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Abstract: Newcastle disease (ND) has been a consistent risk factor to the poultry industry worldwide.
Its pathogen, Newcastle disease virus (NDV), is also a promising antitumor treatment candidate.
The pathogenic mechanism has intrigued the great curiosity of researchers, and advances in the last
two decades have been summarized in this paper. The NDV’s pathogenic ability is highly related
to the basic protein structure of the virus, which is described in the Introduction of this review. The
overall clinical signs and recent findings pertaining to NDV-related lymph tissue damage are then
described. Given the involvement of cytokines in the overall virulence of NDV, cytokines, particularly
IL6 and IFN expressed during infection, are reviewed. On the other hand, the host also has its
way of antagonizing the virus, which starts with the detection of the pathogen. Thus, advances in
NDV’s physiological cell mechanism and the subsequent IFN response, autophagy, and apoptosis are
summarized to provide a whole picture of the NDV infection process.
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1. Introduction

Avian paramyxoviruses 1(APMV-1) is commonly known as Newcastle disease virus (NDV).
The virulent strain can cause Newcastle disease (ND), which is a highly contagious and acute
disease in avian species worldwide. The strain causes severe economic losses in the poultry
industry, and it was first identified in Newcastle of England and in Indonesia in 1926. Recently,
it was categorized as Avian orthoavulavirus 1 of the Orthoavulavirus genus, Avulavirinae subfam-
ily and Paramyxoviridae family according to the updated unified phylogenetic classification
system and revised nomenclature for Newcastle disease virus. The genome of NDV is a
single-stranded, negative-sense RNA encoding eight gene products, namely the nucleoprotein
(NP), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), the
RNApolymerase (L), and V and W proteins [1]. The length of the NDV genome consists of
multiple of six nucleotides (nt): either 15,186, 15,192, or 15,198 nt [2].

The components of the virus work together to accomplish the entire invasion and
infection process. All proteins have their unique functions and cooperate with each other.
With respect to the nucleoprotein, NP is responsible for the stable encapsidation of the
NDV genome, and it is assisted by the P and L proteins [3]. The P protein is engaged in
viral RNA synthesis and enables the solubility of the NP [4]. The M protein is the skeleton
of the virus and is essential for viral budding [5]. It also promotes viral replication by
regulating charged multivesicular body protein 4 [6]. HN and F proteins are key factors
for the virus to enter and release from host cells. The F protein is primarily involved in
virus entry, cell fusion, and hemolysis [7]. It is synthesized as a precursor protein, F0. It
can mediate virus–cell membrane fusion after cleavage into F1 and F2 polypeptides. The
cleavage is performed by host cell proteases, and the sensitivity of diverse strains of F
proteins to different proteases is determined by the fact that F proteins have differentamino
acid motifs at the cleavage site [8]. The cleavage site molecular basis of the F protein
(FCS) is most decisive with respect to the pathogenicity of NDV strains. The FCS of
virulent and mesogenic strains is 112R/K-R-Q-R/K-R F117, while for lentogenic strains,
the FCS is 112G/E-K/R-Q-G/E-R L117 [9]. Additionally, the specific amino acid sequence
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of the F protein is deeply associated with the tropism relative to the brain, lung, and
spleen tissues [10]. The L protein is the largest protein in the virus, and it is supposed
to be multifunctional. It is involved in genome replication and in the transcription and
regulation of viral replication in cells [11,12]. The W and V proteins are nonstructural
proteins generated from the RNA editing process of the P gene. The V protein is critical for
the inhibition of host type I interferon (IFN) secretion and apoptosis, providing a favorable
environment for viral replication [13–15]. The W protein is the other RNA editing product
of the P gene, which could be expressed in the nucleus or the cytoplasm depending on the
genotype of the viral strain [16].

The epidemiology, immune response against NDV infection, and the evolution of NDV
strains have been extensively and concisely reviewed [17–24]. However, the pathogenic
infection mechanism has not yet been summarized. To provide a better understanding of
NDV infections, apoptosis, and IFN-related mechanisms, the host cell responses against
NDV infection are described in detail in this review.

2. Clinical Signs and Damage to Organs

The virulence of NDV is determined by multiple factors, including tissue or organ
tropism, ability to resist the host’s immune system, and replication efficacy. The mean death
time (MDT) in embryonated chicken eggs, the intravenous pathogenicity index (IVPI) in
6-week-old chickens, and the intracerebral pathogenicity index (ICPI) in 1-day-old chickens
are indicators for assessing NDV virulence in vivo [25]. NDV strains with an ICPI value
below 0.5 are considered lentogenic, while strains with ICPI values of 0.5–1.5 and 1.5–2.0 are
classified as mesogenic and velogenic, respectively [26]. The clinical manifestations of NDV
differ depending on its virulence. Lentogenic NDV strains cause subclinical infection with
mild respiratory or enteric disease and are considered low-virulent. Mesogenic NDV strains
have intermediate virulence and cause respiratory infections with a moderate mortality
rate. Velogenic strains are divided into two types: viscerotropic velogenic strains and neu-
rotropic velogenic strains. The former cause ulcerative hemorrhages in the gastrointestinal
tract; lymphoid depletion; and necrotic foci in the spleen, liver, and gut-associated lym-
phoid tissue (GALT). Whereas neurotropic velogenic strains are characterized by dyspnea,
depression, opisthotonos, head twisting, and paralysis [27]. NDV infections also perturb
the ceca flora of chickens, displayed as an increased abundance of pathogenic Rhodoplanes
and Clostridium, along with the depletion of benign bacteria such as Paenibacillus and
Enterococcus [28].

