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Abstract: Epstein-Barr virus (EBV) causes lifelong infection in over 90% of the world’s population.
EBV infection leads to several types of B cell and epithelial cancers due to the viral reprogramming of
host-cell growth and gene expression. EBV is associated with 10% of stomach/gastric adenocarci-
nomas (EBVaGCs), which have distinct molecular, pathological, and immunological characteristics
compared to EBV-negative gastric adenocarcinomas (EBVnGCs). Publicly available datasets, such as
The Cancer Genome Atlas (TCGA), contain comprehensive transcriptomic, genomic, and epigenomic
data for thousands of primary human cancer samples, including EBVaGCs. Additionally, single-cell
RNA-sequencing data are becoming available for EBVaGCs. These resources provide a unique
opportunity to explore the role of EBV in human carcinogenesis, as well as differences between
EBVaGCs and their EBVnGC counterparts. We have constructed a suite of web-based tools called
the EBV Gastric Cancer Resource (EBV-GCR), which utilizes TCGA and single-cell RNA-seq data
and can be used for research related to EBVaGCs. These web-based tools allow investigators to gain
in-depth biological and clinical insights by exploring the effects of EBV on cellular gene expression,
associations with patient outcomes, immune landscape features, and differential gene methylation,
featuring both whole-tissue and single-cell analyses.

Keywords: Epstein-Barr virus; gastric cancer; TCGA; single-cell RNA sequencing; immune
landscape; gene expression; tumor immunology; epigenetic changes; methylation; bioinformatics

1. Introduction

Epstein-Barr virus (EBV) is a gamma-herpesvirus estimated to infect 90% of the
world’s population [1]. EBV infects B lymphocytes and mucosal epithelial cells, influencing
their cellular differentiation and growth [2–4]. EBV uses a variety of immune evasion
strategies to establish lifelong latent infections [5]. Furthermore, EBV expresses several
oncogenic proteins and microRNAs (miRNAs) [6,7] that are mechanistically associated
with multiple types of cancers, including Burkitt’s and other lymphomas, nasopharyngeal
carcinomas, and EBV-associated gastric adenocarcinomas (EBVaGCs) [8]. Overall, EBV
infections account for 1.5% of all human cancer cases worldwide [9].

It is estimated that EBV is the causative agent of around 10% of all gastric cancer
(GC) cases worldwide, though relative proportions differ by region [10,11]. Furthermore,
EBVaGCs are molecularly and pathologically distinct entities from EBV-negative GCs
(EBVnGCs), with higher survival rates, male-dominant incidence, genome-wide promoter
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hypermethylation, increased T cell infiltration, as well as higher levels of MHC-I and MHC-
II expression [12–16]. Additionally, several EBV-associated proteins and 44 miRNAs origi-
nating from the Bam-HI A rightward transcripts (miR-BARTs) are consistently expressed in
EBVaGCs, likely contributing to the oncogenesis and progression of EBVaGCs [17,18].

Indeed, a large recent meta-analysis reported that individuals with latent epithe-
lial EBV infections exhibit an 18-fold increased risk of gastric cancer development [19].
Other risk factors include eating salty or spicy foods, frequently drinking coffee and high-
temperature drinks, and exposure to wood dust and/or iron filings [20].

As no licensed prophylactic or therapeutic EBV vaccines exist [21], understanding
the mechanistic roles that EBV-encoded proteins and miRNAs play in EBVaGC remains a
research area of high importance. While a variety of cell line and animal models exist to
help understand how EBV manipulates human cells [22,23], many animal models are not
robust, and the applicability of these models to humans is unclear [24,25]. These in vitro
and in vivo studies benefit from being validated by observations within primary human
cancer tissues. However, this often requires a large quantity of methodologically robust
clinical data that can provide the statistical power and sample sizes required to validate
EBVaGC cancer models.

The Cancer Genome Atlas (TCGA) is a comprehensive, publicly available atlas of
genomic, epigenomic, and transcriptomic data from primary, surgically resected human
cancers (https://www.cancer.gov/tcga; accessed on 29 August 2022). The outcome of this
endeavor is a massive, publicly available, and comprehensive dataset of multidimensional
maps of genomic changes in over 11,000 tumor samples from 33 different types of human
cancer. Most samples collected to construct the TCGA have complete mRNA and miRNA
sequencing and DNA methylation profiling. Additional work has systematically estimated
numerous immune landscape features for each TCGA cancer sample [26]. Many TCGA
samples include comprehensive clinical data, which allows for the comparison of a variety
of clinical variables, such as patient survival [27].

Of the different types of EBV-associated cancers, the TCGA includes stomach adeno-
carcinoma (STAD) samples from nearly 400 cancer patients [28]. All TCGA STAD samples
were surgically resected from treatment-naïve patients to avoid the confounding effects of
chemo- and radio-therapeutic treatments on the molecular data. The TCGA STADs can
be divided based on their molecular features into EBVaGCs and EBVnGCs, with the latter
consisting of four subgroups: microsatellite-instable (MSI) tumors, tumors with chromoso-
mal instability (CIN), genomically stable (GS) tumors, and tumors with DNA polymerase
epsilon (POLE) mutations [29]. Along with mRNA and miRNA read counts for cellular
genes, both viral mRNA and miRNA read counts are available for EBVaGC samples, as
are clinical outcomes, including patient survival, and immune landscape features [26,27].
Although the scope of the data provided by TCGA is vast, several tools are available to
help improve its accessibility [30]. However, it is still a daunting task for many researchers
to analyze such datasets, especially those without a strong background in bioinformatics.
No existing tools allow for detailed comparisons of EBVaGCs with EBV negative GC types.

