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Abstract: Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic
viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating
immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-
deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit
B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein
(LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity
in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of
these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer
and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice
tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the
control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated
with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and
tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated
activation of the host’s immune response. Thus, the expression of bacterial flagellin by VV can
enhance its oncolytic efficacy against immunosuppressive solid tumors.

Keywords: vaccinia virus; LIVP; flagellin; cytokine analysis; virotherapy; IVIS

1. Introduction

Oncolytic viruses (OVs) have become a promising platform for treating cancer. OVs
have the intrinsic capacity to infect neoplastic cells, mediate cellular dysfunction and
promote cell death, causing tumor regression [1]. During the past decade, oncolytic viruses
have been genetically modified to improve their therapeutic efficacy and decrease potential
side effects. Modifications include the deletion of genes responsible for pathogenicity,
enhancing viral replication and lytic ability, or immunomodulation properties by expressing
various cytokines or chemokines [2,3].

Vaccinia virus (VV), a member of the Poxviridae family, has several inherent char-
acteristics that make it suitable for oncolytic virotherapy. First, its large genomes can
accommodate multiple transgenes, making it easier to perform genetic manipulation. Fur-
thermore, their genomes encode some immune-modulating functions to evade the host’s
immune responses, and finally, they display an established high safety profile [4,5]. The on-
colytic properties of vaccinia virus (VV) recombinant strains have been intensively studied
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in multiple clinical trials. For example, the granulocyte-macrophage colony-stimulating
factor (GM-CSF)-expressing recombinant, JX-594, is an oncolytic vaccinia virus with in-
creased selectivity for replication in cancer cells. It has been tested successfully in clinical
trials [6,7].

Bacterial flagellins have been used as a vaccine adjuvant. Flagellins are ligands for
the toll-like receptor-5 (TLR-5). TLR-5 activation has been shown to increase necrosis and
cause tumor regression effectively [8,9]. In addition, bacterial flagellins strongly stimulate
the innate immune response in mammalian cells by activating transcription factor NF-
κB (nuclear factor kappa, enhancer of B cells), which regulates immune responses to the
infection [9]. Additionally, the presence of flagellin promotes virus attachment to the
epithelial cells and increases virus entry via the TLR5-dependent activation of NF-κB [10].

We decided to develop a recombinant oncolytic variant of VV, the Lister strain from
the Institute of Virus Preparation (LIVP), expressing flagellin to enhance the anticancer
activity. Previously, it was demonstrated that LIVP-VV is a perspective platform to create
recombinant virus strains with promising oncolytic potentials [11]. In the current study,
we armed LIVP with bacterial Flagellin subunit B (FlaB), the product of the flaB gene in
Vibrio vulnificus, alongside the reporter gene tagRFP (red fluorescent protein), and evaluated
its oncolytic efficacy in comparison with the LIVP expressing only tagRFP. Moreover, we
developed the LIVP to express firefly luciferase (FLuc) and tagRFP for the bioluminescence
imaging and investigation of the viral biodistribution in the host’s body. All variants have
viral thymidine kinase (TK) gene ablation. The deletion of TK is a common strategy to
enhance VV tumor selectivity [12]. The reason is that, in normal cells, the TK level peaks
only during the S-phase of the cell cycle and is almost undetectable at other times, while
the TK activity in cancerous cells is constantly high. Thus, viruses with the deletion of TK
will develop attraction toward neoplastic cells as TK catalyzes a critical step in nucleotide
synthesis and viral replication [13].

Here, we assessed the potential of the TK-deleted LIVP with or without expression of
FlaB to regress B16 melanoma allografted tumors in C57BL/6 mice and 4T1 breast cancer
and CT26 colorectal carcinoma tumors in BALB/c mice.

2. Materials and Methods
2.1. Cell Lines

BHK-21 (Baby Hamster Kidney), B16 murine melanoma, CT26 murine colon carci-
noma, 4T1 murine breast cancer, and HEK-293T, Raw 264.7 macrophage cell lines were
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) (ATCC
product numbers CCL-10, CRL-6475, CRL-2639, CRL-3406, CRL-3216, and TIB-71 respec-
tively). Additionally, Rat-2-TK (rat kidney cells deficient in the TK expression) was provided
by doctor Nadezhda Grinenko (Serbskiy Institute, Moscow, Russia). All cell lines were cul-
tured in a complete DMEM/Glutamax (Gibco, Billings, MT, USA) supplemented with 10%
fetal bovine serum (FBS) (Gibco, USA) and 100 I.U./mL penicillin and 100 µg/mL strepto-
mycin (PanEco, Moscow, Russia). After virus infection, cell monolayers were maintained
in a medium identical to the growth medium but with 2% FBS. All cells were incubated at
37 ◦C in a 5% CO2 atmosphere. Cell counting was performed with an Improved Neubauer
hemocytometer.

