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Abstract: Ensilaging is one of the most common feed preservation processes using lactic acid bacteria
to stabilize feed and save feed quality. The silage bacterial community is well known but the role
of the virome and its relationship with the bacterial community is scarce. In the present study,
metagenomics and amplicon sequencing were used to describe the composition of the bacterial and
viral community during a 40-day grass silage preservation. During the first two days, we observed
a rapid decrease in the pH and a shift in the bacterial and viral composition. The diversity of the
dominant virus operational taxonomic units (vOTUs) decreased throughout the preservation. The
changes in the bacterial community resembled the predicted putative host of the recovered vOTUs
during each sampling time. Only 10% of the total recovered vOTUs clustered with a reference genome.
Different antiviral defense mechanisms were found across the recovered metagenome-assembled
genomes (MAGs); however, only a history of bacteriophage infection with Lentilactobacillus and
Levilactobacillus was observed. In addition, vOTUs harbored potential auxiliary metabolic genes
related to carbohydrate metabolism, organic nitrogen, stress tolerance, and transport. Our data
suggest that vOTUs are enriched during grass silage preservation, and they could have a role in the
establishment of the bacterial community.

Keywords: grass silage; phages; metagenomics

1. Introduction

Silage can be defined as feed resulting from forage preservation in a succulent con-
dition, mediated by fermentation in a more-or-less airtight container [1]. Conservation of
forage feed by ensilaging is one of the most common fermentation processes in the northern
hemisphere. It is estimated that 200 million tons of dry matter are ensiled annually [2].
Ensiled forages are widely used because they reduce nutrient loss, simplify feeding, im-
prove animal/farm management, and may have a probiotic effect [3,4]. Production of
high-quality silage depends on several factors such as harvest time, ensiling time, the raw
material, packing, use of additives, and the efficiency of the ensiling phases [5,6]. The
success of the ensilaging is mainly driven by microorganisms. During the fermentation
phase, lactic acid bacteria (LAB) dominate the process due to the decrease of the pH because
of acid production [7]. In addition, unwanted microorganisms such as Enterobacteria, yeast,
molds, and acetic acid bacteria are inhibited. Several members of the Lactobacillaceae family
have been reported as key organisms, with Lactobacillus plantarum and Lactobacillus buchneri
being the most recurrent ones [8–10].

The microbial succession during ensiling has been focused on the interaction be-
tween lactic acid bacteria and unwanted microorganisms, but the role of the virome is
still unknown. Due to the recent recognition of the role of bacteriophages as a gut health
modulator [11,12], their enumeration and characterization in food or feed fermentation
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have gained importance. Phages are the most abundant and diverse biological entities on
the planet. Their ecological role includes the regulation of bacterial and archaeal diversity,
as well as the mobility of genetic material [13]. For that reason, the interest and study of
such viruses have greatly increased during the last few years.

Individual bacteriophages have been studied and isolated from silage samples. Their
presence has been linked to both loss and gain of silage quality. For example, on the
one hand, the presence of Lactobacillus phages has been associated with a decrease in the
fermentation quality in Japan [14]. On the other hand, ~50% of silage samples from a dairy
farm with low Listeria monocytogenes positiveness were shown to harbor listeriaphages [15].
Both findings suggest that phages could play a key role during the ensiling process and
thus might provide the basis of a biotechnological application aimed at silage conservation.

The role of endogenous bacteria and bacteriophages in silage development is poorly
understood. The same is true for the subsequent effect on the animal’s performance and
health when feeding ruminants with silages of lowered quality or with a specific load of
microbial members. This raises the question about the possible modulatory role of phages
on the intersection between diet, microbiome, and gut health. In the frame of this study,
we investigated the bacterial and viral community during 40 days of grass preservation.
The objective was to describe the dynamics of bacteria and phages and their probable
interaction during the fermentation process.

2. Materials and Methods
2.1. Silage Preparation and Experimental Design

Annual raygrass (Lolium multiflorum) mixed with clover, flowers, and herbs typical of
a pasture for dairy cows in Germany was cut in August 2021 at Hohenheim University and
chopped into smaller pieces using a straw grass grinder. Approximately 600 g of grass was
packed in 1 L airtight glass jars (WECK Wehr, Germany). In total, 15 jars were prepared and
randomly assigned to 5 sampling times, three jars per time point (2, 4, 8, 15, and 40 days).
Each jar was weighed after being sealed and before opening on the respective sample day.
Additionally, 500 g of fresh grass was vacuum-packed in plastic bags and frozen at −80 ◦C.
Jars were maintained in the dark at 24 ◦C until sampling. During each sampling time,
three jars were opened and the pH was determined using 25 g of the material. Silage was
mixed with 100 mL of distilled water, and after 15 min, the pH was measured using a
pH-meter (Mettler Toledo, Gießen, Germany), while stirring the solution [16]. Samples
were vacuum-packed in plastic bags and frozen at −80 ◦C.

