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Abstract: Aiming to evaluate the role of ten functional polymorphisms in long COVID, involved
in major inflammatory, immune response and thrombophilia pathways, a cross-sectional sample
composed of 199 long COVID (LC) patients and a cohort composed of 79 COVID-19 patients whose
follow-up by over six months did not reveal any evidence of long COVID (NLC) were investigated to
detect genetic susceptibility to long COVID. Ten functional polymorphisms located in thrombophilia-
related and immune response genes were genotyped by real time PCR. In terms of clinical outcomes,
LC patients presented higher prevalence of heart disease as preexistent comorbidity. In general, the
proportions of symptoms in acute phase of the disease were higher among LC patients. The genotype
AA of the interferon gamma (IFNG) gene was observed in higher frequency among LC patients
(60%; p = 0.033). Moreover, the genotype CC of the methylenetetrahydrofolate reductase (MTHFR)
gene was also more frequent among LC patients (49%; p = 0.045). Additionally, the frequencies of
LC symptoms were higher among carriers of IFNG genotypes AA than among non-AA genotypes
(Z = 5.08; p < 0.0001). Two polymorphisms were associated with LC in both inflammatory and
thrombophilia pathways, thus reinforcing their role in LC. The higher frequencies of acute phase
symptoms among LC and higher frequency of underlying comorbidities might suggest that acute
disease severity and the triggering of preexisting condition may play a role in LC development.

Keywords: long COVID; risk factor; polymorphisms; IFNG; MTHFR

1. Introduction

Since 2020, the coronavirus disease 2019 (COVID-19) constituted one of the greatest
challenges in global public health, reaching over 600 million confirmed cases and a death
toll of more than 6 million by the end of 2022. The most relevant pathogenesis pathways in
the disease evolution are inflammatory cytokine storm and thrombophilia events [1–4].
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Today, even after the vaccine development, COVID-19 is still presenting new chronic
aspects of concern, such as the so-called long COVID (LC) that is not yet fully understood [5].
A number of acute COVID-19 patients developed prolonged or even new symptoms that
could persist for over three months and maintained them for as long as 12 months or
more [6]. According to the National Institute for Health and Care Excellence (NICE) from
the United Kingdom [7], post-acute COVID-19 refers to persistence of symptoms over
3 weeks, but if the continuity of symptomatology reaches 3 months or more, it becomes
chronic or long COVID. The proportion of long COVID showed to be heterogeneous,
ranging from 31% in North Americans to 51% in Asians [8]. Moreover, the diagnosis of LC
can be blurred by some factors, such as worsening of preexisting comorbidities and even
post-intensive care syndrome in severe COVID-19 cases [9,10].

There are several obscure issues in LC, such as the prevalence and prognostic/ pre-
dictive factors. While for acute COVID-19, severity-associated factors such as age, sex
and comorbidities were immediately recognized, for LC, the risk factors are still poorly
known. Some studies point to a putative association with cytokine levels, IL-2, IL-4, IL-10
and IL-17 [11]. However, the role of genetic factors has been poorly approached and no
significant genetic associations have been reported [12].

The present study aimed to evaluate the role of ten functional polymorphisms at ten
genes coding for cytokines involved in major inflammatory pathways of COVID-19 and
proteins associated with risk of thrombophilia, as well as other immune relevant SNPs
associated with regulation of class II HLA and dendritic cell receptor expression.

2. Materials and Methods
2.1. Study Design and Ethic Aspects

The present study was composed of two sample groups, a cross-sectional group com-
posed of 199 long COVID patients and a cohort composed of 79 COVID-19 patients whose
follow-up by over six months did not reveal any evidence of long COVID. Both sample
groups were selected from a larger sample according to very rigorous inclusion/exclusion
criteria, as described below.