2.2. Viruses

The Lister strain from the Moscow Institute of Viral Preparation (LIVP strain) of
vaccinia virus [14] was used to develop the recombinant viral strains in this study. A strain
encoding only the tagRFP (red fluorescent protein) reporter gene and a strain expressing
the bacterial flagellin gene (FlaB) from Vibrio vulnificus, alongside tagRFP (LIVP-FlaB-RFP)
linked by the P2A self-processing peptide in the bicistronic cassette, were constructed.
Furthermore, for the in vivo imaging, the LIVP expressing firefly luciferase with the tagRFP
reporter gene (LIVP-FLuc-RFP) was developed. All transgenes were inserted into the
TK-locus under the control of a 7.5k promoter (Figure 1A).
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Figure 1. Characteristics of recombinant viruses. Schematic illustration of the plasmid’s constructions
(A). Microphotographs of BHK-21 cells 24 h after infection with MOI 1 LIVP-FlaB-RFP (20×magnifi-
cation, scale bar represents 100 µm), pictures are taken on a red fluorescent channel (B) and bright
field microscope (C), (microphotographs of BHK-21 cells infected with LIVP-RFP and LIVP-Fluc-FRF
are presented in Supplementary Figure S1A,B). (D) Western blotting analysis of FlaB (~40 kDa)
in cell lysate/supernatant (super) of infected cells by LIVP-FlaB-RFP, LIVP-RFP, and non-infected
cells (control); the anti-β-Actin antibody was used as a control. Cell lysate of the infected cells by
LIVP-FlaB-RFP is positive for FlaB.

Briefly, the fragment encoding FlaB was synthesized by Integrated DNA Technologies,
Inc (Coralville, IA, USA). The tagRFP plasmid (Evrogen, Moscow, Russia) and firefly lu-
ciferase cDNA (Promega, Madison, WI, USA) were purchased. Specific fragments were
amplified by PCR, then inserted by sticky-ends ligation into the VV recombination plas-
mid vector that was developed prior at the Laboratory of Cell Proliferation, Engelhardt
Institute of Molecular Biology, Moscow, Russia. Recombinant strains were obtained, as was
described before [15]. Shortly, the transfection of the plasmid vector was performed using
Lipofectamine 3000 (Thermo Fischer, Waltham, MA, USA) in HEK-293T cells infected with
wild-type LIVP. Then, recombinant TK-deleted clones were enriched using Rat-2-TK cells
(rat kidney cells deficient in the TK expression) infected at MOI 1 by total viral stock from
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the previous step and treated with 5′-Bromo-2′-deoxyuridine. After 5 rounds of subcloning,
a pure plaque was obtained. The correctness of the insertion sequences in the recombinant
variants was confirmed by Sanger sequencing. Additionally, the expression of the red
fluorescence is detectable in the cell cultures infected with the recombinant variants by the
fluorescent microscope.

2.3. Virus Titration

BHK-21 cells were used for virus propagation and viral titrations. First, all the re-
combinant viruses were purified by sucrose gradient centrifugation, as was described
before [16]. The cells were seeded in 96-well plates, 1 × 104 per well. The next day, media
were removed, and the cells were infected with 10-fold serial dilutions of the viruses and
incubated in DMED media supplemented with 2% FBS. After 48 h, the cytopathic effect
could be observed and quantified, and TCID50 (50% tissue culture infective dose) was
assessed by using the Reed–Muench method [17].

2.4. Virus Replication Efficiency

In a 96-well plate, 1 × 104 of BHK-21, B16, CT26, and 4T1 cells were seeded per well.
After monolayer formation, the cells were infected with viruses at MOI 1 and 10. Seventy-
two hours post-infection, the supernatants were collected and titrated by infection of fresh
BHK-21 cells by 10-fold serial dilutions, as was described before [18]. The quantitative titer
was assessed by using the Reed–Muench method [17].

2.5. Evaluation of Firefly Luciferase Expression In Vitro by Bioluminescence Assay

In order to evaluate the functional activity of the firefly luciferase expression of the
recombinant virus LIVP-FLuc-RFP, BHK-21 cells were seeded on a 96-wells plate, then,
infected with MOI 0.1,1, and 10 of this recombinant virus. Twenty-four hours after the
infection, luciferin was added to the wells at a final concentration of 30 µg/mL and
incubated for 10 minutes. Afterward, bioluminescence detection was conducted using a
ClarioSTAR microplate reader (BMG, New York, NY, USA).

2.6. In Vitro Assessment of Flagellin Production by Western Blot Analysis

A Western blot was completed to verify the flagellin expression. Confluent BHK-21
cell monolayers in a 6-well plate were infected at MOI 1 of the LIVP-FlaB-RFP or LIVP-RFP,
and the not-infected cells served as additional controls. The cell lysates were collected in
RIPA buffer, supernatants were collected, and we proceeded as was described earlier [19].
In brief, equal quantities of all the samples were subjected to 12% SDS-PAGE. Proteins
were transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, Burlington,
MA, USA), blocked using 4% non-fat milk and incubated for 1 h at room temperature
with rabbit anti-serum containing polyclonal antibodies against FlaB diluted in 2% non-fat
milk containing 0.05% Tween. The rabbit anti-serum was kindly provided by Joon Haeng
Rhee’s laboratory (Chonnam National University, South Korea). We used FlaB anti-serum
at a dilution of 1:6000, anti-tagRFP rabbit polyclonal at a dilution of 1:5000 (Santa-Cruz
Biotechnology, Dallas, TX, USA), and anti-Actin monoclonal at a dilution of 1:2000 (Sigma,
St. Louis, MO, USA). Secondary anti-rabbit antibodies were used in a dilution of 1:3500
(sc-2357, Santa-Cruz Biotechnology, Dallas, TX, USA). Finally, bands were visualized using
the ChemiDoc system (Bio-Rad, Hercules, CA, USA).