We recently developed a suite of tools to compare human papillomavirus (HPV)-
positive cancers from the TCGA cervical cancer and head and neck cancer cohorts with
their HPV-negative counterparts, providing improved access to these important clinically
relevant resources [31]. In this manuscript, we introduce a comparable and expanded
web-based suite of computational tools, The EBV Gastric Cancer Resource (EBV-GCR),
featuring the ability to query and visualize cellular and viral gene expression, immune
landscape, survival, and methylation data. The EBV-GCR has been further refined and
features a single-cell dataset obtained from Zhang et al. [32], which allows users to visualize
differences in single-cell gene expressions among 6 histopathologically unique GC types, as
well as among 11 different cell subpopulations. Such an array of analytic and visualization
tools is intended as a resource for researchers active in the field of EBV-associated gastric
cancers, without any requirements for computational or bioinformatics expertise. The
EBV-GCR was developed as a resource to facilitate rapid biological and medical insights

https://www.cancer.gov/tcga
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via the exploration of the impact of EBV on cellular gene expression, associations with
patient survival and immune landscape features, altered gene methylation, and single-cell
analyses from primary stomach adenocarcinomas. The web suite of tools can be accessed
at https://mymryklab.ca/EBV-GCR/ebvgcr-home/, and the standalone version can be
downloaded from the GitHub depository at https://github.com/msaland/EBV-GCR-Suite
(deposited 5 March 2023).

2. Materials and Methods
2.1. Implementation and Software

The web server has been deployed on an Amazon Elastic Compute Cloud (EC2) virtual
machine instance running Ubuntu version 22.04, available through Amazon Web Services
(AWS). The backend of the server is running Shiny Server version 1.5.20.1002, as well as R
version 4.2.2. The server setup was performed in agreement with the methods outlined
by Charles Bordet (https://www.charlesbordet.com/en/guide-shiny-aws/, accessed on
25 August 2022). The following packages, along with their respective dependencies,
have been installed: corrplot version 0.92, corto version 1.1.11, cowplot version 1.1.1,
dplyr version 1.0.10, DT version 0.27, gdata version 2.18.0.1, ggplot2 version 3.4.0, gg-
pubr version 0.5.0, RColorBrewer version 1.1.3, scales version 1.2.1, Seurat version 4.3.0,
shiny version 1.7.4, shinyjqui version 0.4.1, shinyjs version 2.1.0, shinythemes version
1.2.0, survival version 3.5.0, survminer version 0.4.9, and tidyverse version 1.3.2. The
service is available 24 h/day, 7 days/week at https://mymryklab.ca/EBV-GCR/ebvgcr-
home/, excluding downtime for maintenance and software updates. Tutorial videos for
tools are available on the home page, under the section titled “Video Guides”. A stan-
dalone version of EBV-GCR for the Windows operating system can be downloaded from
https://github.com/msaland/EBV-GCR-Suite.

2.2. Sample Collection and Ethics

All data were downloaded from The Cancer Genome Atlas (TCGA) via the Broad
Genome Data Analysis Center’s Firehose server (https://gdac.broadinstitute.org/, ac-
cessed on 2 March 2017) or other publicly available sources as noted below; as a result, no
ethical approval was needed. Table 1 lists the number of samples used for calculations with
each EBV-GCR tool, with the exception of the single-cell analysis tool. Table S1 lists the
number and characteristics of samples used for calculations in the single-cell analysis tool.

Table 1. Number of patient samples analyzed from the TCGA STAD cohort for each EBV-GCR tool,
excluding the single-cell analysis tool.

# of Patient Samples Analyzed

Patient
Subset

mRNA-
seq

miRNA-
seq

Cellular
mRNA

vs. Viral
mRNA

Cellular
miRNA
vs. Viral
mRNA

Cellular
mRNA

vs. Viral
miRNA

Cellular
miRNA
vs. Viral
miRNA

Immune
Compar-
isons—

Cellular
mRNA

Immune
Compar-
isons—

Cellular
miRNA

Immune
Compar-
isons—
Viral

mRNA/
miRNA

Overall
Surviv-

al—
Cellular
mRNA

Overall
Surviv-

al—
Cellular
miRNA

Methyla-
tion

EBV 30 29 26 25 29 30 30 29

26
(mRNA)

29
(miRNA)

30 29 29

MSI 73 59

NA NA NA NA

73 59

NA

72 58 58
CIN 223 203 223 201 220 199 202
GS 60 46 60 46 49 45 46

POLE 7 7 7 7 7 7 7
Normal 35 41 NA NA NA NA 18

# Number.

https://mymryklab.ca/EBV-GCR/ebvgcr-home/
https://github.com/msaland/EBV-GCR-Suite
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2.3. Data Sources for Cellular mRNA and miRNA Expression Levels, Patient Cohort Composition,
and Analysis Workflow