2.2. DNA Extraction, Sequencing, and qPCR

Briefly, 5 g of the frozen material was mixed with 40 mL of PBS buffer (pH 7.5, 37 mM
NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO4,) in a 50 mL Falcon tube. The
sample was mixed for 30 min in a horizontal shaker and manually shaken every 10 min.
This mixture was filtered using a sterile cheesecloth, transferred to a new Falcon tube, and
centrifuged 30 min × 15,557× g at 4 ◦C. The supernatant was carefully discarded, and the
pellet was kept. DNA was extracted only from the obtained pellet as follows. The pellet
was dried in an inverted position for 5 min. Finally, the pellet was eluted using 800 µL of
CD1 solution from the QIAamp PowerFecal pro kit (QIAGEN, Hilden, Germany). DNA
was extracted following the instructions of the manufacturer after adding the CD1 solution.
The quantity and quality of the DNA were checked using 1% of agarose gel and Nanodrop
measurements (Thermo Fisher Scientific, Darmstadt, Germany). Additionally, total DNA
was quantified using the QuantiFluor® dsDNA System kit following the manufacturer’s
instructions (Promega, Heilbronn, Germany) in a Qubit 4 Fluorometer (Thermo Fisher
Scientific, Darmstadt, Germany).

Amplicon sequencing libraries were prepared according to the protocol described
by Roth et al. (2022) [17]. Two-step PCR was carried out using PrimeSTAR® HS DNA
Polymerase kit (TaKaRa, Beijing, China) and the primers 27F and 338R were used to target
the V1–V2 region of the 16S rRNA gene. The first PCR was prepared in a total volume of
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25 µL using 1 µL of DNA template, 0.2 µM of each primer, and 0.5 U Taq prime start HS
DNA. The second PCR was prepared in a total volume of 50 µL. An initial denaturation
at 95 ◦C for 3 min was followed by ten cycles (first PCR) or 20 cycles (second PCR) of
denaturation at 98 ◦C for 10 s, annealing at 55 ◦C for 10 s and an extension at 72 ◦C for
45 s. The final extension was carried on at 72 ◦C for 2 min. PCR products were purified
and standardized using SequalPrep Normalization Kit (Invitrogen Inc., Waltham, MA,
USA). Sequencing was carried out using 2 × 250 bp paired-end sequencing chemistry
on Illumina Novaseq 6000. Metagenomic Illumina library preparation and sequencing of
2 × 150 bp reads in a Novaseq 6000 (Illumina, Inc., San Diego, CA, USA) were carried out by
Novogen. In short, the genomic DNA was randomly fragmented by sonication, then DNA
fragments were end polished, A-tailed, and ligated with the full-length adapters of Illumina
sequencing, and followed by further PCR amplification with P5 and indexed P7 oligos.
The PCR products as the final construction of the libraries were purified with AMPure
XP system. Then, libraries were checked for size distribution by Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA), and quantified by real-time PCR (to meet
the criteria of 3 nM).

Quantification of total and lactic acid bacteria was carried out by qPCR using the
CFX Connect™ Real-Time PCR Detection System (BioRad Laboratories Inc., Feldkirchen,
Germany). The PCR was prepared in a total volume of 20 µL, where 1 µL of each
DNA extraction was mixed with 10 µL of GoTaq 2× qPCR Master Mix (Promega, Heil-
bronn, Germany) and 0.2 uM of each primer. For total bacteria, the primers BAC338F
(5′-ACTCCTACGGGAGGCAG-3′) and BAC805R (5′-GACTACCAGGGTATCTAATCC-3′)
were used [18], while for the total lactic acid bacteria 5′-AGCAGTAGGGAATCTTCCA-3′

and 5′-CACCGCTACACATGGAG-3′ were used [19]. Details of qPCR cycles and standard
curve preparation can be found in Supplementary Material S1.

2.3. Prokaryotic Community, Binning, Taxonomic, and Functional Annotation

Raw amplicon sequencing data were demultiplexed using Sabre (https://github.com/
najoshi/sabre) and processed by QIIME2 v.2021.2-8 [20]. Briefly, primers were removed
using q2-cutadapt [21] and the reads were denoised with q2-dada2 [22]. Obtained amplicon
sequence variants (ASVs) were taxonomically assigned based on the consensus between
VSEARCH [23] and prefitted sklearn classifiers [24] against the Silva SSU-rRNA database
v.138.1 [25]. The Silva database was downloaded and curated using RESCRIPt [26]. The
alfa and beta diversity were calculated using QIIME. The richness (number of ASVs) and
Shannon diversity (accounts for both abundance and evenness) indexes were used to
describe the alfa diversity. Unweighted UniFrac distance metric was used to calculate the
dissimilarity between pairs of samples, and a principal coordinates analysis (PCoA) was
used to visualize the dissimilarities.

