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Abstract: Feline Immunodeficiency Virus (FIV) causes progressive immune dysfunction in cats
similar to human immunodeficiency virus (HIV) in humans. Although combination antiretroviral
therapy (cART) is effective against HIV, there is no definitive therapy to improve clinical outcomes
in cats with FIV. This study therefore evaluated pharmacokinetics and clinical outcomes of cART
(2.5 mg/kg Dolutegravir; 20 mg/kg Tenofovir; 40 mg/kg Emtricitabine) in FIV-infected domestic
cats. Specific pathogen free cats were experimentally infected with FIV and administered either cART
or placebo treatments (n = 6 each) for 18 weeks, while n = 6 naïve uninfected cats served as controls.
Blood, saliva, and fine needle aspirates from mandibular lymph nodes were collected to quantify
viral and proviral loads via digital droplet PCR and to assess lymphocyte immunophenotypes by
flow cytometry. cART improved blood dyscrasias in FIV-infected cats, which normalized by week
16, while placebo cats remained neutropenic, although no significant difference in viremia was
observed in the blood or saliva. cART-treated cats exhibited a Th2 immunophenotype with increasing
proportions of CD4+CCR4+ cells compared to placebo cats, and cART restored Th17 cells compared
to placebo-treated cats. Of the cART drugs, dolutegravir was the most stable and long-lasting. These
findings provide a critical insight into novel cART formulations in FIV-infected cats and highlight
their role as a potential animal model to evaluate the impact of cART on lentiviral infection and
immune dysregulation.

Keywords: antiretroviral therapy; lentiviral therapy; feline immunodeficiency virus; dolutegravir;
tenofovir disoproxil fumarate; emtricitabine; immunophenotype; viral load

1. Introduction

Feline immunodeficiency virus (FIV) is a highly prevalent and currently untreatable
lentivirus infecting domestic and feral cats worldwide. FIV is shed in saliva and is primarily
transmitted via bite wounds. Infection leads to progressive immune dysfunction with
clinical signs that include generalized lymphadenopathy, stomatitis or periodontitis [1],
prolonged clotting times [2,3], and myelosuppression causing neutropenia, lymphopenia,
and anemia [4–6]. FIV infection outcomes vary and can result in high morbidity and
mortality in some cases [7], particularly in shelters and multi-cat housing situations [8].
Experimentally, certain strains of FIV have been found to result in high pathogenicity [9–11]
and studies of FIV immunopathology and mechanisms of clinical symptoms have been
utilized extensively to advance studies of human immunodeficiency virus (HIV), the cause
of acquired immunodeficiency syndrome (AIDS) [12].
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Combination antiretroviral therapy has been comprehensively studied as a treatment
for primate immunodeficiency viruses (HIV, SIV), but there is a paucity of works in the
literature investigating it as a treatment for FIV. Antiretroviral drugs used against HIV
have also been shown to exhibit anti-FIV effects in vitro, including reverse transcription
inhibitors such as tenofovir disoproxil fumarate [13,14] and emtricitabine [15–18]. The
recent introduction of dolutegravir, a next-generation integrase inhibitor, is a preferred
adjunctive treatment in HIV patients, causing a strong viral suppression of HIV with
improved patient tolerance [19–22]. The synergy of multiple antiretroviral classes—often
referred to as combination antiretroviral therapy (cART) or highly active antiretroviral
therapy (HAART)—has demonstrated improved patient outcomes and is the gold-standard
for antiretroviral therapy. As cART with tenofovir disoproxil fumarate, emtricitabine,
and dolutegravir has demonstrated lentiviral suppression in humans and nonhuman
primates [23–30], we thus developed a novel cART protocol [24,29,31] and evaluated its
efficacy as a treatment for cats infected with FIV.