Level 3 mRNA and miRNA expression data for the TCGA STAD datasets were ob-
tained from the Broad Genome Data Analysis Center’s Firehose server (https://gdac.
broadinstitute.org/, accessed on 2 March 2017), with the data normalized using the RSEM al-
gorithm. The mRNA datasets feature expression patterns for 20,531 unique genes, whereas
the miRNA datasets feature 1046 unique genes. The mRNA dataset is comprised of
30 EBVaGC, 353 EBVnGC (223 CIN, 73 MSI, 50 GS, and 7 POLE), and 35 normal (noncancer-
ous) control tissues. The miRNA dataset comprises 29 EBVaGC, 315 EBVnGC (203 CIN,
59 MSI, 46 GS, and 7 POLE), and 41 normal control tissues. Boxplots were generated using
the ggplot2 package (version 3.4.0). The maximum and minimum boxplot values were cal-
culated as the 1.5× upper and lower quartile ranges, respectively. The correlations between
the cellular gene mRNA or miRNA expressions and the GC subtypes were determined by
sorting the datasets into their respective subsets, with subsequent calculations performed
with R’s built-in wilcox.test function, with the conf.level parameter set to 0.95. Patient
cellular gene mRNA and miRNA expressions with >50% zero or null values were marked
as nonsignificant regardless of the calculated p-values. q-values were calculated for each
comparison group with a false-discovery rate (FDR) of 5%.

2.4. Data Sources for Viral mRNA and miRNA Expression Levels, Patient Cohort Composition,
and Analysis Workflow

The EBV viral mRNA expression datasets were obtained from Chakravorty et al. [33].
The EBV viral miRNA expression datasets were obtained from Ungerleider et al. [34].
These datasets build upon the TCGA dataset, featuring expression levels of 93 different
viral mRNA genes, as well as the expression of 34 miR-BARTs and 3 miR-BHRF genes.
The mRNA dataset features 26 patient observations, whereas the miRNA dataset features
32 patient observations. Correlations between the EBV mRNA or miRNA and cellular
gene mRNA or miRNA expressions were determined via R’s built-in cor.test function, with
the function being run with the linear relationship and Spearman correlation coefficient
arguments and the conf.level parameter set to 0.95. Patient cellular gene mRNA or miRNA
and EBV mRNA expressions with >50% zero or null values were marked as nonsignificant
regardless of the calculated p-value. q-values were calculated for each comparison group
with an FDR of 5%. Boxplots and scatterplots were generated using ggplot2 (version 3.4.0).
The maximum and minimum boxplot values were calculated as the 1.5× upper and lower
quartile ranges, respectively.

2.5. Data Sources for Immune Landscape Features, Patient Cohort Composition, and
Analysis Workflow

Immune landscape features for the TCGA STAD dataset were obtained from Thorsson
et al. [26], which included 53 unique features, as listed in Table 2. Samples were then
selected for analysis based on the availability of the clinical data for the corresponding
TCGA sample. The mRNA dataset features clinical data for 30 EBVaGC and 353 EBVnGC
(223 CIN, 73 MSI, 50 GS, and 7 POLE) samples. The miRNA dataset features clinical data
for 29 EBVaGC and 353 EBVnGC (201 CIN, 59 MSI, 49 GS, and 7 POLE) samples. The
viral mRNA/miRNA dataset only features clinical data for 26 and 29 EBVaGC patient
observations for the mRNAs and miRNAs, respectively. Correlations between the immune
landscape features and the cellular gene mRNA and miRNA expressions were determined
via R’s built-in cor.test function, with the function being run with the linear relationship
and Spearman correlation coefficient arguments and the conf.level parameter set to 0.95.
Immune landscape features and cellular mRNA and miRNA expressions with >50% zero or
null values were marked as nonsignificant regardless of the calculated p-values. q-values
were calculated for each comparison group, with an FDR of 5%. Boxplots and scatterplots
were generated using ggplot2 (version 3.4.0). The maximum and minimum boxplot values
were calculated as the 1.5× upper and lower quartile ranges, respectively.

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
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Table 2. List of the 53 immune landscape features available for analysis as part of the EBV-GCR web
suite of tools.

Immune Landscape Features *

Aneuploidy score Monocytes
B cells memory Neutrophils

B cells naive NK cells activated
BCR evenness NK cells resting
BCR richness Nonsilent mutation rate
BCR Shannon No. of segments

CTA score Plasma cells
Dendritic cells Proliferation

Dendritic cells activated Silent mutation rate
Dendritic cells resting SNV neoantigens

Eosinophils Stromal fraction
Fraction altered T cells CD4 memory activated

Homologous recombination defects T cells CD4 memory resting
IFN gamma response T cells CD4 Naive

Indel neoantigens T cells CD8
Intratumor heterogeneity T cells follicular helper

Leukocyte fraction T cells gamma delta
Lymphocyte infiltration signature score T cells regulatory Tregs

Lymphocytes TCR evenness
Macrophage regulation TCR richness

Macrophages TCR Shannon
Macrophages M0 TGF beta response
Macrophages M1 Th1 cells
Macrophages M2 Th17 cells

Mast cells Th2 cells
Mast cells activated Wound healing

Mast cells resting
* BCR, B cell receptor; CTA, cancer testis antigens; IFN, interferon; SNV, single nucleotide variant; TCR, T cell
receptor; TGF, transforming growth factor.