Metagenomic raw reads, ~100 Gb of data, were quality-controlled using BBduck
v38.26 (https://sourceforge.net/projects/bbmap/). Sequencing artefacts, adapters, and
short reads were removed. After that, reads were taxonomically annotated using Kaiju
v1.9.0 [27] and the NCBI RefSeq database (Archaea, Bacteria, and viruses). MetaSPADES
v3.15 [28] was used to assemble clean reads, and the resulting contigs longer than 1000 bp
were kept. Bins were binned using Metabat2 [29], Maxbin2 [30] and Concoct [31], all
tools wrapped in MetaWRAP [32]. Obtained bins were refined and aggregated using
MetaWRAP. CheckM [33] was used to estimate the quality of the bins, and the mid- to
high-quality bins with >70% completeness and <10% contamination were kept for further
analysis. Metagenome-assembled genomes (MAGs) were taxonomically classified using
GTDB-tk v2.1 [34] and the GTDB database R207_v2 [35]. Antiviral defense mechanisms
were identified from all MAGs using PADLOC v1.1 [36] and the PADLOC-DB. CRISPR-Cas
genes and arrays were also detected using CRISPRCasTyper v1.6 [37]. Obtained spacers
were extracted and blasted against contigs identified as vOTUs, and only those with >95%
identity and <0.0004 e-value were considered spacer to protospacer matches. MAGs were
dereplicated at 99% ANI (ANImf) using dRep [38], including quality information obtained
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with checkM. CoverM (https://github.com/wwood/CoverM) was used to calculate the rel-
ative abundance of dereplicated MAGs across all samples mapping the clean reads against
the MAGs. Further, metabolic traits of MAGs were determined with DRAM [39]. Finally,
dereplicate MAGs were phylogenetically placed using Phylophlan [40] and 400 universal
marker genes, with medium diversity and accurate options.

2.4. Comparison of Lactococcus sp. (C4C_bin8) Defense Mechanism

The MAG identified as Lactococcus sp. (C4C_bin8) was genomically compared against
19 Lactococcus isolates (Supplementary Material S2). All genomes were collected from
the NCBI gene bank and pretreated to discard contigs shorter than 2.5 kb. The core
genome calculation was performed considering the presence of single-copy genes in at
least 90% of the genomes and an index of geometric homogeneity of 0.95. Additionally, the
relatedness of the C4C_bin8 MAG with other Lactococcus was calculated using taxonomic
pairwise indices of average nucleotide identity (ANI) [41], average amino acid identity
(AAI), core-gene average amino acid identity (cAAI) [42], and percentage of conserved
proteins (POCP) [43]. The scores were calculated using pyANI v0.2 in Anvi’o [44], ezAAI
v1.2.1 [45], and POCP v1.1.1 (https://github.com/hoelzer/pocp). Defense mechanisms
from all Lactococcus species were annotated using PADLOC v1.1 and PADLOC-DB.

2.5. Viral Prediction, Taxonomic, and Functional Annotation

Assembled metagenomes were searched for viral contigs using Virsorter2 v2.2.3 [46]
and VIBRANT v1.2.1 [47]. Predicted viral contigs, >10,000 bp by both tools, were merged
and dereplicated using dRep at 95% identity and 85% coverage (dRep dereplicate -d -p
25 –S_algorithm ANImf -nc .85 -l 10000 -N50W 0 -sizeW 1 –ignoreGenomeQuality –clusterAlg
single). Dereplicated viral contigs, representative of the vOTUs, were quality-checked
using checkV [48]. Dereplicated vOTUs with 0 viral genes and >1 host gene were discarded.
vOTUs with 0 viral genes and 0 host genes were kept. A vOTU was considered provirus or
complete if it was predicted as such by checkV. Coverage of vOTUs, as reads per kilobase of
exon per million reads mapped (RPKM) across samples, was calculated using coverM with
“contig” mode. The vOTUs were taxonomically classified with PhaGCN2 [49] based on
the latest International Committee on Taxonomy of Viruses (ICTV) classification (https://
ictv.global/). Obtained viral families classified as “Family_like” were renamed as “Other”.
Phage host prediction was carried out with iPHhoP (https://bitbucket.org/srouxjgi/iphop)
and its default database. Auxiliary metabolic genes (AMGs) were searched across the
vOTUs using DRAM-v [39] with the UniRef90 database and other default databases but
without the KEGG database. For DRAM output, only putative AMGs were retained; no
viral flag (F), transposon flag (T), viral-like peptidase (P), or attachment flag (A) could
be present, and putative AMGs that did not have a gene ID or a gene description were
also discarded.

2.6. Clustering, Taxonomic Context and Phylogenetic Analysis of vOTUs

vConTACT2 [50] was used to cluster the vOTUs against 17,278 bacteriophage genomes
from the Genbank. Genomes were obtained from the 2Nov2022 dataset created with
Iphared [51]. Proteomes of the vOTUs were predicted with Prodigal [52] and used to
phylogenetically place them using VICTOR [53]. Taxon boundaries at the species, genus,
and family level were estimated with OPTSIL [54]. Tree was inferred using the formula
D6 yielded average support of 57% and was visualized using iTol (https://itol.embl.de/)
accessed on 20 September 2022.

2.7. Data Wrangling and Data Availability

All data wrangling and statistical analyses were performed in R v4.1.2 and the pack-
ages “tidyverse”, “data.table”, “ggplot”, “patchwork”, “ggtext”, “vegan”, “ape”, and
“viridis” were used. The data processing workflow can be found as a Jupyter-lab notebook
at https://github.com/SebasSaenz/silage_timetrial, as well as other R scripts for data

https://github.com/wwood/CoverM
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wrangling and visualization. Raw sequences and MAGs were deposited in the European
Nucleotide Archive (ENA) under the Bioproject PRJEB59010.