Previous studies investigating the treatment of FIV have demonstrated that antiretro-
viral drugs can effectively suppress FIV infection in culture [16,32,33]. Other antiretroviral
drugs are also neuroprotective [34] and decrease the viral load in chronically infected
cats [35]. Thus, a comprehensive analysis of cART’s impact on viral and proviral loads,
salivary shedding, and clinical morbidity from acute to chronic infection may further
aid in the design of cART. A complete assessment using highly sensitive quantitative
techniques while investigating the immune response to infection and therapy will also
improve our understanding and treatment of FIV. In this study, we inoculated cats with
an immunopathogenic strain of FIV (FIVc36) [9,36] and treated FIV-infected and unin-
fected control cats daily with cART or a placebo. Clinical and hematologic parameters
were analyzed, viral RNA and proviral DNA in blood and saliva were quantified by
ddPCR, and lymphocyte immunophenotypes during infection and treatment were charac-
terized by flow cytometry in blood and lymph nodes. In addition to cART pharmacoki-
netics, we also evaluated the impacts of cART on viremia and shedding as a treatment for
individual FIV-patients.

This is the first study to assess the treatment efficacy of cART in cats experimentally
infected with FIV using a novel daily dosing application. We present a comprehensive
evaluation of cART as a treatment for FIV by assessing the clinical impacts, the reduc-
tion of viral RNA and proviral DNA in blood, the inhibition of salivary shedding, and
immunophenotype characterization in response to cART. Our findings suggest that cART
inhibits some FIV-induced myelosuppression, restores Th17 cells in the oral compartment,
and triggers a Th2 immune response.

2. Materials and Methods
2.1. In Vivo Protocol

Eighteen cats (n = 18) from 6 to 10 months old, bred from a specific pathogen free
colony, were utilized for the present study. The cats were housed in barrier rooms and
fed ad libitum in accordance with Colorado State University IACUC-approved protocols
at an AAALAC-international accredited animal facility. The cats were housed in groups
of 3 to 4 animals, and control cats were housed separately from FIV-infected cats. Two
weeks prior to the initiation of the study, the cats were habituated to handling for blood and
saliva collection and physical examination. At day 0, n = 12 cats were intravenously and
orally inoculated with 1 mL of FIVc36 viral stock diluted 1:80 with 0.9% saline, previously
validated to demonstrate acute immunopathogenic and reproducible high viral titers [9,36].
The remaining n = 6 cats were similarly sham-inoculated with 1 mL of 0.9% saline as nega-
tive controls. Beginning at week 5 post-inoculation through week 24, n = 6 FIV-inoculated
cats received daily combination antiretroviral therapy (cART) subcutaneously consisting of
two reverse transcription inhibitors, tenofovir disoproxil fumarate (TDF 20 mg/kg/day)
and emtricitabine (FTC 40 mg/kg/day), and an integrase inhibitor dolutegravir (DTG
2.5 mg/kg/day). The other n = 6 FIV-inoculated cats received 1 mL subcutaneous injections
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of 15% kleptose, the cART vehicle, daily. These three cat groups were referred to as control,
cART-treated FIV+, and placebo-treated FIV+ cats, respectively. Figure 1 illustrates the
distribution of cat groups. All cat groups were equally distributed with female-intact and
male-neutered cats, and FIV infection and treatment assignments were randomized. Physi-
cal examination recordings were conducted for each cat at all blood and saliva collection
timepoints, and included weight, temperature, heart rate, respiratory rate, mentation, oral
cavity (i.e., mucous membrane color, capillary refill time, and gingival exam), lymph node
palpation, and abdominal palpation (Appendix A).
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Figure 1. Distribution of cats and treatment assignments. Eighteen cats were randomly distributed
across three groups, equally containing female-intact and male-neutered cats. At day 0, twelve cats
were inoculated with FIVC36 and one group (n = 6) was treated daily with cART starting at week 5,
while the other group (n = 6) received placebo. The remaining were naïve uninfected control cats
(n = 6).

2.2. Blood and Saliva Collection

Blood was collected from all cats prior to FIV inoculation on day 0, weekly post-
inoculation from weeks 1 to 6, and then every other week from weeks 8 to 24. Up to 6 mL
of blood was collected from a cephalic vein into ethylenediaminetetraacetic acid (EDTA)
tubes and immediately placed onto a rocker. Complete blood count (CBC) analyses were
assessed at baseline (day 0) and weeks 4, 6, 10, 16, and 24. Remaining EDTA-treated blood
was aliquoted into 15 mL conical tubes and centrifuged at 900× g rpm for 10 min at 23 ◦C.
Plasma and buffy coat were aliquoted into 1.5 mL microcentrifuge tubes.