NDV strains vary greatly in terms of tissue tropisms and severity of clinical symptoms.
For example, during infection with Goose/CH/GD/E115/2017 (E115) (ICPI of 1.67), a
chicken flock displayed neurological signs, including head twitching, muscle tremors, and
even paralysis and diarrhea, whereas infected geese did not show any clinical symptoms.
The presence of the virus has been detected in the lungs, spleen, kidneys, trachea, bursal sac,
glandular stomach, cecum, and liver of infected chickens and geese; however, it is worth
noting that the virus is present in the brain of chickens and not in geese [29]. NDV can
also cause damage to pancreatic tissue in chickens, manifested by the reduced production
and activity of pancreatic digestive enzymes, as well as increased corticosterone and
somatostatin levels and decreased insulin production. Pancreatic damage caused by NDV
may lead to a decline in growth performance [30]. Another study investigated an outbreak
of Newcastle disease in wild pigeons in São Paulo, Brazil, in 2019. Infected birds showed
neurological signs, and bleeding was observed in different tissues. Histopathological
changes with the infiltration of monocytes were also found in the brain, kidneys, ventricles,
heart, and spleen [31].

The cross-species transmission of the Newcastle disease virus has also been reported
in recent years. Chickens exposed to pigeons with velogenic viscerotropic Newcastle
disease—genotype VIId experienced higher mortality and severe respiratory, digestive, and
neurological signs and higher and longer virus expulsion times in the cloaca than in the
oropharynx. Diseased Muscovy ducks can cause chickens that have been in contact with
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them to develop obvious NDV symptoms. Specific manifestations include conjunctivitis,
swelling of the head, respiratory signs of sneezing and a runny nose, and neurological
signs such as tremors and torticollis [32,33]. This proves that pigeons and Muscovy ducks
are considered effective carriers of the AOAV-1 genotype VIId virus and are risk factors for
Newcastle disease virus infections in commercial chickens, thereby reducing productivity.
Experiments with five-week-old chickens infected with pigeon-derived NDV with genotype
XXI showed that chickens could be infected with the virus and exhibit high mortality and
typical symptoms of the Newcastle disease. There were obvious pathological changes
mainly in the lungs, thymus, spleen, and bursa of chickens; in addition, obvious neuronal
lesions were also found in the brain of infected chickens, including glial hyperplasia and
neuronal degeneration [34]. The serial passage of pigeon-derived NDV in chickens reveals
an increase in pathogenicity in chickens, which also raises the possibility that wild bird
populations should be taken into account when monitoring NDV.

The clinical symptoms of NDV are not very characteristic and are easily confused with
highly pathogenic avian influenza, infectious bronchitis, infectious laryngotracheitis, fowl
cholera, mycoplasmosis, and psittacosis [35]. However, what is common is the lymphoid
tropism of virulent strains. Virulent strains lead to lymphoid depletion in bursal and
thymic tissues and severe apoptosis in the spleens of chickens [36,37]. Yang reported
that NDV strain F48E9 (ICPI of 1.93) displayed atrophy relative to the bursa of Fabricius
(BF) with severe damage, and genes associated with the innate immune response were
significantly upregulated [38]. Lu et al. showed that a duck-origin NDV strain induced
obvious histological lesions of the lymphoid tissues, including lymphoid necrosis and
lymphoid depletion in the spleen, thymus, and BF. The NDV load in these organs was
also correlated with the severity of clinical symptoms and damage relative to immune
tissues [39]. CD3+ and CD4+ T lymphocyte populations were also proven to decrease in the
spleens of chickens after infection with NDV AF2240 (ICPI of 1.9) and IBS002 (ICPI of 1.76)
strains. However, KUL01+ macrophages significantly increased by more than 10-fold [40].
NDV inoculation also decreased CD25+ intraepithelial lymphocytes, especially in the case
of virulent strains (GVII and GVIII) [41].

3. Cytokine Secretion during NDV Replication

NDV has long been considered to be a strong stimulator of inflammatory cytokines,
especially IFNs. It is highly related to the pathogenesis of NDV. The inducibility of IFN is
highly variable depending on different strains and host types. Most strains do not tend to
induce IFN production in chickens. Anis et al. suggested that weaker IFN-β expression
was detected in the lung tissues of chickens than in ducks infected with the lentogenic 9a5b
NDV strain, which may be associated with clinical severity [36,42]. Similarly, IFNs were
not upregulated in the BF of chickens or in CEFs when challenged with the velogenic NDV
strain F48E9 (genotype IX), although several innate immune responses and inflammatory-
response-associated pathways were activated [38,43].