3. Results
3.1. Silage Characterization

During each sampling time (0, 2, 4, 8, 15, and 40 days), the grass was characterized
by measuring the pH, weight loss, and the copy numbers of total bacteria and lactic acid
bacteria (Figure 1). Before ensilaging, the pH of the grass was ~7 and, as expected, declined
rapidly within the first two days. The pH oscillated between 4.5 and 5.28 and remained
stable until the last sampling day, indicating the probable production of different acid
products. The weight loss did not show a rapid trend such as pH. Comparing the first
eight days after ensilaging, the mass loss was not significant, but after 15 and 40 days,
approximately 5 and 9 g were lost per jar (Figure 1B). A rapid shift in the abundance,
measured by qPCR, between total bacteria and lactic acid bacteria was also notable. Within
the first two days, lactic acid bacteria represented ~98% of the total bacteria, while it was
~60% before the ensilaging (Figure 1D).
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Figure 1. Characterization of a 40-day grass ensilaging process. The grass was stored in (A) 1 L glass
jars, and during each sampling time the (B) pH, (C) weight loss, and (D) 16S rRNA gene copy number
(log10 scale) of total bacteria and lactic acid bacteria per gram of silage were measured.

3.2. Prokaryotic Community

In total, 18 amplicon sequencing libraries spanning the V1–V2 region of the 16S
rRNA gene were used to analyze the bacterial community. Amplicon sequencing showed
that grass ensilaging changed rapidly the bacterial structure and composition (p = 0.001,
PERMANOVA, Figure 2B). The ordination plot shows that the biggest differences in ASVs
composition can be found between the bacterial communities of day 0 and 40. Across all
samples, 323 different ASVs were found, with the pre-ensilaging time being the one with
the highest richness. Additionally, the number of observed ASVs significantly decreased
during the 40 days of fermentation (p = 0.02, Kruskal–Wallis, all groups), while the diversity
(Shannon diversity) decreased after the second day but remained stable the rest of the time
(p = 0.03, Kruskal–Wallis, all groups, Figure 2A). The bacterial community was mainly
dominated by members of three phyla, Firmicutes, Proteobacteria, and Actinobacteria, which
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represented, on average, 66, 30, and 2.8% of the total obtained sequences across all sampling
points. The bacterial community rapidly shifted between days 0 and 2, Firmicutes increased
from 8 to 75%, Proteobacteria decreased from 79 to 22%, and Actinobacteria decreased
from 11 to 2%. After 40 days, Firmicutes dominated the community, reaching 84%, while
Proteobacteria and Actinobacteria decreased to 15 and 0.5%, respectively. On the fresh grass
(day 0), Pantoea, Pseudomonas and Curtobacterium were the most abundant genera, while
Weissella, Lentilactobacillus, Pantoea, and Lactiplantibacillus were the dominant ones at the
end of the preservation (Figure 2C). A similar bacterial structure and composition were
observed with the metagenomic sequencing data (Figure S1).
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Figure 2. Bacterial diversity and abundance during grass ensilaging based on 16s rRNA amplicons.
(A) Observed features (ASVs) and Shannon diversity, (B) ordination plot (PCoA) of bacterial ASVs
based on unweighted UniFrac distances. Each circle represents a sample, and the color represents the
time the sample was taken. The closer the circles, the more similar the bacterial communities are. The
number between parenthesis indicates the variance explain in each axis. (C) Bacterial taxonomy at
the genus level across 40 days of ensilaging. Others represent all genus < 5% abundant.

3.3. Metagenomic Binning Reveals the Potential for Antiviral Defense in Silage

Genome-resolved metagenomics was applied to three fresh-cut grass (day 0) and
15 silage samples. Samples were assembled and binned individually, and obtained bins
were dereplicated based on their similarity and quality. In total, we binned 123 medium-
to high-quality draft metagenome-assembled genomes (MAGs). After dereplication at
99% ANI, only 19 MAGs were kept as strain representatives, of which 9 were considered
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high-quality drafts (>90% completeness and <5% contamination) and 10 medium-quality
drafts (>75% completeness and <10% contamination). In average, dereplicated MAGs had
an average N50 of 54,972 bp and N75 of 25,234 bp. Most of the MAGs, 12 of them, belonged
to the Lactobacillaceae family, while three to Enterobacteriaceae, two to Streptococcaceae, one to
Paenibacillaceae, and one to Clostridiaceae. We mapped the raw reads against the recovered
MAGs and estimated that they represented around 45–70% of the microbial community,
with the lowest values at day 0 and the highest at day 40 of ensilaging (Figure 3B). The
genomes were differentially abundant across the pre- and ensilaging days. For instance,
MAGs identified as Pantoea comprised almost 40% of the total microbial community in
the fresh grass, while they decreased to ~4.5–7.3% after the second day of ensilaging. A
succession between Lactococcus lactis and different members of the Lactobacillaceae family
was evident between days 8 and 15 of ensilaging. Interestingly, the relative abundance of
Leuconostoc pseudomesenteroides, Pantoea agglomerans, Weissella cibaria, and Weissella parame-
senteroides remained stable within the second and 40th days of the experiment. Clostridium
tyrobutiricum was the only genome not belonging to Lactobacillaceae that increased its abun-
dance between the last days.
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Figure 3. Functional potential of the most abundant bacterial members (MAGs) during grass ensilag-
ing. The tree was constructed based on 400 universal marker genes and rooted at the C. tyrobutyricum
node. (A) Metabolism is grouped by SCFA and alcohol conversion and carbohydrate-active enzyme
targets. (B) Relative abundance of the 19 recovered MAGs and (C) antiviral defense mechanism
found in them. The numbers indicate the number of genes.