2.7. Evaluation of Viral Cytotoxicity

A cytotoxicity assay was performed to evaluate the direct lytic activity of the new
strains. The 4T1, CT26, B16, and BHK-21 (as a control) cell lines were seeded at 1× 104 cells
per well in 96-well plates and infected with the MOI 10 and 1 of the LIVP-FlaB-RFP and
LIVP-RFP. Cell viability was determined by MTT assay at the indicated time points of 24,
48, and 72 h post-infection [20].
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2.8. Assessment of the Virus Kinetics by Flow Cytometry

The RFP expression in the infected cells correlates to viral replication. The 4T1, CT26,
B16, and BHK-21 (as the reference) cells were seeded at 1 × 105 cells per well in 24-well
plates overnight and then infected with the LIVP-FlaB-RFP or LIVP-RFP at MOI 10 and 1.
Cells were harvested 24 and 48 h after infection for a flow cytometry analysis. The samples
were analyzed by detecting red fluorescence in the PE channel using a BD LSR Fortessa
cytofluorimeter (Beckman Dickinson, Franklin Lakes, NJ, USA) with 10,000 events per
sample in 3 technical replicates. The analysis was performed using Flowing Software 2.0
(Turku Bioscience Center, Turku, Finland).

2.9. Evaluation of Virus-Induced Cytotoxicity in the Presence of Macrophages in Vitro

The B16, CT26, and 4T1 cell cultures on 96-well plates, at a confluency of 1 × 104 cells
per well, were prepared, and serial dilutions of the recombinant virus LIVP-FlaB-RFP or
LIVP-RFP were added to the cells with 4 replications for each dilution and incubated for
2 h. Media were discarded, and fresh 1% FBS-supplemented media were added to the
wells. In order to carry out the co-cultivations, Raw264.7 macrophage cells were dyed
with CellTracker Green CMFDA Dye (Thermo Fisher, Waltham, MA, USA), and 1 × 103 of
them were added to each well of the infected cell cultures on 96-well plates 24 h after viral
infection. The plates were incubated, and 24, 48, and 72 h later, the MTT-viability assay [20]
was performed to measure the cytotoxicity of the viruses with or without the presence of
macrophages as an effector on different cell lines.

2.10. Mice Models and Virotherapy

Female 6-week-old C57BL/6 mice were used to establish the murine B16 melanoma
models; BALB/C mice were used to establish the 4T1 breast cancer or CT26 colon carcinoma
syngeneic cancer models. Furthermore, 1 × 106 tumor cells were injected subcutaneously
into their right hind flanks. All animals used in this study were authorized by the En-
gelhardt Institute of Molecular Biology, Moscow, Russia. The mice were housed under a
controlled temperature and humidity, with free access to food and water.

The intravenous (IV) virotherapy was conducted one week after tumor implantation,
while the tumor volumes reached approximately 50 mm3. The melanoma, breast cancer,
and colon carcinoma mice models were divided into three groups (n = 11 for each group);
one group received LIVP-FlaB-RFP, another group received LIVP-RFP, and the last group,
as the control, received PBS (phosphate buffered saline). Furthermore, 5 × 106 PFU of the
viruses (LIVP-RFP or LIVP-FlaB-RFP) in 100 µL of PBS were injected IV two times with
three-day intervals into each mouse in the corresponding groups.

The tumor diameters were measured every 2 days, and the tumor volume was cal-
culated using the equation: V = 1

2 a2 × b, where a is the smaller of the two orthogonal
measurements [21]. The mice were euthanized when the tumors reached 2000 mm3 in size.

2.11. Biodistribution of the Virus Detected by Bioluminescence Imaging In Vivo

Syngeneic tumors were established by s.c. injection of murine melanoma B16, 4T1
breast cancer, and CT26 colon carcinoma cells (2× 106 cells) in 50-µL PBS into the right hind
flank of C57BL/6 and BALB/c mice, respectively. On day 5, post-implantation, the mice
were treated with a single intravenous injection of VV-FLuc-RFP (1 × 108 PFU in 100 µL
of PBS; n = 8); untreated mice were used as the control (n = 8). For the bioluminescence
imaging, mice infected with VV-FLuc-RFP were injected i.p with 150 mg/kg of firefly D-
luciferin (Perkin Elmer, Waltham, MA, USA) in PBS and allowed to rest for 10 min. Imaging
was conducted using the in vivo imaging system (IVIS) Spectrum CT (Perkin Elmer, USA)
and the photon emission values were calculated with the Living Image 4.3 software.