Saliva was collected on weeks 2, 6, 12, 18, and 33. To collect saliva, each cat’s mouth
and cheek pouches were swabbed using 4 sterile polyester swabs. Each swab was held in a
cat’s mouth for 20–30 s. Swab tips were broken off into sterile 3 mL syringe barrels with
the plungers removed and placed in sterile 15 mL conical tubes on ice. After collection, the
conical tubes were centrifuged at 1500× g rpm for 10 min to transfer the saliva from the
swabs into the conical tubes. Plasma, buffy coat, and saliva were all stored at −80 ◦C.
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2.3. Viral RNA and Proviral DNA Extractions

Viral RNA was extracted from plasma for all timepoints using a QIAmpViral RNA
Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions with
minor modifications. The user-adapted protocol steps included: (1) Pipette 554.4 µL
prepared Buffer AVL containing carrier RNA, along with 5.6 µL of carrier AVE, into a
1.5 mL microcentrifuge tube. (2) Continue following the manufacturer’s instructions, and
once Buffer AW2 is added close the cap and centrifuge at 16,000× g for 4 min. (3) Place the
QIAamp Mini column into a clean 2 mL collection tube and discard the tube containing
the filtrate. Centrifuge at 16,000× g for 1 min. Place the QIAamp Mini column into a clean
1.5 mL microcentrifuge tube and discard the tube containing the filtrate. (4) Add 40 µL
RNase-free water equilibrated to room temperature. Close the cap and incubate at room
temperature for 1 min. (5) Centrifuge at 6000× g for 1 min. (6) Repeat steps 4 and 5. Viral
RNA quality was assessed via spectrophotometry and converted to cDNA as previously
described [37].

Proviral DNA was extracted from buffy coat for all timepoints using a DNeasy Blood
and Tissue Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions
with minor modifications. The user-adapted protocol steps included: (1) Pipette 50 µL of
buffy coat, and add 150 µL of Phosphate Buffered Saline (PBS, Fisher scientific, Waltham,
MA, USA). (2) Continue following the manufacturer’s instructions, and once Buffer AW2
has been added centrifuge for 4 min at 16,000× g. Discard the flow-through and collection
tube. (3) Transfer the spin column to a new 1.5 mL microcentrifuge tube. (4) Incubate Buffer
EB at 56 ◦C for 4 min. Elute the DNA by adding 50 µL of the incubated Buffer EB to the
center of the spin column membrane. Incubate for 1 min at room temperature. Centrifuge
for 1 min at 6000× g. (5) Repeat steps 3 and 4. Extracted proviral DNA concentrations were
immediately measured using a Qubit dsDNA HS Assay Kit (Invitrogen, Eugene, OR, USA)
according to manufacturer recommendations.

Saliva was diluted with PBS to 330 µL total volume. Saliva proviral DNA and viral
RNA were extracted as previously validated and described [38]. Viral RNA quality was
assessed and converted to cDNA as described above. Saliva proviral DNA concentrations
were measured as described above. All blood and saliva RNA, cDNA, and DNA samples
were stored at −20 ◦C. One placebo-treated FIV+ cat was excluded from saliva collection
due to its behavior to minimize the cat’s stress and ensure personnel safety.

2.4. Viral and Proviral Quantification

All samples were analyzed in duplicate. FIV-C proviral DNA was quantified via
ddPCR using previously described protocols [39] and the following primers and probes:

Forward primer 5′-TGAGTCAGCCCTATCCCCATTA-3′;
Reverse primer 5′-ACTCACCCTCCTGATGGTCCTA-3′;
Probe 5′-/56-FAM/ACCATTGCC/ZEN/ATACTTCACTGCAGCCG/31ABkFQ/-3′.
PCR was performed in a CFX ConnectTM thermal cycler (Bio-Rad, Hercules, CA, USA)

and droplets were cycled for 10 min at 95 ◦C, followed by 49 amplification cycles (30 s at
95 ◦C and 1 min at 58.8 ◦C), ending with 10 min at 98 ◦C. FIV-C viral RNA was similarly
quantified via ddPCR with the following user-adapted protocol: (1) Create a master mix
as described above but at a 10:1:4 ratio, respectively. (2) Add 15.9 µL of the master mix
and 5.3 µL of the undiluted extracted viral cDNA into a 0.2 mL PCR tube, and continue as
previously described [39].