All patients of both sample groups had their diagnosis of COVID-19 confirmed by RT-
PCR, with clinical symptoms and recovery information obtained from medical records. The
same clinical parameters and health multiprofessional approaches were used to evaluate
and classify all patients. The sampling was performed between July 2020 and December
2021 and included patients that are residents in Belém (Pará, Brazil) from both sexes, over
18 years old and unvaccinated during the time of the study. Additionally, no reinfection
could be detected or reported among both sample groups. The severity of acute COVID-19
was evaluated according to WHO criteria [13], from information on medical records.

The non-long COVID patients (NLC) constituted of 76 patients that had mild acute
COVID-19, with no need for hospitalization or supplemental oxygen, and three patients
that were asymptomatic, but had SARS-CoV-2 infection confirmed by real time PCR. The
exclusion of severe and moderate COVID-19 patients was conducted in order to match
more properly this sample with the long COVID sample. Only patients whose medical
records and mutiprofessional follow-up allowed to exclude any new signal or symptom
that could be assigned to long COVID development were included.

The long COVID sample (LC) was constituted of patients screened by the Compre-
hensive Health Care Program for Patients with long COVID of State University of Pará.
Among the patients obtained using this service, 199 patients were screened based on the
following criteria: (i) reporting long COVID symptoms and sequalae by over three months
after the acute infection, the symptoms and sequelae were evaluated and confirmed by a
multiprofessional team composed of physiotherapists and specialized physicians, and by
image and laboratory exams; (ii) only patients with SARS-CoV-2 RNA detection by RT-PCR
and complementary exams were accepted in the sample; (iii) Only patients that presented
mild acute COVID-19 were included in the sample in order to avoid confounding sequelae,
as those from intensive care syndrome with long COVID signs and symptoms [9].
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Personal, demographic and clinical data were collected using cryptographed Google
forms™, stored in computers with controlled access by individual passwords.

The present study was approved by the National Ethic Committee (CAEE: 33470020.
1001.0018; protocol number nº 2.190.330). All the participants provided written informed
consent. This study was conducted in strict accordance with the principles of the Declara-
tion of Helsinki and followed recommendations provided by the guidelines for reporting
observational studies, the STrengthening the REporting of Genetic Association studies
(STREGA) [14].

Variables used for describing and subgrouping of the final sample were age, sex, main
symptoms presented during the acute phase of COVID-19 and LC, duration of symptoms
(LC) and severity of the acute phase of COVID-19.

2.2. Sample Processing and Genotyping

DNA was isolated from venous blood samples (4 mL) and collected using EDTA as
the anticoagulant. DNA isolation was performed using the kit ReliaPrepTM Blood gDNA
Miniprep System (Promega), following the protocol recommended by the fabricant.

Ten SNPs were chosen based on their functional characteristics, most of them related
to modulation of gene expression, localized in cytokine loci IFNG (+874T/A; rs2430561),
TNFA (-308G/A; rs1800629), IL6 (-174G/C; rs1800795) and IL6R (358A/C; rs2228145);
thrombophilia associated loci MTHFR (C677T, Ala222Val; rs1801133) and FV Leiden (R506Q
C/T; rs6025); putative SARS-CoV-2 receptor [15] and antigen presenting cell receptor CD209
(-336A/G; rs4804803); and expression regulator polymorphisms of Class II HLA loci CIITA
(-168A/G; rs3087456), HLA-DPA1 (rs3077) and HLA-DPB1 (rs9277534).

The SNPs genotyping was performed by real time PCR using pre-designed assays
(Thermo Fisher, Carlsbad, CA, EUA) in a sequence detector StepOne PLUS (Applied
Biosystems, Foster City, CA, EUA), following the fabricant protocols. The assays ID
are as follows: TNFA (C___7514879_10); IL6 (C___1839697_20); IL6R (C__16170664_10);
MTHFR (C___1202883_20); FV Leiden (C__11975250_10); CD209 (C___1999340_10); CIITA
(C__15793789_10); HLA-DPA1 (C__11916951_10); HLA-DPB1 (C__29841700_20). The IFNG
(+874T/A; rs2430561) real time genotyping protocol was previously described [16].