Virulent genotype VII strains induce profound IFN responses. Compared with the
F48E9 strain, the genotype VIId GD strain induced a fiercely robust IFN-γ expression in the
spleen at 48 h, but other cytokines such as IL-6, AvBD2, and AvBD3 did not significantly
change. As for other tissues, in the lung and Harderian glands, IFN-γ, IL-6, iNOS, AvBDs,
TLRs, and MHCII were expressed at significantly higher levels in chickens challenged with
the GD strain rather than with the viruses of the F48E9 strain group [44]. Additionally, the
genotype VIId go/CH/LHLJ/1/06 strain is also an efficient stimulator of IFN-γ in geese,
which is accompanied by an intense innate immune response [45]. In another study, the
genotype VIId virulent NDV/chicken/Egypt/1/2015 strain fiercely stimulated chIFNα in
the spleen of broilers within 24 h [46]. In comparison to the VII Duck/CH/GD/SS/10 strain,
type I IFN induction was minimal in CEFs and DEFs after IX Duck/CH/GD/NH/10 strain
infection [47]. Infection with genotype VIId NDV strains (JS5/05 and JS3/05) also led
to the hyperinduction of type I interferons (IFNs) (IFN-α and -β) and type II interferon
(IFN-γ) in chicken splenocytes from 6 to 24 h [48]. It is of note that IFN expression
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levels are not necessarily decisive relative to the pathogenicity of the strains. Kang et al.
reported that the virulent genotype VII Duck/CH/GD/SS/10 strain and genotype IX
Duck/CH/GD/NH/10 strain induced significantly higher type I and II IFNs in CEFs
than in DEFs, which correlates with the viral titer [47]. On the contrary, the 9a5b NDV
strain infection leads to obvious clinical symptoms in chickens but not in ducks. In ducks,
the IFN-β level in the lungs was significantly higher than that in chickens [42]. The
expression level of IFNs is also cell type specific. For instance, when infected with the
Herts/33 strain, primary chicken intestinal epithelial cells (IECs) can produce a greater IFN
response than CEFs [49].

In general, only genotype VII strains tended to generate a robust IFN response. For
strains of other genotypes, the IFN levels after NDV infection are not necessarily related to
the virulence of the strains. These levels are highly variable based on viral strains, cell types,
and animal species. Therefore, as many virulent strains do not induce IFN expression, the
IFN response only partially explains the high pathogenicity of genotype VII strains.

Apart from IFNs, IL-6 is the most frequently upregulated cytokine after virulent NDV
replication [47]. The IL-6 mRNA was significantly elevated in Herts/33-, genotype VII
Duck/CH/GD/SS/10 strain- and genotype IX Duck/CH/GD/NH/10 strain-infected
CEFs and DEFs [47,50]. Genotype VII NDV strain IBS002 and genotype VIII NDV strain
AF2240 also significantly stimulated IL-6 expression in the spleen of SPF chickens [40].
Meanwhile, the geese-origin genotype VII virulent go/CH/LHLJ/1/06 strain did not
stimulate IL-6 expression in geese [45]. The genotype VII virulent GD strain elevated IL-6
mRNA levels in the lung and Harderian gland of one-day-old SPF chickens at 48 h after
infection [44]. However, the velogenic strain F48E9 only increased IL-6 expression slightly
both in the CEFs and BF of SPF chickens, and the lentogenic LaSota strain did not alter IL-6
levels [43,47,50].

4. Receptors for NDV PAMP

The antiviral process starts with the recognition of viral invasion. The hosts react to
NDV infection via multiple receptors, which could be roughly classified as toll-like receptors
(TLRs), retinoic-acid-inducible gene-I (RIG-I)-like receptors (RLRs), and other receptors.
Their role is to monitor the presence of viral molecules and initiate the inflammatory
response and antiviral immune signaling pathways, therefore protecting the hosts.

TLRs are located at the surface or in the endosome of cells, recognizing the pathogen-
associated molecular patterns (PAMPs) of the viruses or bacteria and triggering the activa-
tion of intracellular transcription factors and the expression of innate antiviral genes [51].
They are also crucial detectors and mediators during NDV infection. About ten TLRs
were found to be present in avian species, including TLR2, TLR3, TLR4, TLR5, TLR7,
and TLR21 [52]. Among them, TLR3 and TLR7 are important detectors in the endosome
for detecting NDV and initiating innate pro-inflammatory responses [53]. NDV infection
stimulates TLR3 and TLR7 expression in human, mouse, chicken, and duck cells, and when
NDV invasion was disrupted with sialidase, TLR3 and TLR7 expression was inhibited in
CEFs [47,54–56]. It was further detected that NDV-derived dsRNA colocalizes with TLR3
in subcellular structures, and the activation of TLR3 and TLR7 is associated with the NF-κB
pathway of innate immune responses, proving the monitoring role of the TLRs against NDV
infection [54]. Apart from TLR3 and TLR7, the overexpression of duck TLR5 in DF-1 and
HeLa cells also initiated the NF-κB pathway and upregulated IL-6 promoter activities [57].
In geese, TLR1, TLR3, TLR5, TLR7, and TLR15 expressions were all upregulated after NDV
genotype VIId strain infection, suggesting that these TLRs may also participate in anti-NDV
responses, which needs further exploration [45].