2.6. Data Sources for Patient Survival, Patient Cohort Composition, and Analysis Workflow

The TCGA STAD overall survival (OS) datasets were obtained from Liu et al. [27].
Based on the availability of the OS datasets, the corresponding mRNA dataset features
30 EBVaGC and 328 EBVnGC (220 CIN, 72 MSI, 29 GS, and 7 POLE) patient observa-
tions. The corresponding miRNA dataset features 29 EBVaGC and 328 EBVnGC (199 CIN,
58 MSI, 49 GS, and 7 POLE) patient observations. Correlations between survival and
cellular mRNA and miRNA expressions were determined via the pairwise_survdiff and
Surv functions, available via the survminer (version 0.4.9) and survival (version 3.5.0) pack-
ages, respectively. Users have the option of selecting the number of comparison groups,
upon which the subsets are broken down by the number of selected quantiles based on
the mRNA and miRNA expression levels. Patient cellular gene mRNA and miRNA ex-
pressions with >50% zero or null values were marked as nonsignificant regardless of the
calculated p-values. q-values were calculated for each comparison group, with an FDR of
5%. Kaplan–Meier survival plots were generated using the ggsurvplot function available
through the survminer package (version 0.4.9).

2.7. Data Sources for DNA Methylation Levels, Patient Cohort Composition, and
Analysis Workflow

Level 3 Infinium HumanMethylation450 BeadChip array datasets for the TCGA STAD
cohort were obtained from the Broad Genome Data Analysis Centers Firehose server
(https://gdac.broadinstitute.org/, accessed on 2 March 2017). The datasets feature the
methylation beta values for 395,405 different probes, along with chromosome number
and genomic coordinates. The dataset features methylation data for 303 STAD samples,
with 29 EBVaGC, 313 EBVnGC (202 CIN, 58 MSI, 46 GS, 7 POLE), and 18 non-cancerous,

https://gdac.broadinstitute.org/
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normal control tissues. Correlations between the probe methylation beta values and the
genomic loci were determined via R’s built-in wilcox.test function, with the conf.level
parameter set to 0.95. Probe methylation beta with >50% zero or null values were marked
as nonsignificant regardless of the calculated p-values. q-values were calculated for each
comparison group, with an FDR of 5%. Boxplots and line plots were generated using
the ggplot2 package (version 3.4.0). The maximum and minimum boxplot values were
calculated as the 1.5× upper and lower quartile ranges, respectively.

2.8. Data Sources for Single-Cell Analysis, Patient Cohort Composition, and Analysis Workflow

The gene expressions of 48,000 cells obtained from newly diagnosed, treatment-naïve
patients were obtained from Zhang et al. [32]. The dataset has 1 diffuse GC (DGC),
5 intestinal GC (IGC), 1 of which is EBVaGC, 3 mixed GC (MGC), 1 chronic gastritis
(CG), and 2 normal control (NC) histopathological samples, each of which contributes
4000 cells to the overall dataset. The dataset was filtered down to 31,644 cells via the
removal of potential doublets and apoptotic cells using a modified method outlined by
Zhang et al. [32], with the filtering quality validated against the paper’s results. For each
comparison, the log two-fold changes (Log2FC) of the gene expressions and the associated
p-values were computed with the FindMarkers function, available through Seurat (version
4.3.0), with the logfc.threshold and min.pct parameters set to 0, and the densify parameter
set to true. Violin plots were generated with the VlnPlot function, dimensional reduction
plots with the DimPlot function, and feature plots with the FeaturePlot function, all of
which are available through Seurat (version 4.3.0). Dimensional reduction plots were gener-
ated using the t-distributed stochastic neighbor embedding (t-SNE) reduction algorithm. A
total of 12 t-SNE reduced datasets are available: the filtered dataset grouped by the patient
histopathological type of the cell subpopulation, and subsets of the filtered dataset for the
following 11 cell types: T, epithelial, B, plasma, erythroid, fibroblasts, macrophages/DCs,
endothelial, endocrine, granulocyte, and parietal cells. With multiple selected genes, the
gene signature was calculated by averaging the transcript levels for each cell, and the
p-values were combined via Fisher integration of the p-values using the fisherp function
available through the corto package (version 1.1.11).

3. Results

The EBV-GCR web suite is a collection of six unique tools, with each created to
explore a variety of molecular or clinical characteristics that may be impacted by the
EBV status in GC patients. Such characteristics include differential mRNA and miRNA
expression, changes in immune landscape features, overall patient survival, and gene
loci methylation. By employing the tools present in the EBV-GCR suite, each of these
characteristics can be correlated with EBV status, viral or cellular gene expression, genomic
loci, GC histopathological subtype, and cell subpopulations. Table 1 lists the number
of samples used for the calculations for each EBV-GCR tool, with the exception of the
single-cell analysis tool. Table S1 lists the number of samples used for the computations in
the single-cell analysis tool.

3.1. Differentially Expressed Gene Analysis

A hallmark of EBV is the ability to reprogram gene expression-infected epithelial
and B cells, allowing for its prolonged survival within host cells [35]. In a small subset of
infections, this leads to oncogenesis and cancer progression. These cancerous cells continue
to express EBV proteins and miRNA [36,37]. As a result, thousands of cellular mRNAs and
miRNAs are differentially expressed between EBVaGCs and EBVnGCs (Figure 1), many
of which may play roles in immune responses, treatment resistance, cell cycle regulation,
etc. The first tool in the EBV-GCR suite is the differential gene expression analysis tool.
Users select a gene of interest (GOI), and a table of mRNA expression levels of normalized
reads with a corresponding figure illustrating mRNA expression levels and a table of gene
expression comparisons among STAD subtypes are generated. This allows users to examine
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differentially expressed genes (DEGs) among EBVaGC, MSI, GS, CIN, POLE, and normal
control tissue. These data can be used to rapidly explore the expressions of STAD-related
genes to validate experimental results or promote hypothesis generation.
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Figure 1. Volcano plots of cellular differentially expressed genes (DEGs) between EBVaGC and
EBVnGC samples for the TCGA STAD (A) mRNA and (B) miRNA datasets. Red dots represent
cellular genes that are significantly upregulated in EBVaGCs compared to EBVnGCs. Blue dots
represent cellular genes that are significantly down-regulated in EBVaGCs compared to EBVnGCs.
Black dots represent cellular genes that are not significantly up- or down-regulated or show less than
a 1.5-fold decrease or increase in gene expression in EBVaGCs compared to EBVnGCs. Calculations
were performed with an FDR of 5%.