2.3. Statistical Analyses

All SNPs were tested for Hardy-Weinberg equilibrium. The genotype and allele
frequencies of each SNP were estimated by direct count. Comparison of the allele and
genotype frequencies between LC and NLC groups were carried out using Fisher exact test.
The comparison of the frequencies of symptoms between different genotype carriers were
performed using paired Wilcoxon test.

For six SNPs, genotype and allele frequencies in the population of Belém could be
obtained from studies conducted before the COVID-19 pandemics [17–24], as detailed in
Supplementary Table S1 (Supplementary Materials), hence, representing the frequencies
in the general population of Belém without any sampling biases putatively induced by
the pandemics.

Correction for multiple tests is usually made in genes with several alleles because there
is only one hypothesis to be tested with many tests. Otherwise, multiple genes represent
one hypothesis per gene. However, some studies apply corrections across multiple genes,
such as GWAS. The crossroad in this issue is how conservative the authors want to be
in their conclusions. Thus, we opted to present the raw test results without correction,
allowing the readers to take their own conclusions.

3. Results

Demographic and clinical characteristics of the samples are presented in Table 1.
Female predominates in both samples, as well as ages under 60 years, and the proportion
of females is higher among LC patients than in the general population. In terms of clinical
characteristics, LC presented higher prevalence of heart disease as a preexisting comorbidity
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(Fisher exact test; p = 0.001), and the proportions of the remaining comorbidities were similar
to those observed in the NLC sample. Moreover, in general the proportions of symptoms
in acute phase of the disease were higher among LC patients (Wilcoxon test; Z = 2.9;
p = 0.0032), fatigue being by far the most frequent, (observed in 53% of the patients),
followed by anosmia/hyposmia/parosmia (29%).

Table 1. Demographic and clinical characteristics of long COVID and non-long COVID samples.

Variables NLC *
n = 79 (28%)

LC *
n = 199
(72%)

Total
n = 278 (100%)

Sex (n, %)
Female 40 (51%) 140 (70%) 180 (65%)
Male 39 (49%) 59 (30%) 98 (35%)
Age range (years) (n, %)
≤59 76 (96%) 169 (85%) 245 (88%)
≥60 3 (4%) 30 (15%) 33 (12%)
Age median (years) 43 ± 14 48 ± 13 46 ± 14
Smoker or ex-smoker
Yes 4 (5%) 16 (8%) 20 (7%)
No 75 (95%) 183 (92%) 258 (93%)
Major Comorbidities
Heart Diseas. 6 (7%) a 48 (24%) a 54 (19%)
Obesity 6 (7%) 12 (6%) 18 (6.5%)
Asthma 0 17 (8.5%) 17 (6.1%)
Diabetes Mellitus 0 7 (3.5%) 7 (2.5%)
Arterial hypertension 2 (2%) 4 (2%) 6 (2%)
Liver Disease 0 4 (2%) 4 (1.4%)
Immunosuppression, autoimmune disease 0 3 (1.5%) 3 (1.0%)
Chronic kidney disease 1 (1.3%) 1 (0.5%) 2 (0.7%)
Hypothyroidism 1 (1.3%) 1 (0.5%) 2 (0.7%)
Major symptoms—acute phase COVID-19 (n, %)
Myalgias 41 (52%) 155 (78%) 196 (70%)
Headache 49 (63%) 140 (70%) 189 (68%)
Loss of taste 46 (58%) 137 (69%) 183 (66%)
Fatigue/tiredness 36 (45%) 146 (73%) 182 (65%)
Anosmia 48 (61%) 127 (64%) 175 (63%)
Fever 49 (62%) 125 (63%) 174 (62%)
Cough 40 (51%) 117 (59%) 157 (56%)
Shortness of breath 23 (29%) 123 (62%) 146 (52%)
Muscle weakness 37 (47%) 109 (55%) 146 (52%)
Chest pain 26 (33%) 113 (57%) 139 (50%)
Sore throat 32 (40%) 106 (53%) 138 (49%)
Diarrhea 27 (34%) 76 (38%) 103 (37%)
Coryza 29 (37%) 71 (35%) 100 (36%)
Abdominal pain 14 (17%) 65 (33%) 79 (28%)
Nausea 11 (14%) 64 (32%) 75 (27%)
Retro-orbital pain 24 (30%) 36 (18%) 60 (22%)
Vomit 6 (7%) 42 (21%) 48 (17%)
Disease severity—acute phase COVID-19 (n, %) **
Asymptomatic 3 (4%) 0 3 (1%)
Mild 76 (96%) 199 (100%) 275 (99%)
Number of symptoms presented in long COVID (n, %)
Up to 3 symptoms - 121 (61%) -
More than 3 to 9 symptoms - 67 (34%) -
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Table 1. Cont.