RLRs are a group of key sensors in the cytoplasm against virus infection, triggering
the transcriptional induction of type I interferons and other genes involved in the antiviral
response. A number of RNA viruses, including SARS-CoV-2, influenza virus, and flavivirus,
were reported to be recognized by RLRs [58–60]. RIG-I, MDA5, and LGP2 are homologous
and comprise the RLR family [61]. RIG-I recognizes viral RNAs and depends on its N-
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terminal caspase recruitment domain (CARD) and C-terminal RNA helicase domain [62].
In mammals and waterfowls, RIG-I is one of the crucial molecules that protect cells and
resist NDV infection [63,64]. RIG-I targets the triphosphorylated terminus of blunt-ended
viral RNA duplexes. In mouse and human cells, NDV RNA is recognized by RIG-I in
the cytoplasm, triggering a subsequent antiviral signal cascade during early infection [65].
The presence of RIG-I is highly related to the resistance ability relative to NDV. Wilden
et al. found that, compared with macrophage-derived RAW tumor cells, the expression
level of RIG-I was much higher in primary murine macrophages, which are more resistant
to NDV infections than in RAW cells [66]. In addition, RIG-I is also absent in chickens,
which is presumably attributable to their higher susceptibility to NDV compared with
waterfowls such as ducks and geese [67,68]. Instead of RIG-I, NDV and other RNA viruses
are recognized by the other two RLR family members, MDA5 and LGP2, which preserve
antiviral competence in chickens [69–73]. The infection of the virulent genotype VIId
NDV strain was accompanied by massive MDA5 expression in the oviducts of egg-laying
hens and chicken bone-marrow-derived dendritic cells in the early infection stage [74,75].
The increased MDA5 transcriptive level was also reported in ducks, especially in lung
and thymus tissues [68]. On top of this, chicken LGP2 and MDA5 can work together
or independently to trigger IFN production. Chicken LGP2 and MDA5 possess special
positively selected sites (PSSs) at the DECH helicase domain of MDA5 and the RD domain
of chLGP2. The mutants are associated with high affinity relative to NDV RNA and
chicken STING [69].

Apart from TLRs and RLRs, several other receptors are also reported to potentially
detect NDV. Protein kinase R (PKR) is activated by long double-stranded RNA (dsRNA)
molecules. It is upregulated during NDV infections, initiating the eIF2α signaling cascade
and suppressing NDV via cap-mediated eIF2α-dependent protein synthesis [76]. However,
PKR deficiency does not alter IFN-β responses to NDV infection in mouse embryonic
fibroblasts [77]. Cyclic-GMP-AMP synthase (cGAS) had a cytosolic DNA-sensing ability to
initiate the STING signal pathway and stimulate IFN production [78]. Zhu et al. found that
NDV-induced IL-8 transcript production significantly decreased in cGAS-knockout chicken
cells, suggesting that cGAS may also play a role in NDV infection [79]. Asp-Glu-Ala-Asp
(DEAD)-box helicase 1 (DDX1) is a member of the DEAD box helicase family and was
originally considered to regulate type I IFN and inhibit virus replication [80,81]. Although
direct interaction with NDV was not proven, Cheng et al. found that Asp-Glu-Ala-Asp
(DEAD)-box helicase 1 (DDX1) could strongly bind to poly (I:C) and can inhibit NDV
replication via IRF7-mediated IFN activation [82,83]. In addition, they found another DDX
family member DDX3X as a potential sensor for viral RNA, proven by the knockdown of
DDX3X, which increased NDV yields, and the overexpression of DDX3X, which increased
IFN-β production. Further investigations indicated that DDX3X activates IFN-β via the
chSTING–chIRF7–IFN-β signaling axis [84].

In general, host cells react to NDV infection via multiple sensors. Apart from the
traditionally known TLRs (TLR3, TLR5, and TLR7) and RLRs (RIG-I, MDA5, and LGP2),
cGAS and DDX family members (DDX1 and DDX3X) were also recently identified as
potential sensors for detecting NDV RNA. These receptors initiate their specific signal
pathways involving type I IFN and other antiviral cytokines. However, not all provide
certain evidence with respect to binding to NDV-derived RNAs. Moreover, whether their
roles during infection are competitive, antagonistic, or synergistic is unknown. Further
investigations are needed to clarify the NDV’s pathogenic mechanism.

5. Mechanisms for NDV to Facilitate Its Replication

At a cellular level, the mechanisms for NDV to facilitate its replication can roughly be
summarized to be an IFN-related mechanism, autophagy, and apoptosis. These processes
are also deeply interrelated with each other in terms of regulating the NDV infection process.
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5.1. IFN

IFNs are a group of cytokines that are crucial for antiviral immune responses, including
type I IFNs (IFNα, β, ε, κ, ω, and others), type II IFN (IFN-γ) and type III IFNs (IFN-λ1,
IFN-λ2, IFN-λ3, and IFN-λ4). They bind to cell surface receptors in order to initiate antiviral
responses via the JAK/STAT pathway, activating the heterotrimeric complex ISGF3 formed
from STAT1/STAT2 and IRF9. The expression of IFN is highly integrated relative to the
anti-NDV process. High levels of IFNs always have an inhibitory effect on NDV replication.
Susta et al. found that virulent-NDV-induced mortality was preceded by fiercely secreted
IFN-γ. Thus, the function of IFN-γ was determined by inserting chicken IFN-γ into a
virulent NDV ZJ1 strain. The results revealed a protective role against virulent NDV
infection in vivo but not in vitro [85]. The treatment of CEFs with chicken IFN-γ elicited an
antiviral environment composed of ISGs [43].