2.12. Viral Biodistribution Quantified by qPCR

After the virus injection, tumors and different organs from the treated mice were
collected. Total DNA was extracted from the tumor tissues using the DNeasy 96 Blood
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& Tissue Kit (Qiagen, Manchester, UK) according to the manufacturer’s instructions. The
normalization of the DNA concentrations and standards was prepared as described be-
fore [22]. Quantitative PCR proceeded using 5X qPCRmix-HS SYBR (Evrogen, Moscow,
Russia) on the CFX-96 qPCR system (Bio-Rad, Hercules, CA, USA). The primers for the
analysis were produced by Evrogen (Moscow, Russia). They were designed on the vac-
cinia A21L gene (forward: 5′-CGTAAACTACAAACGTCTAAACAAGAA-3′ and reverse:
5′-CCTGGTATATCGTCTCTATCTTTATCA C-3′).

2.13. Histology

The histological study was performed on 3 mice from each group. The samples from
tumors of treated and control mice were harvested and post-fixed in the 4% buffered
formalin solution (Thermo Fisher Scientific, USA) at 4 ◦C overnight, followed by paraffin
embedding. Furthermore, 5 µm-thick paraffin sections were prepared and stained using
standard hematoxylin and eosin (H&E) staining [23].

2.14. Cytokine Analysis of the Sera and Tumor Tissues

To analyze the level of cytokines, ten days after the complete injections of the viruses
or PBS to the melanoma mice models, sera were obtained from 3 mice from both the
control and treated groups. Tumor tissues were collected, and 0.25 g of them were homog-
enized and processed for this experiment, as well [24]. The LEGENDplex MU Cytokine
Release Syndrome Panel (13-plex) w/FP kit (BioLegend, San Diego, CA, USA) was used
to determine the level of the interferons (IFN)-α and IFN-γ, the interleukins (IL)-4, IL-6,
and IL-10, the chemokine C-C motif ligand 2 (CCL2 or MCP-1), CCL3 (or MIP-1α), CCL4
(or MIP-1β), the chemokine C-X-C motif ligand 9 (CXCL9 or MIG), CXCL10 (or IP-10),
and the tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and
granulocyte-macrophage colony-stimulating factor (GM-CSF).

2.15. Tumor Infiltrating Lymphocytes/Macrophages

The mice treated with the viruses or PBS were sacrificed (n = 6), and their tumors were
collected in RPMI-1640 containing 2% FBS and 1 mg/mL collagenase IV (Sigma, St. Louis,
MO, USA). After 30 minutes of incubation at 37 ◦C, the samples were homogenized in
ice-cold PBS containing 2% FBS and 1 mM EDTA. After obtaining single cell suspension,
107 of the resulting cells were incubated with Fc Block (anti-mouse CD16/CD32; 101302),
followed by staining with the PE anti-mouse CD4 antibodies (100512), Pacific Blue anti-
mouse CD8a (100725), PE anti-mouse F4/80 (123110) antibodies (all from BioLegend, San
Diego, CA, USA). The stained cells were acquired on the BD LSR Fortessa cytofluorimeter
(Beckman Dickinson, Franklin Lakes, NJ, USA), and data were analyzed using Flowing
Software 2.0 (Turku Bioscience Center, Turku, Finland).

2.16. Statistical Analysis

All data are presented as mean ± SD. Statistical analyses were performed using
unpaired t-tests and a two-way ANOVA analysis. Differences were considered significant
where * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p <0.0001. GraphPad Prism version 8.0.2
(GraphPad Software, Inc., San Diego, CA, USA) prepared all graphs and statistical analyses.

3. Results
3.1. Construction of the Recombinant Viruses and Confirmation of Transgene Expression

The recombinant viruses were constructed using tagRFP as the selecting gene. The
viruses LIVP-FlaB-RFP and LIVP-FLuc-RFP contained the insertion of FlaB and FLuc,
respectively (Figure 1A). The infection of the BHK-21 cells with LIVP-FlaB-RFP and LIVP-
Fluc-RFP shows strong fluorescence signals from the infected cells in both cases and the
control, LIVP-RFP (Figure 1B, Supplementary Figure S1A,B). The efficient expression of
luciferase in the LIVP-Fluc-RFP infected cells was assessed by bioluminescence assay, as
was described (Supplementary Figure S3).
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Cell lysates from the infected BHK-21 cells with LIVP-FlaB-RFP were obtained and
analyzed for the presence of FlaB by Western blotting assay. Additionally, non-infected
cells served as the control (Figure 1D, Supplementary Figure S2).

3.2. Assessment of Viral Recombinant Strain’s Replication Efficiency, Kinetics, and Cytotoxicity

The virus replication efficiency was measured by titration and the determination of
TCID50 of the supernatant that was obtained from different infected cell cultures, including
BHK-21, B16, CT26, and 4T1 by MOI 1 of LIVP-RFP or LIVP-FlaB-RFP. It appears that the
presence of the transgene FlaB in the genome reduces the replication level to some extent
in comparison with LIVP-RFP (Figure 2). Additionally, in this test, it has been shown that
the recombinant viruses have a higher ability to reproduce in the B16 cell culture rather
than in 4T1 or CT26 cell models (Figure 2).
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Figure 2. Viral replication efficiency. Comparison of replication efficiency of the recombinant viruses
with or without expression of the flagellin transgene in various cell cultures.

