCR-5) inhibitors, Sch 210971 and Sch 210972, were isolated
from an endophytic fungus, Chaetomium globosum Kunze 1705 with a potent in vitro activity
of 79 nM [83]. It is well established that the chemokine receptors CCR5 and CXCR4 are
required as coreceptors for binding gp120 and CD4+ T cells [84–86]. Inhibition of such
binding can prevent viral entry into the host cell and prevent replication, representing a
highly effective alternative target for HIV therapy. Several other anti-HIV-1 compounds
derived from fungi targeting the gp120–CD4+ binding have been discovered, including
isochromophilones I and II obtained from Penicillium multicolor FO-2338. These compounds
disrupt gp120 and CD4+ interaction at 6.6 and 3.9 µM in in vitro assays, respectively, and
prevent HIV-1 entry into the host cell [85–87]. Other isochromophilones A–F isolated from
the Marine Mangrove endophytic fungi Diaporthe sp. SCSIO 41011 were reported to be
cytotoxic and induced apoptosis in three different cell lines [88]. This finding emphasizes
the importance of cytotoxicity screening of the fungal secondary metabolites before an-
tiviral testing. Bioassay-guided isolation of the fungus, Emericella aurantiobrunnea led to
the discovery and subsequent purification of a compound known as variecolin. Variecolin
was observed to compete with macrophage inflammatory protein (MIP)-1R for binding
into human CCR5 with an IC50 value of 9 µM [87]. These results on hit identification
provide evidence of the potential of fungal-derived secondary metabolites in inhibiting
HIV entry and replication. However, further studies of these hit compounds would offer
more insight into their mechanisms and potential for further development into potential
therapeutic agents.
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6. Fungal Compounds as Reverse Transcriptase Inhibitors

Fungal natural products have also been explored as a source of reverse transcriptase
inhibitors. The reverse transcriptase enzyme in HIV-1 infection plays a crucial role in viral
replication by generating complementary DNA from an RNA template early in the HIV-1
life cycle. The role of reverse transcriptase makes it one of the most crucial targets for poten-
tial anti-HIV therapy [89]. Several other fungal species produce secondary metabolites that
inhibit viral reverse transcription. This includes a study by Bashyal et al. [90], altertoxins
extracted from a fungus, Alternaria tenuissima were found to inhibit the reverse transcriptase
enzyme from transcribing HIV-1 RNA into DNA. Moreover, Melappa et al. [91] reported
total coumarins from the crude extract of an endophytic fungus, Alternaria species to inhibit
reverse transcriptase enzyme in a single protein in vitro colorimetric assay. The limitations
of this study included that they only reported total coumarins and no purification of the
active compounds was reported. However, the results of these studies provide some indi-
cation on the potential of fungi as a source of reverse transcriptase inhibitors. Additional
research efforts are needed to validate this assertion.

7. Fungal Compounds as Integrase Inhibitors

The other important target in the HIV life cycle is the integration of the HIV viral
DNA into the nucleus of the human genome facilitated by the enzyme integrase. Briefly,
integration occurs via two catalytic actions, i.e., 3′-end processing and strand transfer [92].
The challenge with the current antiretroviral drugs is that HIV-1 has developed resistance
to approved protease inhibitors primarily due to amino acid mutations within or proximal
to the drug’s catalytic binding site [92].