Many antiviral-related proteins are involved in the anti-NDV processes. Proteins
involving IFN secretion are prone to influence NDV replication (Figure 1). For instance,
the overexpression of geese and chicken IRF1, IRF3, and IRF7 in chicken cells efficiently
activates IFN-β, proinflammatory cytokines, and IFN-stimulated genes (ISGs), inhibiting
the replication of NDV. This also applies to geese STING [86–89]. The chicken interferon
(IFN)-stimulated 12-2 (ISG12(2)) gene is reported to attenuate the virulence of NDV via IFN
secretion [90]. Jia et al. found that the distribution of interferon-induced protein-35 kDa
(IFI35) mRNA in different tissues was positively related to NDV loads. The overexpression
of IFI35 had an inhibitory effect on NDV replication, and it was positively involved with
IFN modulators, suggesting that it may suppress NDV replication via the IFN pathway [91].
LSm14A is a member of the LSm family and binds to viral RNAs in the processing body
(P-body), which mediates IRF3 activation and IFN induction [92]. As the chicken LSm14A
mRNA level increases in NDV-infected tissues, it may also work as a detector to mediate
innate immunity [93]. The Asp-Glu-Ala-Asp (DEAD)-box 3X-linked (DDX3X) polypeptide
normally links to NLRP11 and NLRP3 to regulate IFN responses and inflammasome
activation in mammals. In chickens, DDX3X was proven to interact with STING to stimulate
IFN via the TBK1–IRF7 pathway, inhibiting NDV replication [94].
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NDV also has its way to counteract the IFN secretion process, especially the virulent
strains. Early research revealed that the NDV V protein can inhibit IFN-α. The carboxyl
terminal domain of the V protein is responsible for limiting IFN’s ability to counteract
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viruses by degrading STAT1 [95]. In recent years, studies have found that the V protein
targets MAVS degradation via the E3 ubiquitin ligase RING-finger protein 5 (RNF5), which
leads to the inhibition of the downstream IFN-β pathway, thus favoring virus proliferation.
This reveals a novel mechanism by which NDV evades the host’s innate immunity [15].
Apart from MAVS, the V protein can also degrade the phosphor-STAT1 protein via the
ubiquitin E1-associated pathway to realize the IFN-α suppression effect [96]. Nan et al.
further investigated the difference between the V protein from lentogenic and velogenic
strains, showing that the lentogenic V protein inserted recombinant NDVs and induced
lower IFN levels [13]. The IFN inhibition ability of the V protein is positively related to the
virulence of viruses [97]. Another study showed that the V protein promotes the expression
of cytokine signaling 3 (SOCS3) at the mRNA and protein levels via the MEK/ERK signaling
pathway, thereby favoring viral replication [98]. Therefore, the ERK pathway can be studied
as a potential antiviral target, which may provide new ideas for the development of antiviral
strategies. The other non-structural protein W was also recently found to be related to
the expression of IFN-β. To be specific, the W protein of the SG10 strain localized in the
cytoplasm while that of the LaSota strain localized in the nucleus. The cytoplasm-localized
W protein was associated with higher IFN-β expression at early infection stages, which
inhibited NDV replication. The nuclear-localized W protein inhibited the production
of IFN-β, thereby improving the replication, virulence, and pathogenicity of NDV [16].
Apart from V and W proteins, the N-terminal 180 amino acids (aa) of skeleton protein M
also proved to antagonize NF-kB activation via the IRK4/TRAF6/TAK1/NF-kB signaling
pathway [99]. However, in this study, the M protein did not directly interact with these
proteins. Therefore, further investigations about how the M protein activates the signal
cascades are needed.

MicroRNAs (miRNAs) are a group of short RNAs that are crucial for host–pathogen
interactions. The cellular miRNA gga-miR-455-5p level decreased after NDV replication,
which targets SOCS3 to upregulate type I IFNs and ISGs [100]. Several other miRNAs
(miR-1273f, miR-1184, and miR-198) transmitted by exosomes also have a promotive effect
on NDV replication via the inhibition of the IFN pathway [101].

5.2. Autophagy

Autophagy, a lysosomal-pathway-mediated degradation process, has an essential role
in the regulation of innate and adaptive immune responses. Autophagy is highly involved
in many viral infection processes, showing promotive abilities in the hepatitis C virus,
dengue virus, and Zika virus [102–104]. NDV also triggers autophagy, which benefits its
replication in both human and chicken cells.

To be specific, it was primarily found that NDV strain Beaudette C infection in
U251 glioma cells at 10 MOI induces autophagy as early as 2 h. The accumulation of
the LC3 protein and the conversion of LC3-I to LC3-II was evident due to the increased
autophagosomes. The PI3K/Beclin-1 pathway was involved in NDV-triggered autophagy,
which in turn promoted NDV replication [105]. Further research confirmed the NDV-
associated autophagy in chicken cells and tissues. When infected with NDV Herts/33 strain
at 1 MOI, autophagy was detected in CEF and DF-1 cells from 6 h to 36 h. In vivo exper-
iments displayed the conversion of LC3-I to LC3-II in the heart, liver, spleen, lung, and
kidney of infected animals, which is positively related to the virus titer. The inhibition of
autophagy by wortmannin, but not rapamycin, suppresses the replication both in vivo and
in vitro [106,107]. Similarly, Ren et al. found that, although the effect of rapamycin was
different, and the NDV GM strain can also induce autophagy in CEFs and chickens [108].