The viral replication rate was determined by flow cytometry, which detected red fluo-
rescent signals emitted from the infected tumor cells. BHK-21 was infected as a reference.
The results imply that recombinant viruses can infect and replicate in cancer cell cultures,
especially at the higher MOI (MOI 10). No significant difference was observed between
LIVP-RFP and LIVP-FlaB-RFP’s ability to replicate in tumor cell lines (Figure 3).

The cytotoxicity of the viruses was assessed at 24, 48, and 72 h after infection of the
different cell lines of B16, CT26, and 4T1. BHK-21 cell cultures were used as the control.
Our data suggest that LIVP-FlaB-RFP has a higher level of cytotoxicity than LIVP-RFP at
10 MOI in all tested tumor cell lines, while in the lower MOI, no significant differences
were observed (Figure 4).
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MTT assay, in BHK-21, B16 murine melanoma, CT26 murine colon carcinoma, 4T1 breast cancer cell
lines. ANOVA was performed for statistical analysis; * p < 0.05 indicates significance.

3.3. Flagellin Expression Enhances Macrophages’ Cytolytic Effect In Vitro

The innate immune system recognizes bacterial flagellin by the Toll-like receptor 5 and
NAIP5/NLRC4 inflammasome receptors, which are expressed mainly on macrophages,
leading to a pro-inflammatory program of cell death [25]. Activated macrophages can
significantly synergize the cytotoxic effect of the oncolytic virus. For modeling macrophage
activation and its effects on cytotoxicity in vitro, we co-cultured RAW264.6 cells with tumor
cells (B16, CT26, and 4T1 cells), pre-infected with 0.1 MOI of LIVP-RFP or LIVP-FlaB-RFP. At
this MOI, the cytotoxicity of the viruses to the tumor cell lines is very low; thus, the changes
by the effector (macrophage) can be easily observed (Figure 5A–C). The cytolytic effect
was assessed after 48 h of co-incubation using the MTT test. The results showed that B16
cell viability decreases dramatically in the presence of LIVP-FlaB-RFP. The cytolytic effect
was more significant in the co-cultured LIVP-FlaB-RFP-infected cells with macrophages
(Figure 5D). The co-incubation with macrophages with the LIVP-FlaB-RFP-infected CT26
cells showed a tendency for survival decline, but the difference was not significant. In the
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case of the 4T1 cells, neither LIVP-FlaB-RFP nor the co-incubation of LIVP-FlaB-RFP with
macrophages affects cell viability.
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Figure 5. Macrophage cytolytic effect. Microscopic pictures (20× magnification, scale bar represents
100 µm) of the B16 cells co-cultivated with RAW264.7, pre-stained with CellTracker Green (A) and
infected with 0.1 MOI of LIVP-FlaB-RFP (B) or LIVP-RFP (C). (D) Qualitative assessment of cell
viability using MTT assay at 48 h post-infection of co-cultivation, normalized to non-infected co-
cultured cells as a control. For statistical analysis, an ANOVA test was performed; *** p < 0.001
indicates significance.

3.4. The Administration of the Recombinant VV Results in Significant Viral Deposition within
Tumor with Evidence of Viral Replication in Tumor, but Not Normal Organs

For further investigation and understanding of the biodistribution of the viruses in the
host’s body, we developed LIVP-FLuc-RFP. We detected the virus after injection into the
C57BL/6 mice bearing the B16 melanoma tumors. At first, the virus was seen in the spleen
(up to 6 H) (Supplementary Figure S4). Then, from 24 h until 168 h post-infection, luciferase
expression only was detected at the tumor sites, and no signal in any other organs was
observed, which indicates the safety and tumor-targeted property of the recombinant LIVP
virus with the long-term replication time (Figure 6). Furthermore, 24 and 168 h after virus
injection, four mice were sacrificed to collect their tumor, spleen, liver, brain, ovaries, heart,
kidneys, and blood for quantification of the virus by qPCR (Supplementary Figure S5).
Additionally, 24 h post-injection, an average of 105 copies of viral genomic DNA in the
tumor was recovered, which was significantly higher than the virus being detected in the
spleen, ovaries, liver, and blood. Furthermore, 168 hours post-injection, the systemic virus
was cleared while persisting within the tumor.
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Figure 6. In vivo imaging. Virus detection by IVIS through time after injection of LIVP-FLuc-RFP
to the B16 syngeneic mice. (A) Bioluminescence imaging of mice bearing B16 melanoma tumors.
(B) Average radiance after virus injection; bioluminescence was detected up to 168 h after virus
injection, and the maximum expression of luciferase was observed 96 h after infection.