The initiatives to discover naturally derived integrase inhibitors have started to indi-
cate some successes. For instance, Singh et al. [93] showed that Penicillium chrysogenum
produced xanthoviridicatins E and F, showing potent inhibition of HIV-1 integrase enzyme
at highly effective concentrations of 6 and 5 µM, respectively. Both compounds inhibited the
cleavage process of HIV-1 integrase. In the same year, a novel polyketide, cytosporic acid
extracted from the endophytic fungus, Cytospora species, showed an in vitro HIV-1 strand
transfer inhibition with IC50 of 20 µM [94]. Two other structurally similar fungal com-
pounds, australifungin and australifungol, were evaluated, and only the former exhibited
integrase inhibition activity with the same activity as cytosporic acid [94]. Australifungin
was first discovered in fungal cultures of Sporormiella australis as an inhibitor of sphinganine
N-acyl transferase, a mechanism common to mycotoxins such as fumonisin B [95]. The
activity of both cytosporic acid and australifungin was attributed to the presence of a β-keto
aldehyde group and a carboxyl group, respectively. Since both these compounds exhibited
weak activities, their activities could further be improved by derivatization of the active
pharmacophore to develop drug-like compounds [96]. Other success indicators for fungal-
derived HIV-1 integrase inhibitor include the discovery of a phenalenone (atrovenetinone
methyl acetal) from Penicillium species [97]. The authors compared this compound to
phenalenones that they had previously isolated from fungal cultures, erabulenol B and
funalenone, where the latter exhibited an intense integrase inhibition activity at 1.7 µM.
Melappa et al. [91] also reported that the endophytic fungi, Trichoderma harzanium and
Alternaria species isolated from a plant, Calophyllum inophyllum produced coumarins that
showed inhibition of HIV-1 integrase. This study did not identify the coumarin derivative
that was responsible for HIV-1 integrase inhibition. Coumestan-type isolated from the
Calophyllum inophylum demonstrated anti-HIV-1 activity against integrase [98,99].



Viruses 2023, 15, 1039 8 of 19

8. Fungal Compounds as Protease Inhibitors

Fungal protease inhibitors also reveal strong potential as future candidates in devel-
oping antiviral drugs. Singh et al. [100] reported hinnuliquinone as a potent inhibitor
of the HIV-1 protease from an unidentified endophytic fungus inhabiting the leaves of
Oak trees (Quercus coccifera) [100]. Another study used novel triterpenoids, gadoteridol F,
20-hydroxlucidenic acid N, ganoderic acid GC-2 and 20(21)-dehydrolucidenic acid N which
were isolated from fungus, Ganordema sinense exhibited HIV protease-inhibitory activity at
IC50 22, 25—30 and 48 µM, respectively [101]. Recently, Vora et al. [56] performed a targeted
investigation of mulberroside C based on in silico observations that showed high-affinity
binding to various target sites in the HIV cycle, especially as a protease inhibitor. Further-
more, out of the studied endophytic isolates, the extracts of MaF04C identified as Phoma
species showed the most significant viral inhibition with IC50 of 8.19 ng/mL and less than
0.001 µg/mL in a TZM-bl cell-based β-glucosidase assay and HIV-1 p24 luciferase-based
assay, respectively [56]. They further determined that MaF04C and MaF01SG (identified as
Chaetomium species) had the highest relative protease inhibition profile, thus confirming
the suggested protease inhibitory properties observed in the in silico studies [56]. These
bioactive compounds have not proceeded to clinical trials or been validated beyond the
early screening stages. Therefore, laboratory assays and in vivo tests are needed to fully un-
derstand the bioactivity, toxicity, and pharmacokinetic profile of the viral protease inhibitors
produced by these endophytic fungi.

Ryang et al. [99] reported that paclitaxel could inhibit HIV-1 protease activity like
the positive control, pepstatin A, in their in vitro experiment. A combination of paclitaxel
and one already existing protease inhibitor (indinavir, nelfinavir, or combinations of these
agents) at recommended dosages and schedules have been used to treat patients with
HIV-associated Kaposi’s Sarcoma without enhancing toxicity [100–104]. However, patient
conditions for paclitaxel applications should be considered because of its side effects on
bone marrow suppression. Ryang et al. [99] indicate that fungal-derived compounds can
also be used to potentiate existing HIV inhibitors in combination therapy which is a proven
strategy for escaping resistance development.

9. Advances in Developing Fungal-Derived Small Molecular Inhibitors for New HIV-1
Target Sites

Despite the cART being potent and life-prolonging, a significant limitation is that it is
not curative and does not eradicate HIV-1 infection since treatment interruption inevitably
results in a rapid rebound of viremia [105]. The rebound of HIV is due to the presence of
HIV reservoirs, mainly in the latently infected resting CD4+ memory T cells and myeloid
cells such as macrophages and microglia that are difficult to target by cART or immune
effector mechanisms [106–109]. HIV latency is defined as a reversibly, non-productive state
of infection of individual cells that retain the capacity to produce infectious virus particles
but allow the virus to evade the host’s immune response [110]. Latently infected cells
contain stably integrated, replication-competent proviruses repressed at transcriptional
and post-transcriptional levels by many silencing mechanisms [111,112].