The functional potential of the recovered MAGs was diverse. Almost all genomes
harbor the potential to produce alcohol, acetate, and lactate, while only C. tyrobutiricum
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seems to produce propionate. Likewise, 31% of the taxa can produce formate via pyruvate
(Figure 3A). In addition, four types of carbohydrate-active enzymes (CAZymes) involved in
the synthesis, metabolism, and recognition of complex carbohydrates were detected. Those
enzymes were glycoside hydrolases (GHs: 41), polysaccharide lyases (PLs: 5), carbohydrate
esterases (CE: 4), and auxiliary activity (AA: 4). The most prevalent enzymes found across
the genomes were alpha-amylase (GH13), beta-glucuronidase (GH1), and lysozyme (GH73).
After data distillation using DRAM, most of the genomes seemed to have the potential
of degrading chitin, arabinose, and arabinan. Interestingly, the potential to degrade more
complex structures was found in fewer genomes. For example, only two taxa seemed to
degrade crystal cellulose (L. lactis and Lactiplatibacillus plantarum), while two different taxa
could hydrolyze beta-mannan using the enzyme CE2 acetyl xylan esterase (Paenibacillus
nuruki and Lentilactobacillus diolivorans). All CAZymes found in the recovered MAGs are
described in detail in the Supplementary Material S2.

Several defense mechanisms and secondary metabolism-related genes were found
across the recovered MAGs. PADLOC was used to search the proteomes of all 123 recovered
genomes and identify antiviral defense mechanisms. In total, 29 different defense systems
were found in 17 different species (Figure 3C). The most common system was the restriction
modification (RM) type II, RM type IV, and Gabija systems present in 42%, 32%, and 32% of
the total species. One MAG (C8A.bin.4) identified as Lactococcus sp. harbored 11 different
defense systems, being the most in all recovered genomes. L. citreum was the only species
not carrying any defense mechanism. In addition, cas-type genes were rarely found in the
genomes and were only present in ~26% of them. On the other hand, antiSMASH was used
to predict biosynthetic gene clusters (BGC). Altogether, 13 different BGCs were predicted
by antiSMASH in 15 out of 19 searched species (Figure S2). The three main BGCS were
Type III Polyketide Synthases (T3PKS), Ribosomally synthesized and post-translationally
modified peptides (RIPP), and Terpene, comprising 58% of all hits. P. agglomerans was the
species with the most total BGCs and different BGCs, 7 and 6, respectively, followed by
C. tyrobutiricum and Leuconostoc suionicum. Lactococcus sp. harbored only one RIPP-like
related cluster.

3.4. Lactococcus Species Encodes a Variety of Defense Mechanisms in Silage

Two MAGs (C8A.bin.4 and C4C.bin.8) identified as Lactococcus sp., harbored the
greatest number of defense mechanism among the assembled genomes. However, as the
species could not be identified, the C4C.bin.8 assembly was compared against 18 Lactococcus
species from different origins. The analysis grouped the MAG C4C.bin.8 among a cluster
of Lactococci strains originating from humans and fermented food (L. garvieae, L. petauri,
and L. formosensis) (Figure S3, Supplementary Material S2). Among this group, ANI, AAI,
and cAAI indices related with higher scores (92–97%) than the rest of Lactococci (70–61%).
POCP scores, however, differed among the aforementioned group, C4C.bin.8 shared higher
scores with L. garvieae, L. taiwanensis, L. allomyrinae, and L. protatiae (54–41%) than with
the rest of Lactococci (<35%). Pairwise indices for C4C.bin.8 were on the threshold for
ANI percentage, higher than the threshold for cAAI, and below the threshold for AAI. In
general, the Lactococcus genomes harbored four different types of defense system, while the
two MAGs from silage harbored 11 and seven, respectively. The most common systems
were RM type I and II; however, the MAGs also additionally carry the type IIG, and III.
Other defense mechanisms, such as tmn, PrrC, and lamasu type I (Figure S4), were found
exclusively in the silage Lactococcus sp. (C8A.bin.4 and C4C.bin.8).