Variables NLC *
n = 79 (28%)

LC *
n = 199
(72%)

Total
n = 278 (100%)

More than 9 to 15 symptoms - 11 (5%) -
Major symptoms in long COVID (n, %)
Fatigue/tiredness - 106 (53%) -
Anosmia/hyposmia/parosmia - 59 (29%) -
Myalgias - 52 (26%) -
Amnesia/ recent memory loss - 52 (26%) -
Headache - 51 (25%) -
Arthralgias - 45 (22%) -
Change/loss of taste - 44 (22%) -
Shortness of breath - 32 (16%) -
Decreased visual acuity - 27 (13%) -
Chest pain - 26 (13%) -
Dizziness - 23 (11%) -
Irritation in the throat/throat - 22 (11%) -
Insomnia - 21 (10%) -
Muscle weakness - 20 (10%) -
Loss of hair - 19 (9%) -
Arrhythmia - 16 (8%) -
Anxiety - 10 (5%) -
Tremors - 10 (5%) -
Arterial hypertension - 9 (4%) -
Itching/spots on the skin - 7 (3%) -
Paresthesia in limbs - 7 (3%) -
Pulmonary fibrosis - 6 (3%) -
Asthma - 5 (2%) -
Decreased hearing acuity - 5 (2%) -
Dyslipidemia - 5 (2%) -
Hyperglycemia/Diabetes - 5 (2%) -
Irritability - 5 (2%) -
Facial paralysis - 4 (2%) -
Lack of attention - 4 (2%) -
Edema/swelling in the limbs - 3 (1.5%) -
Sweating - 3 (1.5%) -
Arthritis - 2 (1%) -
Depression - 2 (1%) -
Nausea - 2 (1%) -
Panic/fear syndrome - 2 (1%) -
Ringing in the ear - 2 (1%) -
Weight gain/loss - 2 (1%) -
Urinary incontinence/dysuria - 1 (0.5%) -

* LC—Long COVID at the time of evaluation (>3 months); NLC—non-long COVID. ** Classified according to
criteria established by the World Health Organization (WHO). a Significant difference (Fisher exact test; p = 0.001).

The exclusion of asymptomatic patients did not change the significance of the statistical
significance observed.

Complete genotype and allele frequencies of all ten SNPs, in both LC and NLC
groups, are presented in Supplementary Table S1. Two SNPs, rs2430561 (Interferon Gamma,
IFNG) and rs1801133 (Methylenetetrahydrofolate Reductase, MTHFR), showed statistical
differences between LC and NLC groups, as highlighted in Figure 1. Even the exclusion of
the asymptomatic patients did not alter these results.
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Figure 1. Frequency (%) of single nucleotide polymorphism (SNP) genotypes in patients with non-
long COVID (NLC; N = 79), long COVID (LC; N = 199) and in the general population of Belém
(Bel; obtained from published papers prior to the pandemics, thus representing the frequencies in
general population of Belém without any sampling biases induced by the pandemics). NLC are
patients who have not reported symptoms or sequelae after COVID-19. LC are patients with reported
symptoms for over 3 months. The SNPs are discriminated information about genotypes and their
respective effects in gene product expression are given. For LC and NLC subsamples composed of
asymptomatic or mild or patients. Fisher’s exact test.