The DEG tool is available in two versions: one for cellular mRNA genes and one
for miRNA gene expression. For either tool, users can select a GOI, upon which two
different boxplots are generated, showing the distribution of the expression levels of the
GOI for EBVaGC, MSI, CIN, GS, POLE, and normal control samples. Pairwise p-values and
associated q-values are shown for each comparison, with significant values highlighted. A
table containing descriptive statistical information, including the sample size, minimum,
maximum, and quartile values, is generated for each of the STAD subtypes. The generated
boxplots can be resized via a grey triangle in the corner of the figure, and the figure itself can
be downloaded as a raster (PNG) or vector (PDF) graphic. Statistical tables can be down-
loaded as CSV files, allowing for local data storage and analysis. Comprehensive master
lists summarizing the gene expressions of all mRNAs and miRNAs are also downloadable
through a link provided on each tool’s webpage.

3.2. Correlations between Cellular and Viral Gene Expressions

The vast number of DEGs observed between EBVaGCs and EBVnGCs may be the result
of the interaction between EBV-associated viral factors and human genes. Given the ability
of EBV to impact gene expression [17,38], we conducted a comprehensive analysis, in which
both viral miRNA and mRNA expression data were correlated against cellular mRNA
and miRNA expression data. The expressions of numerous cellular mRNAs and miRNAs
were significantly correlated, whether positively or negatively, with EBV-associated mRNA
(Table 3) and/or miRNA (Table 4) expression. The frequent presence of such correlations
may suggest the existence of direct or indirect relationships between EBV and host-cell
gene products, which could be further explored mechanistically.
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Table 3. Number of cellular mRNAs and miRNAs positively, negatively, or not significantly correlated
with viral EBV mRNAs *.

Cellular mRNAs Cellular miRNAs

Viral
mRNA

# of
Positive
Correla-

tions

# of
Negative
Correla-

tions

# of Non-
Significant

Correla-
tions

# of
Positive
Correla-

tions

# of
Negative
Correla-

tions

# of Non-
Significant

Correla-
tions

A73 0 4 20,527 0 0 1046
BALF1 2 0 20,529 0 0 1046
BALF2 2 1 20,528 5 63 978
BALF3 0 0 20,531 0 6 1040
BALF4 1105 1077 18,349 0 7 1039
BALF5 852 952 18,727 2 50 994
BARF0 1 0 20,530 0 0 1046
BARF1 1 0 20,530 0 1 1045
BNRF1 1 0 20,530 0 0 1046
EBER1 1008 1140 18,383 36 4 1006

EBNA-1 4 7 20,520 0 0 1046
LF2 109 114 20,308 0 0 1046

LMP2B 0 0 20,531 0 2 1044
RPMS1 740 526 19,265 5 16 1025

* Note that only viral mRNAs with at least one significant correlation with cellular mRNAs/miRNAs were
included. Calculations were performed with an FDR of 5%. # Number.

Table 4. Number of cellular mRNAs and miRNAs positively, negatively, or not significantly correlated
with viral EBV miRNAs *.

Cellular mRNAs Cellular miRNAs

Viral mRNA

# of
Positive
Correla-

tions

# of
Negative
Correla-

tions

# of Non-
Significant

Correla-
tions

# of
Positive
Correla-

tions

# of
Negative
Correla-

tions

# of Non-
Significant

Correla-
tions

ebv-miR-BART10-3p 1351 4371 14,809 166 19 861
ebv-miR-BART11-5p 6 19 20,506 5 2 1039

ebv-miR-BART12 0 0 20,531 77 0 969
ebv-miR-BART13-3p 99 239 20,193 20 0 1026
ebv-miR-BART13-5p 328 169 20,034 0 3 1043
ebv-miR-BART14-3p 31 467 20,033 140 0 906
ebv-miR-BART14-5p 391 1864 18,276 237 5 804

ebv-miR-BART15 939 2977 16,615 209 6 831
ebv-miR-BART1-5p 64 988 19,479 13 0 1033

ebv-miR-BART17-3p 519 2971 17,041 124 6 916
ebv-miR-BART17-5p 0 0 20,531 1 0 1045
ebv-miR-BART18-3p 315 212 20,004 0 0 1046
ebv-miR-BART19-3p 0 9 20,522 23 0 1023
ebv-miR-BART19-5p 706 3171 16,654 223 8 815
ebv-miR-BART20-5p 420 1538 18,573 43 0 1003
ebv-miR-BART21-3p 0 0 20,531 117 4 925

ebv-miR-BART22 891 3928 15,712 123 17 906
ebv-miR-BART2-3p 233 1094 19,204 217 6 823
ebv-miR-BART2-5p 506 3218 16,807 155 5 886
ebv-miR-BART3-3p 147 524 19,860 71 0 975
ebv-miR-BART4-3p 116 388 20,027 121 4 921
ebv-miR-BART4-5p 241 1301 18,989 221 9 816
ebv-miR-BART5-5p 815 3885 15,831 162 16 868
ebv-miR-BART6-3p 606 2812 17,113 191 6 849
ebv-miR-BART6-5p 402 1066 19,063 16 0 1030
ebv-miR-BART7-3p 173 696 19,662 121 0 925
ebv-miR-BART7-5p 275 672 19,584 166 2 878
ebv-miR-BART8-3p 858 3550 16,123 129 16 901
ebv-miR-BART8-5p 570 2792 17,169 187 7 852
ebv-miR-BART9-3p 432 1766 18,333 29 6 1011
ebv-miR-BART9-5p 959 3215 16,357 148 4 894