The mechanism of NDV-induced autophagy was also investigated. The structural
proteins P or NP could trigger autophagy via endoplasmic reticulum (ER) stress–related
unfolded protein response (UPR) pathways in A549 cells [109]. This is in line with the
result of Wang et al., showing that when the ER stress and autophagy were inhibited by the
COX-2 protein, the NDV F48E9 strain’s replication was also suppressed in DF-1 cells [110].
Apart from NP and P proteins, F- and HN-protein-induced syncytia were also involved
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in autophagy fluxes via the activation of the AMPK–mTORC1–ULK1 pathway [111]. The
influence of autophagy on NDV replication is not limited to the direct promotion of virus
replication; it is also associated with the shift of metabolic mechanisms toward the benefit
of the virus. NDV infection activates the glycolytic pathway to elevate glucose utilization
efficiency. This is achieved by mitochondrial damage, elevated mitochondrial reactive
oxygen species (mROS), and ETC dysfunction [112].

In the oncolytic virus NDV FMW strain, autophagy is also highly associated with
NDV FMW-strain-induced apoptosis in lung cancer stem cell (CSC)–enriched lung cancer
spheroids via the inhibition of the AKT/mTOR pathway [113]. In agreement with this,
in lung cancer cells and melanoma cells, the NDV FMW strain was proven to induce
immunogenic cell death mediated by autophagy-related genes [107,114]. In addition,
another NDV strain, Hitcher B1, has been shown to exert oncolysis in cervical cancer cells
via autophagy in a dose-dependent manner [115].

In general, several NDV strains are able to induce autophagy to promote viral repli-
cation in human cancer cells and chicken cells, causing immunogenic cell death in can-
cer cells. The viral structural proteins, NP, P, HN, and F, are involved in this process
via the UPR or AMPK–mTORC1–ULK1 pathways. On top of this, NDV also induces
PINK1–PRKN-dependent mitophagy to increase glucose utilization for the benefit of viral
production (Figure 2).
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5.3. Apoptosis

Apoptosis is widely known as programmed cell death, showing a series of charac-
teristic morphological changes along with several enzyme-dependent biochemical pro-
cesses [116]. It is highly involved in NDV infection. NDV-induced apoptosis was first
reported in 1994, when Lam et al. found that the NDV GB strain induced apoptosis in
chicken peripheral blood lymphocytes (PBLs) and CEFs [117]. Since then, a number of
NDV strains have been reported to induce apoptosis in both avian cells and human can-
cer cell lines. NDV entry into murine dendritic cells (DCs) induces extrinsic apoptosis
and inhibits CD4+ cell proliferation [118]. When challenged with virulent NDV strains,
apoptosis is detected in multiple organs, including the pancreas, resulting in disrupted
exocrine and endocrine functions [30]. In the oviducts, severe tissue lesions and apoptotic
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bodies were detected, leading to oviduct dysfunction and a drop in egg production [74].
In lymphoid tissues, the amount of apoptosis was positively related to the severity of
the clinical disease elicited by the strains [37]. As the infection duration lengthened, the
secretion of pro-inflammatory cytokine expression, macrophage infiltration, and oxidative
stress were also detected along with apoptosis in the BF [119].

Apoptosis is an important mechanism of cells to resist infection by pathogens such as
NDV. As a result of apoptosis, NDV replication is aborted in early infection stages and NDV
release is promoted in late stages. To benefit its own replication, NDV employs multiple
methods to postpone apoptosis (Figure 3). Ren et al. reported that the NDV activated
the PI3K/Akt pathway in chicken cells immediately after infection, which suppressed
premature apoptosis at the early stage of infection [120]. On the contrary, in the late stages
of infection, both intrinsic and extrinsic apoptosis pathways will be triggered. The extrinsic
pathway starts with the activation of NF-kB, followed by the secretion of TNF-α/TRAIL. It
subsequently activates caspase 8 and cuts Bid into tBid, therefore initiating the intrinsic
apoptosis process. Furthermore, caspase 8 also cleaves RIP1 to promote apoptosis, as the
full length RIP1 functions against apoptosis [121]. As the ubiquitination status of RIP1
determines the apoptosis state, if it is also associated with NDV-induced apoptosis, it is
worthy of further investigation [122]. Apart from the intrinsic and extrinsic apoptosis,
Li et al. also reported the role of unfolded protein responses (UPRs) in NDV-induced
apoptosis. It was found that all three branches of the UPR pathway (PERK–eIF2α, ATF6,
and IRE1α) were active during late NDV infection. To be specific, the eIF2α–CHOP–BCl-
2/JNK and IRE1α–XBP1/JNK pathways were triggered, which promoted apoptosis and
benefited the replication of NDV [123]. Al-Shammari et al. found that NDV induces
apoptosis both via the caspase-dependent (caspase 8 and caspase 9) and -independent
(endonuclease G) pathways [124].

Viruses 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

The classical oncology medication temozolomide can also act together with NDV to ag-
gregate tumor cell apoptosis [134]. The TRAIL pathway is the main mechanism for medi-
ating NDV-induced glioma cell apoptosis, and the co-administration of secreted TRAIL 
synergizes with NDV (MTH-68/H strain) to promote tumor cell death [135]. When inte-
grated into NDV particle structures, TRAIL also has the same effect [136]. p53 is an im-
portant protein in apoptosis. The recombinant NDV expressing p53 (rNDV-p53) induced 
glioma cell apoptosis by upregulating apoptosis-related genes [137]. 