The proviral copy number was normalized to copies per 106 cells. Cell quantification
per well was measured targeting CCR5 via ddPCR as described above, using the following
primers and probes:

Forward primer 5′-ACGTCTACCTGCTCAACCTGG-3′;
Reverse primer 5′-ACCGTCTTACACATCCCATCCC-3′;
Probe 5′-/56-FAM/TCCGACCTG/ZEN/CTCTTCCTCTTCACCCTCC/31ABkFQ/-3′.
All primers and the probe were diluted to 9 µM and combined at a 0.44:1.11:0.44 ratio,

respectively. The CCR5 ddPCR protocol utilized Supermix for Probes no dUTP (Bio-Rad
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#1863024) with the CCR5 primers/probe mixture at a 10:2 ratio, respectively. ddPCR steps
were followed as described above for the proviral DNA analysis.

2.5. Flow Cytometry

Flow cytometry analyses were performed on blood collected at baseline and weeks
2, 4, 6, 10, 15, and 24. Mandibular lymph node fine needle aspirates using a 22 g needle
were collected for flow cytometry analyses at baseline and weeks 4, 11, 16, and 24. Lymph
node aspirates were placed into PBS with 10% fetal bovine serum (FBS) to obtain single
cell suspensions. Two panels (“Lineage/FOXP3” and “Activation”) were utilized to stain
50 µL of EDTA-treated blood or approximately 5 × 105 lymph node cells. Activation
samples were surface stained with CD4 FITC (Fisher, clone 3-4F4), CXCR3 AF405 (Novus
Biologicals, clone 49801), CCR4 R-PE (FabGennix, Frisco, TX, USA, K5 5 polyclonal con-
jugated in house with Biotium Mix n Stain kit), and CCR6 PerCP or PerCP Cy5.5 (R&D
Systems clone 53103, BD Biosciences clone 11A9, respectively) at the manufacturer’s rec-
ommended volume per test for 20 min in the dark at 4 ◦C. Red blood cells were lysed
and samples fixed using the TQ-Prep Workstation and IMMUNOPREP Reagent System
(Beckman Coulter Inc., Brea, CA, USA). Lineage/FOXP3 samples were surface stained
as above, but with CD4 FITC, CD8 PE (Southern Biotech, clone fCD8, Birmingham, AL,
USA), CD21 AF647 (Bio-Rad, Hercules, CA, USA, CA2.1D6), followed by a wash with
PBS + 1% FBS. Pellets were resuspended in eBioscience™ Foxp3/Transcription Factor
Fixation/Permeabilization buffer (Invitrogen, Waltham, MA, USA) diluted according to the
manufacturer’s recommendation and incubated in the dark at 4 ◦C for 1 h. Samples were
washed in 1× Permeabilization buffer and resuspended in anti FOXP3 PECY7 (Fisher, clone
FJK-16s) diluted in 1× Permeabilization buffer. An incubation at 4 ◦C for 30 min in the dark
was followed by two washes in 1× Permeabilization buffer and lysing/fixation as described
above. Unstained, single-stained and pertinent FMO controls were prepared for each experi-
ment. Data were acquired using BD FACSDiva™ Software interfaced with a BD FACSAria™
SORP instrument (Becton Dickinson, San Jose, CA, USA). Compensation values were deter-
mined using single stained controls. Gating proceeded from singlets to lymphocytes to CD4,
CD8, or CD21, and CD4 cells were examined for each activation marker. The percentage of
lymphocytes positive for each marker was evaluated over time and compared to baseline
values and naïve control data to compare alterations in the lymphocyte immunophenotype
in response to cART treatment and in the presence of FIV infection. Immunophenotype
cell counts were calculated as previously described [36,40,41] and compared with CBC and
ddPCR data to evaluate changes in the circulating immunophenotypes compared to FIV
viral and proviral loads over the course of the study and at individual time points.