* Note that only viral miRNAs with at least one significant correlation with cellular mRNAs/miRNAs were
included. Calculations were performed with an FDR of 5%. # Number.
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The EBV-GCR suite has four tools for analyzing the correlations between cellular
and viral gene expressions. These include the correlations of cellular mRNA with viral
mRNA, cellular miRNA with viral mRNA, cellular mRNA with viral miRNA, and cellular
miRNA with viral miRNA. For any of these tools, users select a GOI, for which a heatmap is
generated, showing both the Spearman correlations and the significance levels of the GOI’s
gene expression against 34 miR-BARTs and 3 miR-BHRF genes for the viral miRNA tools
and 19 unique viral genes for the viral mRNA versions of the tool. p-values and the corre-
sponding q-values are also calculated, with significant values highlighted. The generated
heatmap can be resized via a grey triangle in the corner of the figure, and the figure itself
can be downloaded as a raster (PNG) or vector (PDF) graphic. Tables summarizing the
correlations and significance values can be downloaded as CSV files, allowing for local data
storage and analysis. Downloadable lists summarizing the correlations of viral and cellular
mRNAs/miRNAs are also available through a link provided on each tool’s webpage.

3.3. The Impact of Gene Expression Levels on Overall Survival

The availability of patient outcome data for a number of TCGA cohorts, including
STAD [27], provides an excellent opportunity to explore the impact of altered gene ex-
pression on GC patient outcomes. A number of studies have previously employed the
TCGA datasets for the elucidation of prognostic genes and gene signatures in a variety of
cancers [39–42]. Our web suite of tools can provide a similar level of analysis; an example
of a survival curve generated for p53 (TP53) is shown in Figure 2.
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Figure 2. Sample Kaplan–Meier survival curve for p53 (Gene ID: 7157) in the EBVaGC subset of the
TCGA STAD cohort. This figure was generated natively by the mRNA version of the overall patient
survival tools in the EBV-GCR web suite. The samples are divided into equally sized subsets of high
and low expressions of TP53 transcripts at the median level of expression for TP53.
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There are two versions of the EBV-GCR tool to explore the impact of cellular gene
expression on overall patient survival. One explores the impact of cellular mRNA gene
expression levels on overall patient survival and the other explores the impact of cellular
miRNA gene expression levels on overall patient survival. For either tool, users can select a
GOI, as well as the number of comparison groups, with users being limited to 2–4 different
comparison groups, and each selection splitting the dataset equally into the number of
desired comparison groups. Two comparison groups are titled low and high expression.
Three comparison groups are low, mid, and high. Four comparison groups are low, mid-
low, high-mid, and high. Upon the selection of both the GOI and the number of comparison
groups, a Kaplan–Meier survival curve, along with a risk table, is generated for each of
the STAD classifications; EBVaGC, MSI, CIN, GS, and POLE patient groups. Additionally,
a table summarizing the pairwise p-values and associated q-values is generated, with
significant values highlighted. The generated Kaplan–Meier survival curves can be resized
via a grey triangle in the corner of the figure, and the figures can be downloaded as a
raster (PNG) or vector (PDF) graphic. Tables summarizing the significance values can be
downloaded as CSV files, allowing for local data storage and analysis.

3.4. The Correlation of Gene Expression Levels with Immune Landscape Features

With the rising clinical emphasis on cancer immunology and immunotherapy in the
past decade, it is important to understand the interplay between the immune system in can-
cer progression and its effects on clinical outcomes [43,44]. The tumor immune landscape
of the tumor microenvironment has been shown to play a major role in patient outcomes
in GCs [45,46]. In particular, EBVaGCs are “immune hot” tumors with higher levels of
MHC I and II expression and cytotoxic T cell infiltration and activation when compared
to EBVnGCs. [12,13,15,16,47]. Due to their unique immune features, understanding how
EBVaGCs differ in relation to EBVnGCs may help elucidate the underlying mechanisms
of EBV-mediated changes in the tumor immune landscape and may eventually result in
better treatment options for EBVaGC patients.