Advances have been made in the discovery of fungal latency reversing agents (LRAs)
with promising latency-reversing activities. Niu et al. [107] identified 12 eutypellazine
(A–L) compounds with antiviral activity from a fungus, Eutypella sp. MCCC 3A00281.
These compounds inhibited viral replication in the 293T HIV cell model with low toxicity.
The compound eutypellazine J (80 µM) showed latency reactivation of HIV-1 in J-latA2
cells in a dose-dependent manner. The observed latency-reversing activity was comparable
to that of the positive controls, prostratin (5 µM) and SAHA (suberoylanilide hydroxamic
acid, 2.5 µM) [111]. Stoszko et al. [108] recently isolated gliotoxin from a fungal secondary
metabolite library and showed this compound to exhibit latency-reversing properties. The
compound was derived from Aspergillus fumigatus CBS 100074, and this was shown to
disrupt 7SK small nuclear ribonucleoprotein (snRNP), resulting in the release of the positive
transcription elongation factor B (P-TEFb) and subsequent reversal of HIV-1 latency [108].
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The latency-reversing mechanism shown by gliotoxin is like that of hexamethylene bis
acetamide (HMBA) and disulfiram compounds [113–116]. This also is an exciting target
site since the P-TEFb catalyzes the phosphorylation of several transcriptional regulators at
the HIV promoter site, which supports transcriptional initiation and elongation. Gliotoxin
was previous reported as a virulent factor in Aspergillus fumigatus and showed immunosup-
pression properties [117]. It is a mycotoxin produced by species of Aspergillus, Trichoderma
and Penicillium [118]. Furthermore, gliotoxin can be toxic when swallowed or inhaled and
can cause skin and eye irritation when exposed. The oral dose of gliotoxin to be taken is
67 mg/kg [119]. These findings indicate fungal species as an untapped source of therapeu-
tic agents that could expand treatment options for viral infections such as HIV-1. After the
LRAs reactivate latent viruses, the immune system can eradicate the virus-producing cells.
However, recent data indicated that CD8+ T cells in HIV-1-infected individuals on cART
could not eliminate latently infected cells even after successful reactivation.

The currently available antiretroviral drugs target structural HIV-1 proteins but not
HIV-1 accessory proteins (Nef, Vif, Vpu and Vpr). Accessory proteins in HIV-1 act as viru-
lence factors mediating the severity of viral infection, replication, and disease progression.
Although these proteins do not show any enzymatic activity, they act mainly with the
host factors through protein–protein interactions [112]. Identifying natural products from
microbial sources such as fungi could expand HIV-1 treatment options. Some advances
have been made with fungal secondary metabolites inhibiting the HIV-1 viral protein R
(Vpr). Fumagillin isolated from Aspergillus fumigatus fresenius was reported to inhibit the
cell cycle arrest activity of Vpr in yeast and mammalian expression cells [115]. Fumagillin
is a known mycotoxin that has been used as treatment for microsporidia fungal infection.
It has been researched for cancer treatment by employing its angiogenesis inhibitory prop-
erties [115–117]. Kamata et al. [116] also showed that damnacanthal, a noni component,
inhibits Vpr-associated cell death with no effect on the cell cycle. The advances in high-
throughput screening platforms for antiviral compounds have the potential to accelerate
the discovery of small molecular inhibitors that will expand to other accessory proteins.

While a few promising and successful efforts have been made in the early screening
of fungi for anti-HIV-1 bioactive compounds, the full potential of the fungal kingdom has
not been extensively explored to unearth its antiviral activities. Secondary metabolites
isolated from Alternaria alternata have revealed the potential to inhibit HIV-1 at distinct
stages of its life cycle; however, the compound responsible for the antiviral activity was not
reported [49]. However, there are few reports regarding the mechanisms of action of these
compounds. Therefore, further research is necessary to identify the mechanisms of these
beneficial compounds isolated from endophytic/fungi with low cytotoxicity. More anti-
HIV agents have been discovered from fungal species, placing the fungal kingdom as an
exciting source for anti-HIV compounds. Table 1 summarizes fungal secondary metabolites
that exhibit anti-HIV activities, inhibiting different stages of the HIV life cycle. Considering
that natural products are structurally complex and may present with toxicity that could
prevent their further development into viable drugs, the structural information of bioactive
compounds could serve as a starting point in synthesis or semi-synthesis programs for
the generation of analogues. This strategy has been successful in providing a sustainable
supply of drugs inspired by naturally occurring bioactive structures and ensured that they
are available in sufficient quantities [118,120].