2.6. Pharmacokinetics

A pharmacokinetic study was conducted to confirm the appropriate absorption of the
cART drugs. Six FIV-infected cats were administered a single cART dose, and 1 mL of blood
was collected at 0.5, 1, 2, 4, 8, and 24 h after cART administration. Liquid chromatography–
tandem mass spectrometry and Sciex Analyst® 1.7.1 software (Framingham, MA, USA)
with HotFix using Analyst Classic were used to determine the plasma cART concentrations.

2.7. Ethics Statement

This study was approved by the Colorado State University Institutional Animal Care
and Use Committee; 1142—Impacts of antiretroviral therapy on oral cavity homeostasis in
an FIV animal model. The Colorado State University animal care program is licensed by
the United States Department of Agriculture, maintains an Office of Laboratory Animal
Welfare Public Health Service assurance (A3572-01), and is accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care International. Any animal
that exhibited clinical signs of FIV infection or other morbidities was evaluated and treated
by a clinical veterinarian. No animal was euthanized due to illness.
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2.8. Statistical Analysis

Mixed effects Generalized Additive Models (GAM) were used to evaluate how physi-
cal, viral and immune response variables differed among the treatment groups (control,
cART, placebo) on average and over time, with cat ID as a random effect to accommodate
the repeated measures. GAMs were specifically selected in this study to account for the
frequent non-linear temporal dynamics in response variables, and to provide superior
capacity to evaluate treatment differences over time compared to common linear methods
(e.g., repeated measures ANOVA). Within each GAM, treatment was included as a factorial
fixed effect to examine average differences, and an interaction term between treatment
and time (week) as a spline factor was also included to evaluate whether each treatment
group changed over time. A post hoc test was used to determine whether the temporal
splines differed among the treatment groups. Prior to all analyses, the distribution of the
response variable was assessed and, where relevant, log10 transformed to normalize the
data. All analyses were undertaken in Rv4.0.3 using the packages ‘mgcv’ and ‘car’. Results
of statistical analyses are presented in Table S1.

3. Results
3.1. cART Improves the Hematologic Impact of FIV-C Infection

Hematologic changes were most notable among neutrophils with significant differ-
ences between cART-treated and placebo-treated FIV+ cats (p < 0.001; Figure 2A,B and
Table S1). Mean neutrophil values in cART-treated FIV+ cats normalized by week 16, but
placebo-treated FIV+ cats remained neutropenic at all timepoints post-infection. cART-
treated FIV+ cats had lower lymphocyte values compared to placebo-treated FIV+ cats, but
lymphopenia was not observed.
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Figure 2. cART reduces myelosuppression of FIV infection. Neutrophil values in FIV+ cats treated
with cART normalized by week 16, while placebo-treated FIV+ cats were persistently neutropenic
(p < 0.001). Lymphocyte values were normal in all groups but were lower in cART-treated FIV+ cats
compared to placebo-treated FIV+ cats. The vertical bar indicates when cART and placebo treatment
began. (A,C) Line plots of individual cats over time and (B,D) their associated spline fits from GAM
analyses are presented.
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3.2. Impact of cART on FIV Viral and Proviral Loads

Viral RNA and proviral DNA were detected in the blood and saliva of all FIV-infected
cats over the course of this study, whereas none were detected in uninfected control
cats. Infection peaked at week 2, with mean blood viral loads of 3.38 × 107 copies/mL
among cART-treated FIV+ and 1.08 × 107 copies/mL among placebo-treated FIV+ cats
(Figure 3C,D). Mean blood proviral loads were 3.26 × 105 copies/106 cells among cART-
treated FIV+ cats and 4.94 × 104 copies/106 cells among placebo-treated FIV+ cats
(Figure 3A,B). Blood viral (Figure 3C,D) and proviral loads (Figure 3A,B) steadily declined
afterwards and were not significantly different throughout the study (Table S1).
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Figure 3. cART reduces salivary viral RNA loads in FIV+ cats. (A–D) Blood FIV viral RNA and
proviral DNA loads did not differ between cART-treated FIV+ cats and placebo-treated FIV+ cats.
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associated spline fits from GAM analyses are presented.
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Mean viral RNA loads in saliva were lower in cART-treated FIV+ cats compared to
placebo-treated FIV+ cats, but they were similar from week 6 to week 33 (Figure 3G,H,
Table S1). Viral RNA peaked in cART-treated FIV+ cats at week 6 with 5.29× 103 copies/mL,
and in placebo-treated FIV+ cats at week 2 with 1.035 copies/mL (Figure 3G,H). Mean
salivary proviral DNA peaked in cART-treated FIV+ cats and in placebo-treated FIV+ cats
at week 6, with 1.77 × 105 copies/mL and 6.96 × 104 copies/mL, respectively (Figure 3E,F).
Proviral DNA remained relatively stable for the remainder of the timepoints and was not
significantly different (Figure 3E,F, Table S1).