There are three versions of the tool to correlate cellular and viral gene expressions
with the immune landscape. These are: the correlation of cellular mRNA with immune
landscape features, the correlation of cellular miRNA with immune landscape features,
and the correlation of viral mRNA and miRNA with immune landscape features. For any
of the tools, users select a GOI, which generates a table showing both the Spearman corre-
lation and significance level of the GOI’s gene expression with the 53 immune landscape
features (Table 2). The tools for cellular genes generate tables and figures for all samples,
whereas the tool featuring viral genes only shows data from the EBVaGC sample group.
Significant correlations are highlighted. Users also have the option of selecting an immune
landscape feature, which generates a scatterplot depicting correlations between the GOI
gene expression levels and the selected immune landscape feature. A boxplot depicting
differences in the specific immune landscape feature between the comparison group is also
generated, along with a table with pairwise p-values. The tool featuring viral genes does
not generate either the boxplot or the associated table. Additionally, a table containing
descriptive statistics, such as the sample size, minimum, maximum, and quartile values, is
generated for each of the subsets exhibited within the correlation plots and boxplots. The
generated boxplot and correlation plot can be resized via a grey triangle in the corner of
the figure, and the figures can be downloaded as a raster (PNG) or vector (PDF) graphic.
Tables summarizing correlations, detailed statistical information, and significance values
can be downloaded as CSV files, allowing for local storage and analysis. An example of the
sample output of this subset of tools is provided in Figure 3.
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Figure 3. Sample (A) correlation plot of LAG3 (Gene ID: 3902) with CD8 T cell fraction (T Cells
CD8) in the tumor microenvironment, and (B) boxplot representing the distribution of the CD8 T
cell fraction across the 5 GC subtypes. This figure was generated natively in the EBV-GCR web suite
using the correlation of mRNA gene expression with the immune landscape tool.

3.5. Differential Probe Methylation Analysis

EBVaGCs are considered to be one of the most hypermethylated tumors, with genome-
wide hypermethylation of promoters and genes associated with tumor suppressor func-
tions [29,46] likely contributing to oncogenesis. Indeed, many hypermethylated probes are
clearly detected in EBVaGCs from the TCGA STAD cohort, but there is also a fraction of
probes that are hypomethylated (Figure 4). The relevance of differential methylation in
EBVaGCs has previously been shown [48–50], but with our comprehensive, user-friendly
tool, studying differential methylation in STAD is possible for a wider range of researchers.
Furthermore, when this tool is used in conjunction with the differential gene expression tool,
genes that are up- or down-regulated as a result of methylation patterns can be identified.
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Figure 4. Volcano plot of differentially methylated probes (DMPs) between EBVaGC and EBVnGC
samples for the TCGA STAD dataset. Red points represent probes that are significantly up-methylated
in EBVaGCs when compared to EBVnGCs. Blue points represent probes that are significantly down-
methylated in EBVaGCs when compared to EBVnGCs. Black-colored points represent probes that are
not significantly up- or down-methylated or show less than a 1.5-fold decrease or increase in probe
methylation in EBVaGC compared to EBVnGC. Calculations were performed with an FDR of 5%.
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The tool facilitating differential probe methylation analysis can be used for both the
mRNA and miRNA STAD datasets. When users select a GOI, the genomic region and
100,000 base pairs 5′ and 3′ around both sides of the GOI are searched for methylation marks
across the encompassed probes. A line plot summarizing the average methylation beta
values across EBVaGC, MSI, CIN, GS, POLE, and normal control samples is generated. The
line plot displays an arrow representing the coding strand for the GOI, with the left-to-right
strand representing the forward orientation and the other strand representing the reverse
strand orientation. A comparison table with the p-values, q-values, the names of genes
associated with the probe, and their chromosomal coordinates is generated, displaying all
probes within the selected region. Significant values are highlighted and indicate significant
differences in probe methylation. Users then have the option of choosing a probe from
the selected region, via an additional dropdown menu, in order to generate a boxplot
displaying the methylation beta values across EBVaGC, MSI, CIN, GS, POLE, and normal
control samples. The generated line plot and boxplot can be resized via a grey triangle in
the corner of the figure, and the figures can be downloaded as a raster (PNG) or vector
(PDF) graphic. Tables summarizing the genomic information and significance values can
be downloaded as CSV files, allowing for local storage and analysis. A downloadable
master list summarizing all differentially methylated probes is also available on each tool’s
webpage, which can assist users in identifying DMPs.

3.6. Single-Cell Analysis

Bulk RNA sequencing is a technology that allows researchers to look at general expres-
sion patterns across tumors but suffers from sampling bias due to intra-tumor heterogeneity,
lack of data regarding tumor cellular composition, and lower data fidelity [51,52]. Single-
cell RNA sequencing (scRNA-seq) and several other RNA-sequencing techniques have
been developed to help remedy some of these issues. In particular, scRNA-seq enables
the single-cell resolution of thousands of cells, allowing for the identification of various
cell populations, increased resolution of intra-tumoral heterogeneity, and co-expression
patterns of genes [53]. The scRNA-seq tool in EBV-GCR is a useful tool to validate results
from bulk RNA sequencing and provides a more in-depth understanding of the tumor
microenvironment.

The single-cell analysis tool is based on our analysis of the raw data available from
Zhang et al. [32] to compare the relative gene expression in cells from different cell subpop-
ulations found in GCs, as well as across different histopathological types. This tool allows
users to select which grouping to use for the single-cell data, as well as one or more GOIs. If
only the grouping is selected, a t-SNE dimensional reduction plot is generated, showing the
breakdown by patient histopathology or cell type depending on the option selected. If both
the grouping and the GOI(s) are selected, in addition to the dimensional reduction plot, a
violin plot depicting the relative expressions across the different groupings and a feature
plot depicting the relative gene expressions of cells within the confines of the dimensional
reduction plot are generated. Additionally, a table summarizing the pairwise p-values and
associated Bonferroni-adjusted p-values is generated, with significant differences in gene
expression highlighted. The generated dimensional reduction, violin, and feature plots can
be resized via a grey triangle in the corner of the figure, and the figures can be downloaded
as a raster (PNG) or vector (PDF) graphic. Tables summarizing the significant values can
be downloaded as CSV files, allowing for local storage and analysis. An example of the
sample output of this tool is provided in Figure 5.
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Figure 5. Single-cell analysis data for all epithelial cells grouped by histopathological type.
(A) Dimensional reduction plot (tSNE) of all epithelial cells, both malignant and healthy. (B) Violin
plots showing the expression levels of 3 different GOIs (HLA-DPA1, HLA-DPB1, LY6K). (C) Feature
plot (tSNE) showing relative expression levels of 3 different GOIs (HLA-DPA1, HLA-DPB1, LY6K).