The genotype AA of IFNG gene, associated with lower expression, was observed in
higher frequency among long COVID patients (60%), and this difference was statistically
significant (Fisher Exact test; p = 0.033).

Moreover, the genotype CC of MTHFR gene, associated with higher expression, was
also more frequent among long COVID patients (49%). Fisher Exact test showed significance
(p = 0.045).

The genotypes AA of IFNG and CC of MTHFR in the population of Belém, according to
data gathered from studies conducted prior the COVID-19 pandemics, showed frequencies
of 56.8% and 42.1%, respectively (Figure 1).

Additionally, the frequencies of long COVID symptoms between carriers of IFNG
genotypes AA and non-AA were performed across all symptoms by paired Wilcoxon test
(Figure 2), showing a strong statistical significance in higher frequencies of symptoms
among AA carriers (Z = 5.08; p < 0.0001). However, the frequencies of symptoms were not
statistically different in MTHFR CC genotypes compared with non-CC ones (Figure 3).
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4. Discussion

The female gender was more frequent among LC patients than among NLC ones. This
result is in agreement with previous studies that suggested an association of long COVID
with female gender [25–28]. Additionally, our results also showed the incidence of LC
among patients younger than 60 years, which was also reported in previous studies [29,30].

Cardiac disease was the most prevalent preexistent comorbidity among LC compared
to NLC patients. Some studies showed that preexisting comorbidities might potentialize
or increase the risk of prolonged symptoms associated to long COVID [13,29]. In this
context, there is evidence that COVID-19 patients show an augmented risk of cardiovascular
disorders, even in the absence of previous heart disease [31], providing a link between
cardiovascular disease development and long COVID.
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The frequencies of symptoms during COVID-19 acute phase were clearly higher in
the LC group. These results could represent a putative association with COVID-19 severity,
in agreement with previous studies that associated the severity of the acute phase with
persistent symptoms [2].

An additional point is that cardiovascular disease has been widely associated to the
allele T of the rs1801133 from MTHFR loci. Thus, the higher frequency cardiac disease
among LC patients could not be a consequence of the genotype CC’s higher frequency in
this group [32].

Polymorphisms of MTHFR gene have been reported in association with several dis-
eases, including cardiovascular diseases, thrombophilia predisposition, inflammatory
disorders and even cancer [32]. Regarding infectious diseases, mutations at this gene could
be associated with important protozoa infections such as malaria and leishmaniosis [33,34],
as well as with viral diseases such as human papilloma virus [35] Cytomegalovirus, HIV
and Crimean-Congo hemorrhagic fever [36–38]. While most of the studies indicate pre-
disposition due to the presence of MTHFR *T allele, at least one study reported protective
effects of this allele against persistent HBV infection in West Africa [39].

The associations of this polymorphism with COVID-19 severity have been suggested
by meta-analysis based on the correlation of T allele frequencies with COVID-19 mortal-
ity [40]. However, to this date, no studies have been conducted investigating the role of
MTHFR mutations in long COVID. Our results are the first to provide initial clues on the
relationship of impaired folate-mediated one carbon metabolism with long COVID.

However, carriers of the MTHFR predisposing genotype do not show differences
in the long COVID symptoms frequencies, if compared to non-carriers. This result,
along with a low significance of p-value of the Fisher exact test, can be indicative of a
spurious association.

After SARS-CoV-2 infection, a persistent inflammatory response could be detected
for about 40–60 days, even among patients with mild and asymptomatic COVID-19 [3].
In this context, long COVID is assumed to be related to residual inflammation and tissue
damage in association with preexisting comorbidities [41]. Indeed, a previous study from
our group suggested a molecular signature of Th17 inflammatory profile with a decrease in
IL-4 and IL-10 anti-inflammatory cytokine levels [11].