3.5. Flagellin Expression Enhances the Antitumor Activity of the Vaccinia Virus in the Murine
Melanoma Model

In the seventh and tenth days after tumor inoculation, purified viruses were injected
intravenously (Figure 7A). The tumor volume was assessed (Figure 7B), and the survival
rate was determined by using the Kaplan–Meier method (Figure 7C). In all treated groups,
lower tumor volumes were observed compared to the control groups, especially in the
treated groups receiving LIVP-FlaB-RFP; however, it appears that the B16 melanoma
model is more responsive to the treatment than the colon carcinoma or breast cancer
models. Regression in the melanoma syngeneic mice models receiving LIVP-FlaB-RFP
was significantly higher than the group that received only LIVP-RFP or the control. The
survival rates were also significantly prolonged in all treated groups, and for the melanoma
models that received LIVP-FlaB-RFP, survival was remarkably longer than in any other
groups. Measurements continued until 50% of the animals in the control group reached
the maximum tumor volume, which is indicated by the animal care guidelines. (data were
obtained for up to 35 days).
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Figure 7. Virotherapy. (A) Schematic of the treatment protocol mice (n = 11) were injected subcu-
taneously with B16, CT26, or 4T1 cells on day 1. Seven days after tumor inoculation, viruses were
injected intravenously. Then, the mice received a booster shot on day 10. Ten days after treatment,
three mice from each group were sacrificed to obtain sera and tumor samples for cytokine analy-
sis. (B) Tumor progression (B16, 4T1, CT26) in treated groups with LIVP-RFP or LIVP-FlaB-RFP
compared to the control groups. The symbol � indicates the animal’s sacrifice in control groups.
(C) Overall survival percentages of treated and control mice based on the Kaplan–Meier method.
For statistical analysis, ANOVA and survival analysis were performed; ** p < 0.01 and *** p < 0.001
indicate significance.

3.6. Flagellin Expressing VV Modulates the Tumor Microenvironment

We measured the levels of 13 cytokines, including IFN -α, IFN-γ, IL-4, IL-6, IL-10,
CCL2, CCL3, CCL4, CXCL9, CXCL10, TNF-α, VEGF, and GM-CSF from both the sera and
tumor samples from the B16 melanoma mice group (n = 3), which had the best response
to the viral therapy in comparison with 4T1 breast cancer or CT26 colon carcinoma. The
CCL4 level did not change in the serum or tumor samples, and the IL-10 level did not
change in the samples from the serum. In the sera samples from the treated group by
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LIVP-RFP, an increased level of cytokines was observed (compared with LIVP-FlaB-RFP
in the treated group or the control) (Figure 8B), while in the tumor samples of the same
group, this increase was not seen (Figure 8A). On the contrary, the treated group by LIVP-
FlaB-RFP had a surge of cytokines in their tumor samples and not in the serum samples.
(Supplementary Figures S6 and S7). Antibody staining of the tumor-infiltrated lymphocytes
indicated a significant increase in the levels of the CD8+ lymphocytes and macrophages
treated by the oncolytic viruses, especially LIVP-FlaB-RFP (Figure 9). The histological
analysis demonstrated decreased melanin deposition after therapy for the oncolytic viruses
and a pronounced inflammatory infiltration and acellular foci of necrosis in tumor samples
treated with LIVP-FlaB-RFP (Supplementary Figure S8).
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Figure 8. Cytokine analysis. (A) Cytokine analysis of the tumor-infiltrated fluids (TIFs) and (B) serum
samples from the B16 melanoma models treated by LIVP-RFP or LIVP-FlaB-RFP compared with
the untreated mice (control group). For statistical analysis, ANOVA was performed; * p < 0.05
indicates significance.
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Figure 9. Analysis of tumor infiltrating lymphocytes/macrophages. B16 melanoma tumor samples
were collected 72 hours after treatment to evaluate the levels of F4/80+, CD4+, and CD8+ cells. For
statistical analysis, ANOVA was performed; * p < 0.05, ** p < 0.01; *** p < 0.001 indicates significance.

4. Discussion

During the past decade, genetic engineering has been employed in the oncolytic viral
therapy field to increase the onco-selectivity of the viruses, including the vaccinia virus and
to enhance the immune response of the host to gain antitumor immunity and prominent
regression in tumors. For instance, the deletion of the thymidine kinase gene has been
used to increase cancer cell selectivity [12,26]. We made a recombinant vaccinia virus from
the strain LIVP, in which the thymidine kinase gene was ablated by inserting the reporter
gene tag RFP to increase virus selectivity for tumor cells. Furthermore, in order to enhance
the stimulation of the immune response and broaden the cytotoxicity of the virus, we
constructed the variant that expresses bacterial flagellin subunit B (LIVP-FlaB-RFP).

At first, we evaluated the ability of the virus to efficiently replicate and lyse various
tumor cell lines in vitro, as direct cytolysis by a virus is a main step to tumor clearance.
Viruses had more potency to replicate in the B16 cell line, and transgene FlaB in the virus
backbone has reduced the replication efficacy to some degree. However, on the other hand,
it increased cytotoxicity. Infection of the co-culture of the B16 cell line with macrophages
by LIVP-FlaB-RFP resulted in significantly increased cytolytic effects, probably due to the
activation of macrophages in the presence of flagellin [27].

Moreover, in an attempt to demonstrate the recombinant virus’ onco-selectivity, we
performed IVIS imaging after injection of LIVP-Fluc-RFP to the melanoma mice models;
only up to 6 h after the injection signals were observed in the spleen of the mice, and
afterward, up to 168 h post-infection signals were only detected in the tumor area and not
in any other organs. Detection of the viral genomic DNA in the tumor and different organs
by qPCR analysis confirmed the IVIS results, indicating favorable biodistribution of this
recombinant virus.