Screening small compounds from natural sources, such as fungi, for antiviral (anti-
HIV) bioactivity is still in its infancy. Nevertheless, the promising discoveries made
thus far reveal the potential for further development of these bioactive compounds as
lead compounds for HIV treatment. However, there are several limitations to the small
molecular screens for anti-HIV compounds [48,121]. These obstacles include the need for
highly specialized containment laboratories with highly trained personnel and a lack of
innovative antiviral screening tools [48].
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Table 1. Anti-HIV-1 compounds isolated from fungal species.

HIV-1 Life Cycle Stages HIV-1 Agent/Compound Structure Fungal Species Mechanism of Action Activity
Concentration Reference

Fusion or entry inhibitors

Isochromophilones I
C23H25O5Cl

Mw 416.9
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Table 1. Cont.

HIV-1 Life Cycle Stages HIV-1 Agent/Compound Structure Fungal Species Mechanism of Action Activity
Concentration Reference

Reverse Transcription

Stachybotrin D
C26H35NO5
Mw 441.56
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Table 1. Cont.

HIV-1 Life Cycle Stages HIV-1 Agent/Compound Structure Fungal Species Mechanism of Action Activity
Concentration Reference

Integration

Xanthoviridicatins E and F
C27H20O9
Mw 488.44
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Table 1. Cont.

HIV-1 Life Cycle Stages HIV-1 Agent/Compound Structure Fungal Species Mechanism of Action Activity
Concentration Reference
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10. Conclusions

The recent progress in identifying antiviral compounds have potential to yield novel
HIV therapeutics that can escape current treatment barriers. The recent genomic evolu-
tion has shown that fungal species holds a much greater biosynthetic potential with the
revelation of several biosynthetic genes which are cryptic or transiently expressed under
laboratory conditions. Here, we have shown that there is a concerted effort in developing
unbiased antiviral screening assays. The challenge that limit early discovery efforts in
identifying hit-to-lead compounds is the access to standardized antiviral screening systems
that can map the inhibition impact of these antiviral compounds against various HIV target
sites, including the HIV-1 proteins, cellular pathways, host factors and protein–protein
interactions [59]. This suggests a need to standardize and validate currently existing an-
tiviral screening assays and develop more comprehensive and high-throughput whole
replication antiviral screening platforms to fully exploit the diverse antiviral mechanisms
of small metabolites such as those produced by fungal species. Furthermore, the success of
fungal derived antiviral compounds will only be realized if the hit compounds proceed
from early drug development phases to advanced phases such as clinical trials. This will
require a collaborative investment from research initiatives and Government sectors and
pharmaceutical companies.
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HIV: Human Immunodeficiency Virus; CRISPR/Cas9, clustered regularly interspaced short
palindromic repeats/ with associated Cas9 endonuclease); LRA, latency reversing agent; FDA, food
and drug administration; RNA, ribonucleic acid; ds/DNA, double-stranded /Deoxyribonucleic acid;
AZT, azidothymidine; HAART, highly active antiretroviral therapy; AIDS, acquired immunodefi-
ciency syndrome; NRTI, nucleoside/nucleotide reverse transcriptase inhibitor; ARV, antiretroviral;
INSTIs, integrase strand transfer inhibitors; BIC, bictegravir; WHO, World Health Organisation; RT,
reverse transcriptase; ATP, adenosine triphosphate; MIP, macrophage inflammatory proteins; RAL,
raltegravir; EVG, elvitergravir; DTG, dolutegravir; HSP90, heat shock protein 90; cART, combination
antiretroviral therapy; HDAC, histone deacetylase; DNMT, DNA methyl transferases, HMT, histone
methyl transferases; Aza-CdR, 5-aza-2 deoxycytidine; CpG, cytoside phosphate guanine; P-TEFb,
positive transcription elongation factor b, HMBA, hexamethylene bisacetamide; CPE, cytopathic
effect; HEK, human embryonic kidney; GFP, green fluorescence protein; PBMC, peripheral blood
mononuclear cells; ELISA, enzyme immunosorbent assay.
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