Many other antiviral proteins potentially influence apoptosis. Antiviral protein 
ISG12(1) could initiate apoptosis by redistributing Bax to hinder NDV replication [138]. 
Another immune-related protein, 2′-5′ oligoadenylate synthase-like (OASL) protein, also 
potentially exerts its antiviral ability via apoptosis, as the knockdown of OASL reduced 
the expression of apoptosis-related genes [139]. The TXNL1 protein induced apoptosis 
and inhibited NDV replication in DF-1 cells. Furthermore, Western blot and Q-PCR results 
suggested that TXNL1 induced cell apoptosis via a pathway involving Bcl-2\Bax and 
Caspase-3 [140]. The overexpression of Bcl leads to anti-apoptosis characteristics in the 
A549 cell line, and NDV selectively proliferates in these anti-apoptosis cells [131]. 

The biochemistry processes orchestrated in the body interact with each other; for in-
stance, autophagy and apoptosis tend to work against each other during NDV infection. 
When autophagy is induced by rapamycin, apoptosis in the spleen and lung tissues will 
be diminished. In the meantime, apoptosis inhibitor ZVAD-FMK also promotes autoph-
agy and viral replication [108]. Similarly, mitophagy also facilitates NDV replication by 
hindering apoptosis in lung cancer cells [141]. In addition, the tumor-selectivity of NDV 
is presumably due to the cumulative effect of type I and III in the tumor cells, which lead 
to a higher apoptotic effect [142]. All these facts confirm the complexity of the NDV infec-
tion mechanism, demanding more investigations. 

 
Figure 3. Apoptosis signaling pathway induced by NDV. 

5.4. Other Host Interaction Metabolism 
The virus establishes intimate and complex interactions with host cells to counteract 

the antiviral response caused by the cell. This reinforces the fact that the virus coordinates 
the cellular antiviral response according to its own interests. Regulating the cell cycle is a 

Figure 3. Apoptosis signaling pathway induced by NDV.

So, how do NDV particles manipulate these processes? Several research studies
were published to answer the question. It was reported that structural protein M is
necessary for apoptosis during infection. The NDV M protein directly interacted with the
Bax protein via its BH3 domain. Compared with the full-length M protein, when the M
protein was transfected with the deleted BH3-like region, it showed a five-fold decrease
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in apoptosis [125]. The V protein interacts with CacyBP/SIP to control viral propagation
and cell death [126]. Musashi1 and NDV V proteins have a detectable interaction, and they
may block apoptosis to inhibit the release of NDV [127]. On top of this, the HN protein is
reported to induce apoptosis via the SAPK/JNK pathway [128]. The replication process
of the viral gene may not be involved in NDV-mediated apoptosis, as the inactivated
NDV is able to promote TRAIL-mediated apoptosis in tumors [129,130]. However, more
remains to be investigated, such as how CacyBP/SIP and Musashi1 participate in the
apoptosis process.

NDV normally induces the apoptosis of cancer cells in the late stages of infection, and
this is extensively utilized in oncolytic research studies [131]. NDV treatments significantly
decreased the viability of a TC-1 cell line and suppressed growth by inducing apoptotic
cell death mediated by ROS production [132]. When apoptosis was inhibited via the
treatment of z-VAD-FMK, NDV-mediated immunogenic cell death in prostate cancer cells
was also attenuated [133]. Due to the importance of apoptosis in NDV replication, many
apoptosis-related proteins influence NDV-mediated apoptosis. For instance, estrogen binds
to estrogen receptor a (ERa) to induce apoptosis in breast cancer cells. The NDV-90 strain
could further promote estrogen-mediated apoptosis in ERa-positive cells [130]. The classical
oncology medication temozolomide can also act together with NDV to aggregate tumor
cell apoptosis [134]. The TRAIL pathway is the main mechanism for mediating NDV-
induced glioma cell apoptosis, and the co-administration of secreted TRAIL synergizes
with NDV (MTH-68/H strain) to promote tumor cell death [135]. When integrated into
NDV particle structures, TRAIL also has the same effect [136]. p53 is an important protein
in apoptosis. The recombinant NDV expressing p53 (rNDV-p53) induced glioma cell
apoptosis by upregulating apoptosis-related genes [137].

Many other antiviral proteins potentially influence apoptosis. Antiviral protein
ISG12(1) could initiate apoptosis by redistributing Bax to hinder NDV replication [138].
Another immune-related protein, 2′-5′ oligoadenylate synthase-like (OASL) protein, also
potentially exerts its antiviral ability via apoptosis, as the knockdown of OASL reduced
the expression of apoptosis-related genes [139]. The TXNL1 protein induced apoptosis
and inhibited NDV replication in DF-1 cells. Furthermore, Western blot and Q-PCR results
suggested that TXNL1 induced cell apoptosis via a pathway involving Bcl-2\Bax and
Caspase-3 [140]. The overexpression of Bcl leads to anti-apoptosis characteristics in the
A549 cell line, and NDV selectively proliferates in these anti-apoptosis cells [131].

The biochemistry processes orchestrated in the body interact with each other; for
instance, autophagy and apoptosis tend to work against each other during NDV infection.
When autophagy is induced by rapamycin, apoptosis in the spleen and lung tissues will be
diminished. In the meantime, apoptosis inhibitor ZVAD-FMK also promotes autophagy
and viral replication [108]. Similarly, mitophagy also facilitates NDV replication by hin-
dering apoptosis in lung cancer cells [141]. In addition, the tumor-selectivity of NDV is
presumably due to the cumulative effect of type I and III in the tumor cells, which lead to a
higher apoptotic effect [142]. All these facts confirm the complexity of the NDV infection
mechanism, demanding more investigations.