3.5. Viral Diversity during Grass Ensilaging

Using Virsorter and VIBRANT, we predicted viral scaffolds from 18 metagenomic sam-
ples collected at different times during grass ensilaging. Three of the samples represented
the pre-ensilaging (day 0), and the remaining samples had different sampling times across
40 days. In total, 2348 and 10,005 of 633,828 scaffolds were predicted as viral by Virsorter
and VIBRANT, respectively. After dereplication (95% identity and 85% coverage) and



Viruses 2023, 15, 951 9 of 18

quality control, we identified 240 viral scaffolds longer than 10,000 bp. These viral scaffolds
were considered viral operational taxonomic units (vOTUs). Based on the Minimum Infor-
mation about an Uncultivated Virus Genome (MIUViG) standards, 227 of the vOTU were
genome fragments while 13 vOTU were high-quality draft genomes. The average length of
the predicted vOTU was 17.6 ± 8.7 kbp, with the longest being 64 kbp and the smallest
being 10 kbp (length threshold). The average length of vOTU classified as proviruses
was 28.2 ± 10.6 kbp. On average, 10.5 ± 7.8 viral genes were predicted per genome, with
39 genes being the maximum found. According to CheckV, the viral draft genomes varied in
quality: 0.8% “complete”, 4.6% “high quality”, 13.0% “medium quality”, 78.0% “low qual-
ity”, and 3.8% “not determined”. From these 240 vOTUs, 23 were predicted to be proviruses.
An overview of the vOTUs genomes can be found in Supplementary Material S2.

We found a large degree of heterogeneity in the vOTUs between samples, in terms of
relative abundance and number of observed vOTUs, which formed two clusters based on
the degree and direction of change in relative abundance (Figure 4C). During the first two
days, a higher diversity was present in the vOTUs that dominated the community (cluster
one); however, after ensilaging, an enrichment of fewer populations was evident (cluster
two). This trend repeated throughout the whole experiment and with different vOTUs at
each sampling time (Figure 4C). The vOTUs reached their maximum number only after day
8 of the ensilaging (Figure 4B). Additionally, the relative abundance of the whole population
was highly variable, with an increase within the first 4 days but a decrease after day 8. We
also observed a succession between the vOTUs in terms of differential abundance.
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Figure 4. Abundance and diversity of 240 vOTUs recovered from grass ensilaging. (A) Total abun-
dance of the vOTUs presented as reads mapped per kilobase of contig, per million mapped reads
(RPKM). (B) Number of vOTUs found per day. (C) Differential abundance (z-score) of the vOTUs
across sampling time. The heatmap clustering is based on abundance patterns. The vOTUs identified
as provirus are not shown in the heatmap.
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Altogether, 71% of the vOTUs were taxonomically annotated at the family level us-
ing the latest ICTV classification. Around 21% of annotated populations were labeled as
“family_like” by PhaGCN, indicating a similar but unknown family. On average, the most
abundant families across all samples were Azeredovirinae (7.1%), Peduoviridae (5.7%), Mc-
cleskeyvirinae (3.7%), and Autographiviridae (3.5%). Before ensilaging, the families Peduoviri-
dae, Autographiviridae, and Stephanstirmvirinae were the most abundant ones, while after the
ensilaging, Azeredovirinae, Mccleskeyvirinae, and Efquatrovirus dominated the community
(Figure 5A). Interestingly, the relative abundance of Peduoviridae members decreased up to
0.7% but increased again up to 6.5% within 15 and 40 days of ensilaging. On average, the
relative abundance of proviruses across all samples was 20.2%, with an increase between
days 2 and 40 and a peak of 36.5% at the end of the ensilaging (Figure 5B). Additionally, we
predicted the putative host of 63% of the vOTUs. The relative abundance of the putative
host resembled the bacterial community observed with the amplicon and metagenomic
data (Figure 5C). The vOTUs infecting Enterobacteriaceae were more abundant before en-
silaging, while vOTUs infecting Streptococcaceae and Lactobacillaceae increased within the
first two days. This reassembled the two clusters observed in Figure 5C, where vOTUs
with Enterobacteriaceae as putative hosts belong to the highly abundant cluster before the
ensilaging. The vOTUs infecting Streptococcaceae decreased within days 8 and 40, and no
such trend was observed for Lactobacillaceae. It is important to note that the most abundant
vOTUs after 40 days of ensilaging were often unclassified or not linked to a probable host.

We used VICTOR and OPTSIL to produce a genome-based phylogeny and classifica-
tion of the vOTUs. The OPTSIL method clustering yielded 46 family clusters, 121 subfamily
clusters, 167 genus clusters, and 239 species clusters (Figure 6). The last indicated that of all
recovered vOTUs, only two belong to the same species. Additionally, Figure 6 shows that
vOTUs enriched in different days are closely related and shared similar hosts. vConTACT2
was used to cluster the grass silage viral genomes with 17,278 known prokaryotic virus
genomes from the NCBI at the genus level. In total, 112 vOTUs clustered among themselves
or with the reference genomes, while 45 vOTUs were classified as “singletons” and 83 as
“outlier”. Singleton vOTUs shared few or no proteins with the reference genomes or other
vOTUs, while outliers could be associated with existing proteins but without confidence.
vOTUs from the silage tended to cluster among themselves, forming groups of two to five
vOTUs. Only 26 of the total vOTUs clustered with a reference genome. This indicates that
the majority of the recovered vOTUs from grass silage belong to a novel taxa.