3.7. Example Case Study

As an example validation of the utility of the EBV-GCR tool suite, we surveyed
the existing literature for a target gene reported in multiple independent studies to be
deregulated by EBV in cell culture models and non-TCGA GC datasets. We selected TFF1,
a trefoil family gene encoding a secretory protein expressed in gastrointestinal mucosa.
Multiple reports indicate that TFF1 expression is downregulated by the EBV infection
of AGS or MKN7 gastric cells [54–56]. TFF1 mRNA levels were similarly reduced in
non-TCGA cohort-based EBVaGC samples compared to their EBVnGC counterparts [57].
Using the differential gene expression tool for EBV-GCR, a similar, statistically significant
downregulation of TFF1 expression was also observed in the TCGA bulk sequencing data
(Figure 6A). Both cell culture infection models and non-TCGA cohort EBVaGC data have
identified increased methylation of the TFF1 gene in the presence of EBV [54,57]. The
methylation and silencing can be reversed by 5-aza−2′-deoxycytidine treatment in culture,
suggesting that EBV-induced hypermethylation is important for this repression [54]. Using
the EBVaGC methylation tool, in good agreement with the published data, an increased
level of methylation was observed across the promoter and coding region of TFF1 in
EBVaGCs compared to the other types of GCs, and this was statistically significant in
nearly all cases (Figure 6B). Finally, we used the EBV-GCR scRNA-seq analysis tool to
demonstrate that TFF1 expression was significantly reduced in EBV+ IGC epithelial cells vs.
EBV-negative gastric epithelial cells (Figure 6C). Thus, the EBV-GCR tools may be helpful
for validating experimental results from tissue culture infection models, and they appear to
align with the existing clinically derived data.
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Figure 6. Validation case study for TFF1. (A) Boxplot of TFF1 gene expression across EBVaGC and
EBVnGC subgroups. Multiple testing was performed with the Conover–Iman test. (B) Line plot
showing methylation of 3 TFF1-associated probes across EBVaGC and EBVnGC subgroups. The line
at the bottom of the graph represents gene direction and coverage. (C) Violin plot showing relative
expression levels of TFF1 across EBV-positive and EBV-negative histopathological subtypes using the
scRNA-seq data.

4. Discussion

The vast scale of data provided by the TCGA is an invaluable resource for cancer
research, including the study of viral oncogenesis. Although the processed data is freely
available via the Broad GDAC Firehose (https://gdac.broadinstitute.org/ accessed on
2 March 2017), the accessibility of such data to researchers without significant computa-
tional and bioinformatics skills is limited without substantial investments in time, money,
and resources to make these resources easily usable. To help fill this niche, a number of
web-based tools have been developed [31,58,59]. The EBV-GCR has been created to provide
a wide array of tools for researchers studying EBV oncogenesis in the TCGA STAD cohort.
The tools provided by the EBV-GCR include the impact of EBV status on cellular mRNA,
miRNA expression levels, and DNA methylation. The EBV-GCR can also perform correla-
tions between cellular gene expression and viral gene expression. Correlation analysis of
cellular and viral gene expression with immune landscape features can also be performed.
Patient overall survival outcomes can be correlated with cellular gene expression and EBV
status. The user-friendly, interactive interface facilitates the conversion of complex data
into easy-to-read and intuitive tables and figures, a feature not shared by all analogous
web tools.

EBV-GCR also provides the invaluable opportunity of easily downloading both graph-
ical and tabular interpretations for each tool. At the press of a button, users can either
download either a vector or raster version of the generated graphic, which users can resize
prior to download. The same applies to tabular data, where users can download an easily
readable file, which can be used for further analyses and figure generation. Additionally,
comprehensive master list files of DEGs, DMPs, and cellular/viral gene expression correla-
tions can also be downloaded for further analysis or reference and allows for the narrowing
down of a GOI for further experimental analysis.

https://gdac.broadinstitute.org/
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To sum up, the EBV-GCR provides an intuitive and data-rich interface for the explo-
ration and interpretation of EBV-dependent changes in gene expression, immune landscape
features, patient outcomes, and DNA methylation using molecularly annotated STAD
datasets from the TCGA. Single-cell gene expression data can also be examined by the GC
histopathological subtype and/or cell subpopulations using datasets from Zhang et al. [32].
Comparisons among EBVaGC, EBVnGC, and normal control samples are possible via a
variety of graphs and comprehensive summary tables. Such data can serve as an excel-
lent resource for the validation of experimental observations in model systems and can
facilitate the process of novel hypothesis generation. The EBV-GCR is freely accessible at
https://mymryklab.ca/EBV-GCR/ebvgcr-home/.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15040853/s1, Table S1: Number of patient samples and cells
analyzed for the single-cell analysis tool using the Zhang et al. scRNA-seq cohort [32].
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