3.3. cART Impacts on Lineage and Activation Markers

CD4+ T cells declined in both the placebo-treated and cART-treated FIV+ cats relative
to the uninfected control cats (Figure 4A,B). Notably, CD4+ T cells declined markedly
for 10 weeks following the initiation of cART treatment, followed by a rebound to levels
comparable to placebo-treated FIV+ cats (Figure 4A,B). There were no differences in the
proportion of CD8+ cells, CD21+ cells, B:T cell ratio, or the CD4+:CD8+ T cell ratio in blood
between the two groups (Figure S1, Table S1). There was also a significant difference
over time in the proportion of CD4+CCR4+ cells in blood between all treatment groups
(p < 0.001; Figure 4C,D, Table S1). This cell type was highest in cART-treated FIV+ cats,
while placebo-treated cats had higher proportions compared to control cats. No differences
in the proportion of CD4+CXCR3+ or CD4+CCR6+ cells were detected over time (Figure S2,
Table S1).
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Figure 4. FIV infection induces a primary Th2 immunophenotype. cART significantly lowered CD4+

T cells in the blood of FIV+ cats compared to those treated with a placebo. CD4+CCR4+ cells in cART-
treated FIV+ cats were significantly higher than in placebo-treated FIV+ cats, and both were slightly
higher than in uninfected control cats. cART may inhibit inflammation and immune activation of FIV
infection with an upregulated Th2 immunophenotype. The vertical gray bar indicates when cART
and placebo treatment began. (A,C) Line plots of individual cats over time and (B,D) their associated
spline fits from GAM analyses are presented.
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In contrast to blood, the proportion of CD21+ cells obtained from the mandibular
lymph node was lower in cART-treated FIV+ cats compared to placebo-treated FIV+ cats
(p < 0.001), but was similar after cART treatment began (Figure S3, Table S1). However,
there were no differences in CD4+, CD8+, B:T cell ratio, and the CD4+:CD8+ T cell ratio
(Figure S3, Table S1) between groups. The number of CD4+CCR6+ cells increased in
cART-treated FIV+ cats since starting treatment compared to placebo-treated FIV+ cats
(p < 0.001, Table S1), but they were equalized by week 24 (Figure 5A,B). No differences
were observed among the proportion of CD4+CXCR3+ and CD4+CCR4+ cells for any of the
groups (Figure S4, Table S1).
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Figure 5. cART improved oral immunity in FIV infected cats. In the mandibular lymph nodes of
cART-treated FIV+ cats, CD4+CCR6+ cells were significantly higher than in placebo-treated FIV+ cats.
The increase of CCR6+ lymphocytes in cART-treated FIV+ cats may illustrate a partial restoration in
Th17 cells. Collectively, the results may demonstrate that cART improves mucosal immunity. The
vertical bar indicates when cART and placebo treatment began. (A) A line plot of individual cats over
time and (B) its associated spline fit from GAM analyses are presented.

3.4. Pharmacokinetics

Plasma cART concentrations were determined across 24 h for female-intact and
male-neutered cats. Tenofovir plasma concentrations (Cmax 1230–2120 ng/mL) peaked at
0.5 h; emtricitabine plasma concentrations (Cmax 22,500–32,400 ng/mL) peaked at 1 h; and
dolutegravir plasma concentrations (Cmax 1290–2260 ng/mL) peaked at 2 h (Figure 6).
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4. Discussion