5.4. Other Host Interaction Metabolism

The virus establishes intimate and complex interactions with host cells to counteract
the antiviral response caused by the cell. This reinforces the fact that the virus coordinates
the cellular antiviral response according to its own interests. Regulating the cell cycle is a
fundamental cellular process that is important for cell proliferation, differentiation, and
cellular homeostasis. Thus, disrupting homeostasis in the host cell cycle is a common
strategy used by many viruses to create a cellular environment that is conducive to viral
replication. An examination of various cyclin-regulatory proteins following NDV infection
showed a significant decrease in cyclin D1 expression. In addition, NDV infections can also
induce cell cycle arrest in the G0/G1 phase, thereby creating favorable conditions for viral
replication [143]. NDV can select different types of cells for infection. NDV exhibits host
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cell tropism toward HeLa cells, which may be related to differences in receptor subtype
expression patterns between different cell types. NDV can even autonomously select the
cell cycle of infection. Studies have shown that NDV tends to infect cells in the S/G2 phase,
during which cell proliferation favors viral replication, and enhanced viral replication leads
to enhanced cell damage [144].

Paramyxoviruses inhibit antigen presentation in DCs via multiple mechanisms to
enhance viral proliferation. NDV infection is able to induce dendritic cell (DC) pheno-
typic maturation and inhibit the proliferation of T cells via DC-mediated IL-10, thereby
suppressing adaptive immunity [145]. The inhibition of DC antigen presentation may
be a strategy used by NDV to disrupt the host’s adaptive immune response to prolong
the persistent transmission of the virus. As foreign substances, viruses rely entirely on
the host’s metabolic mechanisms and hijack host nutrients for viral replication. NDV can
regulate the overall amino acid metabolism of infected cells to meet the needs of viral
protein synthesis during viral replication and promote its own replication. NDV infections
can induce a significant upregulation of the glutamate transporter gene, solute carrier
family 1 member 3 (SLC1A3), which increases the uptake and transport of glutamate by a
medium and cytoplasm in favor of viral replication [146].

The findings mentioned above represent the outcomes of research on the pathogenic
mechanism of NDV; however, there is still more work to do. Studies on other paramyx-
oviruses have also been conducted in recent years, which may benefit future NDV studies.
In eukaryotes, N6-methyladenosine (m6A) is the most common internal alteration of mRNA.
Respiratory syncytial virus (RSV) replication, gene expression, and viral generation in HeLa
and A549 cells were discovered to be favorably regulated by m6A methylation of the RSV
genome, antigenome, and mRNA [147]. It suggests that m6A may be a novel target for
the development of live-attenuated RSV vaccines and antiviral medications. Exosomes are
vectors for the transfer of DNA and RNA viruses, and a growing body of research shows
that they play significant stimulative and antiviral roles in many infection cycles. For in-
stance, peste des petits ruminants virus (PPRV) can release viral components via exosomes,
enabling PPRV to be transmitted from cell to cell [148]. NDV infection will change the
secretion and the contents of exosomes, transferring viral NP protein and promoting NDV
infection [149]. In the meantime, NDV could also benefit its replication through exporting
NLRX1 mRNA to relieve the antiviral pressure on its survival [150]. However, the specific
role of exosomes in NDV infection still needs further study. Secondary viral or bacterial
infections are becoming increasingly prevalent, particularly in respiratory disorders. Recent
studies have shown that complex interactions between the respiratory microbiome, host
immune response, and viruses may have an impact on the pathogenesis and severity of RSV
infection. RSV infection may cause damage to the lungs, making them more vulnerable to
bacterial infections. During an RSV infection, the expression of some bacterial receptors is
elevated, increasing bacterial susceptibility [151]. To provide theoretical support for future
vaccine design as well as disease prevention and control, more study is required to better
understand the processes of these interactions. A significant field of cell biology study is
glycomics. N-glycosylation changes that are connected with viruses have many benefits for
viral virulence and survival. Glycosylation of structural proteins associated with the Nipah
virus (NiV), the Hendra virus (HeV), and the respiratory syncytial virus (RSV) has been
demonstrated to affect viral invasion, viral replication, and syncytial development [152].
The processes by which viral proteins are glycosylated during viral infection and replication
will guide the creation of particular antiviral treatments and vaccines.

6. Conclusions

The host and virus have long evolved to compete against each other, which is quite
the case for NDV infections. The host cells employ a number of PAMPs, including the
TLRs, RLRs, DDX family members, and cGAS, to initiate the antiviral IFN response via
different pathways. The proteins belonging to these pathways are also potential anti-NDV
candidates, such as IRF1, IRF3, IRF7, IFI35, LSm14A, and STING. Autophagy and apoptosis
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are normally considered to be cell defense mechanisms. They both have their specific
roles in NDV infection, as autophagy promotes NDV replication and apoptosis inhibits
viral replication at the early stage and facilitates it at late stages via different pathways.
In the meantime, the virus is also able to take advantage of these reactions to benefit its
own replication. In general, as an oncolytic virus and an important pathogen to avian
species, NDV’s pathogenic mechanisms are crucial for the utilization of the virus and the
development of the ND control strategy. Apart from the advances summarized here, there
remains a lot to be explored in the future.
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