The addition of the flagellin (FlaB) transgene in the TK-deleted virus backbone resulted
in the most effective oncolytic strain in our in vivo studies, which significantly reduced
tumor volumes, lowered tumor progression, and prolonged the life span of the cancer mod-
els, especially in B16 melanoma allografted C57BL/6 mice. Nevertheless, how the presence
of FlaB contributes to tumor regression is unclear. Research has shown flagellin triggers
the activation of toll-like receptor 5 (TLR-5). Subsequently, the release of cytokines occurs,
which can cause necrosis in tumors [8]. Furthermore, bacterial flagellins are essential targets
for the detector molecules involved in immunosurveillance. For instance, the detection of
flagellin by the Nod-like receptor NCLR4 triggers activation of the ice protease-activating
factor (IPAF) inflammasome that initiates caspase-1 and maturation of the interleukin
(IL)-1β [28,29]. IL-1β expressed in tumors can induce macrophage chemotaxis and increase
macrophage recruitment. This was demonstrated in human metastatic melanoma models
in vitro [30]. Additionally, Nguyen et al. showed that the administration of flagellin B
(FlaB) into TC-1 carcinoma cancer models significantly potentiated the antitumor immune
responses and prolonged survival. Furthermore, FlaB increased antigen-specific IFN-γ
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production of the CD8+ T cells from the lymph nodes and spleen [31]. In another study,
it was demonstrated that an injection of soluble flagellin C (FliC) into human colorectal
tumors, xenografted in nude mice, significantly reduced tumor volume [32]. Conrad et al.
constructed a recombinant tanapox virus armed with FliC (from Salmonella enterica) that
exhibited excellent oncolytic activity in colorectal cancer models in comparison with other
recombinant strains expressing GM-CSF or CCL2 [33].

In our investigation, the melanoma models responded to the viral therapy better than
the breast cancer or colon carcinoma models. This was particularly evident in the group
that received LIVE-FlaB-RFP, which is consistent with the in vitro studies that showed a
higher expression level and more cytotoxicity of this virus in the B16 melanoma cell culture
rather than the CT26 colon carcinoma or 4T1 breast cancer cell culture. An evaluation of the
immune response to the virotherapy by LIVP-FlaB-RFP indicated significantly enhanced
recruitment of the macrophages and CD8+ lymphocytes to the tumor site compared to
the group treated by LIVP-RFP or the control. Furthermore, a cytokine analysis of the
serum and tumor samples from the mice bearing B16 melanoma, treated by LIVP-FlaB-
RFP, indicated a significant elevation of the cytokines: TNF-α, GM-CSF, CXCL9, IL-4,
and, to a lower extent, the elevation of IL-10, CCL3, CXCL10, IFN-α, IFN-γ, VEGF, and
CCL2 in samples from the tumors treated by LIVP-FlaB-RFP, while in the serum analysis
of this group, a slight increase of only TNF-α, VEGF, and IL-6 was observed. In the
treated group, the LIVP-RFP cytokine analysis suggested elevation of CXCL10 in the
tumor samples and IFN-α, IFN-γ, CCL2, CCL3, CXCL9, and CXCL10 in the sera samples.
This data indicates that the virus expressing flagellin has more tropism toward the tumor
and has more potential to penetrate the tumor microenvironment (TME), which leads to
localized cytokine promotion at the tumor site, which suggests a higher rate of immune cell
infiltration and overcoming immunosuppressed TME, which can profoundly turn the cold
tumor into a hot status. ‘Hot’ tumors are characterized by the accumulation of cytokines
and T-cell infiltration and have a better response to immunotherapy [34]. Melanoma could
be considered the “hot” tumor among the models used in our research; therefore, flagellin
expression in the infected cells readily activates the immune cell. In other cases, the effect
of flagellin is not so drastic. It could be improved if flagellin is expressed in a secreted form.

GM-CSF (granulocyte-macrophage colony-stimulating factor) is a potent cytokine that
promotes the differentiation of myeloid and dendritic cells, which is responsible for present-
ing tumor antigens for the priming of antitumor cytotoxic T-lymphocytes and is capable
of the regulation of immunosuppressive TME. In oncolytic viral therapy, this cytokine
has shown significant tumor regression in colorectal and hepatic adenocarcinomas [35].
In phase II clinical trials, a recombinant oncolytic herpes simplex virus type-1 encoding
GM-CSF resulted in the regression of unresectable stage III or IV melanomas. Based on this
result, a phase III clinical trial in patients with unresectable Stage III b or c and Stage IV
melanoma was initiated and had successful outcomes [36].

CXCL9 (C-X-C motif chemokine ligand 9) has a conserved protein function between
mice and humans. It has been reported to be associated with promoted intra-tumor
infiltration of immune cells, T-cell accumulation, recruitment of activated CD8+ cytotoxic T
and CD4+ T-helper cells, delayed ascites formation, and improved survival [37]. Seitz et al.
declared the overexpression of CXCL9 inhibits tumor growth in ovarian cancer in immune
checkpoint blockade-resistant mice [38].