Following a simple logic, the SNP associated with a low expression of IFNG would
lead to low plasma levels of IFN-γ. If this polymorphism is associated with long COVID, it
would be expected that in our previous paper [11], low levels of IFN-γ should be detected
in plasma, but this was not the case. However, the present study used only LC patients that
had mild acute COVID-19, while the previous cytokine paper also used patients that had
severe acute COVID-19 patients. Thus, they are not directly comparable. Moreover, during
the development of Th17 immune response pattern the dynamics of interferon-γ production
is not linear. It is known that in some situations, interferon-gamma can negatively regulate
Th17-mediated immunopathology [42]. Thus, low IFNG expression can be associated with
initial Th17 profile development. Moreover, pathogen-induced Th17 cells are also able
to produce IFN-γ afterwards [43]. In this scenario, during an infection followed by Th17
profile establishment, early and late IFN-γ plasma levels would not necessary be similar.

In conclusion, the association of long COVID with interferon gamma gene polymor-
phism seems to be a valuable clue for understanding the underlying mechanisms. Not only
was the frequency of the low expression CC genotype associated with long COVID, but the
long COVID symptoms showed to be more frequent among CC genotype carriers when
compared with the remaining genotypes. Thus, due to the high significance, even after
correction for multiple tests, we considered that the rs2430561, at the INFG gene, can be an
important direct or indirect marker for long COVID.

Interferon gamma is a key factor in viral infections, involved in several immunological
pathways, such as antigen processing and presentation, apoptosis, antiviral mediators,
lysosome mediated killing/phagosome maturation and complement pathway, among
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others [44]. Thus, genotypes that modulate INF-γ expression could influence the persistence
of COVID-19 symptomatology.

Despite the scarcity of studies in long COVID host genetics, some aspects of IFNG
reveals interesting links between inflammatory pathways related to long COVID. Indeed,
INF-γ was identified as an important mediator in controlling sortilin-1 (Sort-1) levels, which
is a receptor of VPS10p family associated with cardiovascular disease [45], including the
reduction in Sort-1 by INF-γ regulated by JAK/STAT pathway.

Interestingly, Sort-1 is associated with several diseases, including inflammation syn-
dromes [46]. Thus, INF-γ low expression genotype could display lower Sort-1 inhibition,
predisposing to inflammatory profiles underlying long COVID pathogenesis.

Moreover, by analogy with other viral infections presenting long lasting inflammatory/
immune-based diseases, retroviral chronic infections showed higher INF-γ levels associated
with inflammatory symptoms [47,48]. However, in such diseases, the viral infection persists
along with the inflammatory symptomatology. Alternatively, some viral infections, such as
hemorrhagic fevers, could present immune-based disease after the viral infection clearance.
In this context, a gene expression study highlighted the role of INF-γ in the protection
against hemorrhagic dengue fever [49], in agreement with our results, suggesting that low
expression genotypes are predisposed to long COVID and the higher expression genotypes
are protective.

Despite presenting promising genetic associations, our study has limitations and
strengths, such as the need for future studies with larger samples and rigorous follow-
up and controlling of long COVID patients in order to evaluate long COVID evolution
patterns and their putative host genetics basis. The value of our results resides in the first
multigenic approach with rational choice of candidate polymorphisms in well delimited
samples for absence or occurrence of long COVID, controlled for acute disease severity.
Even with the limitation of sample size, it was possible to detect associations that will guide
future studies.

5. Conclusions

The present study identified, among ten candidate genes, two polymorphisms asso-
ciated with long COVID in both inflammatory and thrombophilia major pathways. The
genetic basis of long COVID triggering is scarce and our study is among the first ones to
approach the underlying host genetic factors of the disease. The results provide valuable
clues for future studies, such as homocysteine plasma levels evaluation, and begin to reveal
the extensive complexity of the long-lasting symptomatology of COVID-19.
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