3.6. Acquired Immunity and Host-Phage Interaction

Using CRISPRCasTyper, CRISPR-Cas genes and arrays were searched in the 123 re-
covered medium- to high-quality draft MAGs (no dereplicated). In summary, a complete
CRISPR-Cas loci was found in 17 MAGs, while the presence of spacers (1158) was observed
in 27 MAGs. Complete CRISPR-Cas were only found in members of the Lactobacillaceae
family, W. cibaria, L. buchneri, L. diolivorans, and L. brevis. In total, 22 arrays were found, 63%
belonging to type II-A and 37% to type I-E. In general, one array was found per genome
but two arrays were found in five genomes identified as L. buchneri. The extracted spacers
were blasted against the vOTUs in search of a spacer–protospacer match as an indicator
of phage–host interaction. We identified unique interactions between 12 Lactobacillaceae
MAGs with spacers and three vOTUs (Figure S5). MAGs identified as L. diolivorans seem to
have an interaction history with vOTUs classified at the family level as Azeredovirinae and
Tybeckvirinae, while L. brevis was with Drexlerviridae.
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Figure 5. Characterization of the vOTUs during ensilaging. (A) The relative abundance of viral
families, (B) proviruses, and (C) viral host during the ensilaging are shown. The relative abundance
of 240 vOTUs was calculated based on the reads mapped per kilobase of contig per million mapped
reads (RPKM) across each sample.
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Figure 6. Phylogenetic relationship of 240 vOTUs recovered during 40 days of grass ensilaging and
their abundance across time. The plot displays the changes of the relative abundance of the different
vOTU across time, their taxonomic classification and potential host. The tree was constructed using
the predicted proteins of each vOTU and the Virus Classification and Tree Building Online Resource
(VICTOR). Each branch represents a unique vOTU (240 total). The colored circles indicate the viral
family (A), grey/black squares (B) if they are provirus, colored squares are the predicted host (C),
and the bar plot (D) shows the relative abundance of each vOTU at 0 (green), 15 (yellow), and
40 (purple) days.

3.7. Auxiliary Metabolic Genes (AMG) Found in vOTUs

Across the 240 vOTUs, we identified and annotated 5920 proteins using DRAM.
Thirty-six percent of these proteins could be associated with the sequences in the searched
database, of which approximately 9% were “uncharacterized” and “hypothetical” proteins.
We detected 20 potential auxiliary metabolic genes related to carbohydrate metabolism,
organic nitrogen, signaling, stress tolerance, and others across 11 vOTUs. For example, we
found a few glycosyl hydrolases (GH70, GH43, and GH5) in three viral genomes recovered
at different sampling times (day 0, 2, and 40). GDP-mannose 4,6 dehydratase, another gene
associated with carbohydrate metabolism, was found only in one genome. Interestingly,
one genome recovered from day 40 harbored the gene rubrerythrin, which is associated
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with a response to oxidative stress. Rubrerythrin was the only stress-tolerance-related gene
found among the vOTUs. Auxiliary metabolic genes were present across all sampling times
(Figure 7A), with day 0 exhibiting the highest abundance of viruses carrying these genes
and, more specifically, organic-nitrogen-associated genes.
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Figure 7. Potential auxiliary metabolic genes (AMGs) found in vOTUs during grass ensilaging.
(A) Relative abundance of AMGs present in 11 vOTUs grouped by categories. (B) Examples of the
genomic neighborhood of AMGs found in vOTUs during grass ensilaging. Known viral genes are
colored purple, while AMGs and hypothetical genes are green and blue, respectively. Structural viral
genes were annotated based on Virus Orthologous Groups (VOGDB) predictions. All genes were
annotated using DRAM, and AMGs with flags related to viral (F), transposon (T), viral-like peptidase
(P), or attachment flag (A) were discarded.

4. Discussion

The production and conservation of silage have been under constant progress due
to the importance to tackle deficits in feed availability [55]. Most of the progress in silage
conservation has derived from studying the role of lactic acid bacteria (LAB) during and
after the fermentation phase; however, there are other members of the microbial community
that have been underplayed. Recent sequencing and bioinformatic developments have
pushed forward the description of complex viral communities and their interaction with
other microorganisms [56]. Even though the grass ensilaging process harbors a dynamic,
diverse, and unknown virome, this one is underestimated. Here, we used metagenomes
and 16S rRNA amplicon libraries to describe the composition and structure of the bacterial
and viral community during a 40-day grass ensilaging process. Our study reveals part
of the silage taxonomic diversity, its dynamics during the fermentation, and the possible
interactions with key members of the ensilaging process. Additionally, found phages carry
different potential auxiliary metabolic genes.