TNF-α (tumor necrosis factor-alpha) has a paradoxical effect in cancer therapy; de-
pending on the cellular and cytokines context, it induces either cancer cell death or survival.
Although TNF-α shows potent antitumor activity in various animal cancer models, due
to its toxicity, clinical use of TNF-α is now limited to isolated limb perfusion (ILP) for
melanoma and soft tissue sarcoma. Recently, it has been described that systemic adminis-
tration of TNF-expressing tumor cells can reduce tumor growth and metastatic colonies in
immunocompetent mice [39,40]. Moreover, a recombinant variant of adenovirus expressing
TNF-α displayed cancer-eradicating potency by elevated apoptosis and necrosis with an
enhanced level of cytotoxic T cells [41].
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The cytokines discussed above have significantly escalated in treated melanoma
models with LIVP-FlaB-RFP. We assume the surge of these cytokines can contribute to a
lower tumor volume and extended lifespan of treated mice. This recombinant variant was
able to drive a substantial increase in the GM-CSF, CXCL9, and TNF-α chemokine gradient
between the tumor and blood. Additionally, a rise in other cytokines, including IFN-α,
IFN-γ, IL-10, CCL3, and CXCL10, was seen in both melanoma-treated groups receiving
LIVP-RFP or LIVP-FlaB-RFP. Nonetheless, the increase was not statistically significant,
but various research revealed that these cytokines could play an essential role in tumor
regression [42,43].

One of the significant disadvantages of viral immunotherapy is Cytokine Release
Syndrome (CRS), typically associated with the surge of IFN-γ, IL-2, IL-4, IL-6, IL-8, etc. [44].
Additionally, our cytokine analysis determined an uplifted level of inflammatory cytokines,
such as VEGF, IL-6, and CCL2, that can cause the progression of the tumor and initiate CRS,
which limits the treatment and has a negative impact on the outcome. It is worth mentioning
that inflammatory cytokine IL-4 was higher in the control group than in the treated groups
in the sera analysis. Nevertheless, targeting and inhibiting the pathways that lead to the
production or function of these inflammatory cytokines by anti-cytokine antibodies is a
novel approach to cancer therapy, which can prevent CRS problems without compromising
antitumor activity [45,46]. We hypothesize that combining these recombinant variants with
immune checkpoint blockades or antibodies targeting inflammatory cytokines can optimize
the treatment process.

5. Conclusions

Our study represents a simple approach to exploiting immune-suppressive tumors
and converting them into opportunities for targeted immunotherapy. Our results support
the notion that VV-LIVP is a prospective oncolytic strain, and arming it with FlaB has
the potential to be an effective oncolytic virus, mediating its oncolytic efficacy via direct
cytolysis and activation of the immune response at the TME. However, further research
should be performed due to an imperfect understanding of flagellin’s mechanism of action.
We presume that administering this recombinant variant with other anticancer medications
would improve treatment outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v15040828/s1, Figure S1: BHK-21 cell line infected with
LIVP-RFP(A) and LIVP-Fluc-RFP(B). Figure S2: Uncropped Western blotting for cell lysates and
supernatants of infected cells by recombinant viruses. Figure S3: Bioluminescence activity was
measured in cells infected with MOI 0.1, 1, and 10 of the LIVP-FLuc-RFP after 24 h. Figure S4:
Bioluminescence imaging of mice bearing B16 and 4T1 tumors post VV-FLUC-RFP i.v. injection
(1 × 108 PFU). Non-productive infection in the spleen (up to 6h) and vessel endothelium at the place
of injection was observed, Figure S5: Recombinant VV genomic DNA biodistribution in mice organs
and tumor; 1 day (1 d) and 7 days (7 d) after virus administration, various organs were collected
from the mice (n = 4) to determine the presence of the virus and the copy number of the A21L gene
using qPCR. For statistical analysis, ANOVA was performed, ** p < 0.01, *** p < 0.001, **** p <0.0001.
Figure S6: Cytokine analysis of the tumor-infiltrated fluids (TIFs) from the B16 melanoma models
treated by LIVP-RFP or LIVP-FlaB-RFP compared with the untreated mice (control group). For
statistical analysis, ANOVA was performed; * p < 0.05 indicates significance, Figure S7: Cytokine
analysis of serum samples from the B16 melanoma models treated by LIVP-RFP or LIVP-FlaB-RFP
compared with the untreated mice (control group). For statistical analysis, ANOVA was performed;
* p < 0.05 indicates significance, Figure S8: The results of histological examination of B16 melanoma
after therapy with oncolytic viruses. (A) Control animals without therapy. (B) LIVP-RFP Oncolytic
virus therapy. (C, D) LIVP-FlaB-RFP. In the upper right corner of each panel, there is a thumbnail
image. Hematoxylin & eosin staining. There is a decrease in melanin deposition after therapy with
oncolytic viruses. After the therapy with LIVP-FlaB-RFP, one can see a pronounced inflammatory
infiltration and acellular foci of necrosis.
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