Previous phage-silage-related studies are scarce, and they focus on the isolation and
individual characterization of mainly enterophages and some LAB phages [14,15,57]. To
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the best of our knowledge, this is the first metagenomic study to describe the viral diversity
during ensilaging. We observed that the grass silage microbiome harbors an unknown
and diverse virome. We recovered 240 vOTUs, of which approximately 89% could not be
matched with any phage genome in the RefSeq, 29% were not clustered with any known
family, and only two of those populations belong to the same species. This shows that
most of the silage viral diversity still needs to be discovered. However, it is a common
trend that metagenomic studies describe significant portions of novel viruses, as phages are
presumed to be the most diverse and abundant lifeforms [13,58]. For example, microbiome
studies of products such as cheese [59], kimchi, and vinegar [60] have shown that viral
diversity and its role during fermentation is poorly understood and described. In the case
of the cheese, similarly to what we found in the grass silage, less than 3% of recovered viral
contigs were known phages. This points out that even well-studied industrial processes
lack information about their viromes. It is relevant to note that genome-phages databases
are vastly incomplete, which limits the classification of phages at different taxonomic levels.
Additionally, the recent changes in virus taxonomy ratified by the ICTV [61] removed
families such as Myoviridae and Siphoviridae, which were found to be highly abundant in
fermented products such as milk [62] and cheese [59]. Because of that, the comparison of
viral taxonomy with previous studies has increased in difficulty.

In total, 29 different viral families were found in the silage and they were differen-
tially abundant before and after the ensilaging. Phage diversity and abundance is affected
by several factors such as the phage–bacteria interaction [63], pH [64], temperature, and
salinity [65]. In the case of the silage, the bacterial community, pH, and oxygen availability
change rapidly after the ensilaging and could be drivers of the phage diversity. The changes
in the silage bacterial community resembled the predicted putative host of the recovered
vOTUs during each sampling time. That could indicate that the phage–bacteria interaction
in silage can be a main driver of phage diversity. In the silage, two groups of phages seem
to dominate the community at different times. We observed that the enterophages are most
abundant and diverse during the pre-ensilaging and their abundance decreases a few days
after ensilaging, whereas phages associated with Lactobacillaceae and Streptococcaceae in-
crease after the second day of ensilaging. Members of the Peduoviridae and Autographiviridae
families seem to prefer Enterobacteriaceae as their host while Azeredovirinae, Mccleskeyviri-
nae, and Efquatrovirus seem to prefer Lactobacillaceae. In other fermented products such
as cider [66] and sauerkraut [64], it has been seen that phages can survive strong pH and
temperature changes. We can hypothesize that those factors during the ensilaging could
have less influence than the bacterial–phage interaction on the phage diversity.

The panimmunity in the grass silage seems to be mainly driven by innate immune
mechanisms. Similar observations have been made in cheese-associated bacterial commu-
nities [67], where CRISPR does not provide complete immunity against all phages; instead,
the innate immune mechanisms may play a complementary role. We found that RM sys-
tems were the most prevalent defense mechanism across the recovered genomes from the
silage, while CRISPR-Cas arrays (acquire immunity) were not common. Systematic analysis
of 21,000 bacterial and archaeal genomes have found that RM systems are, by far, the most
abundant mechanism, followed by CRISPR-Cas [68]. CRISPR-Cas are more commonly
found in LAB-like lactobacilli members than in general bacteria [69]. Despite most MAGs
recovered from silage being LAB, only 13% harbored a complete CRISPR-Cas array. This
can suggest that in silage, innate immunity plays a more important role against phages
than acquired immunity. However, the prediction of complete arrays in highly fragmented
MAGs is challenging and could lead to errors. Interestingly, CRISPR spacers extracted from
arrays matched with two different vOTUs in the silage, which shows an infection history
and previous bacteria–phage interaction. L. diolivorans, harboring CRISPR-Cas array, was
the most abundant bacteria after 40 days of ensilaging, which could also indicate that
acquired immunity could play an important role in the establishment of the key members
of the silage microbiome.
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AMGs encoded in the viral contigs were associated with carbohydrate metabolism, or-
ganic nitrogen, signaling, and stress tolerance. These results are consistent with previously
reported glycosyl hydrolase and stress tolerance genes encoded in viromes from different
environments [70–72]. The potential transfer of glycosyl hydrolase between different mem-
bers of the silage microbiome could enhance the degradation of complex carbon structures.
Additionally, as silage is used to feed animals, the exchange of such genes could relax the
metabolic bottlenecks in the microbial host [73]. However, no evidence of such exchange
has been found, and the presence of AMG is not an indication of actual gene mobilization
between phage and the host. Some of the AMGs can be misidentified because phages also
contain several metabolic-like genes.

Our data suggest that the grass silage viral diversity varies through time, and it
seems to be tightly linked to the bacterial community. As silage could potentially be a
source of phages with medical and biotechnological applications, it seems relevant to study
the dynamic of phages not only in grass silage but also in other plant materials such as
corn, alfalfa, or sorghum, as well as all the factors that affect the ensilaging process. This
information could lead not only to the isolation of novel species but also the understanding
of bacteria–phage interaction in medium-complexity microbial communities.

5. Conclusions

This study highlighted the microbial diversity and heterogeneity across 40 days of
grass silage fermentation. The vOTUs detected in the metagenomic dataset, and the pre-
diction of their putative host, suggest that multiple interactions between the bacteria and
bacteriophages occur during the ensilaging process. The phages could play an equal,
or more important, role than the frequently studied unwanted microorganisms in fer-
mented feed, which points to the importance of the characterization of novel diversity in
such products.
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