Despite excellent therapies being available for human and simian immunodeficiency
viruses, a reliable antiviral treatment for FIV remains to be established. A cART protocol
was previously shown to suppress viremia in nonhuman primates infected with simian im-
munodeficiency viruses [24,29,31], a lentivirus similar to FIV, and we investigated the cART
protocol, doses, and efficacy in reducing viremia and treating FIV in experimentally infected
cats. To elucidate the impact of cART we evaluated hematologic changes, quantified viral
RNA and proviral DNA in blood and saliva, and characterized the immunophenotype
of infection and cART. Our findings demonstrate that: (1) the presented cART protocol
improves neutrophil counts, suggesting that cART has some inhibition of FIV-induced
myelosuppression; (2) FIV causes a greater Th2 immunophenotype compared to Th1, as
evidenced by the increased proportion of CD4+CCR4+ cells; and (3) dolutegravir was the
most stable and long-lasting, and it may be the most promising of the three cART drugs to
treat FIV infection.

Primary clinical signs and hematologic impacts of FIV infection include generalized
lymphadenopathy, stomatitis or periodontitis [1], prolonged clotting times [2,3], and myelo-
suppression causing neutropenia, lymphopenia, and anemia [4–6]. Our cats demonstrated
successful infection from FIV-C with infectivity similar to a previous experimental FIV
model, with analogous patterns in neutrophil, FIV provirus, and CD4+ changes [36]. Con-
sidering experimental infection, the clinical impacts of FIV infection were minor, primarily
including mild peripheral lymphadenopathy while lacking the pyrexia and lethargy that
are commonly associated with acute FIV infection [6,7,42]. Neutropenia was the most
notable change, and placebo-treated FIV+ cats remained neutropenic, as previously ob-
served [36], while cART-treated FIV+ cats eventually normalized, suggesting that cART
has some inhibitory effect on FIV infection’s myelosuppression. Although there were sig-
nificant differences of CD4+ lymphocytes in the blood between cART and placebo-treated
FIV+ cats, no lymphopenia was appreciated. Lymphopenia is commonly observed in
FIV-infected cats due to an FIV-induced cytopathic impact from a direct replication in CD4+

lymphocytes [6,12], but we may not have observed lymphopenia since it is more frequently
seen in younger animals, during chronic infection, and in clinically ill cats [6].

The presented study is the first to investigate the proposed cART protocol as a treat-
ment for FIV-infected cats, and its impacts on viremia were evaluated using droplet dig-
ital PCR (ddPCR). Diagnostic assays to study lentiviruses have greatly improved with
advanced quantitative techniques such as ddPCR [43–47] due to its high precision and
reproducibility [48,49]. ddPCR has rarely been used to quantify FIV loads [50], present-
ing a valuable opportunity to apply its high sensitivity to evaluate therapeutic responses
during infection. We observed that, prior to cART, infected cats had high levels of FIV
viral RNA and proviral DNA, as previously reported [36,38]. The present study’s cART
protocol was developed because other studies demonstrated viral suppression in rhesus
macaques infected with simian immunodeficiency virus using a similar [23–28] or the
same cART protocol [24,29,31]. Additionally, these reverse transcription inhibitors, namely
tenofovir disoproxil fumarate [13,14] and emtricitabine [15–18], have also been shown to
exhibit anti-FIV effects in vitro. However, cART did not suppress viremia significantly
in vivo, despite cART-treated FIV+ cats exhibiting improved neutrophil quantities com-
pared to placebo-treated FIV+ cats. One reason for inefficacy may be that the concentrations
of circulating drugs were not adequate to exhibit direct antiviral activity. Dolutegravir
plasma concentrations were the most stable of all cART drugs in our cats, suggesting that
our dolutegravir dosing protocol may be an appropriate FIV therapy, although further
investigation is warranted. However, while the pharmacokinetic profile of dolutegravir
appears sufficient in FIV-infected cats, tenofovir and emtricitabine may require greater
concentrations and durations for cART efficacy. Though all three drugs reached appropriate
therapeutic concentrations for 24 h based upon primate and human studies, we cannot be
certain that these compounds reached appropriate concentrations intracellularly in cats or
whether they will ultimately interfere with replication.
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Although cART-treated FIV+ cats had a significantly lower viral load in saliva com-
pared to placebo-treated FIV+ cats, this was likely due to the differences observed prior to
cART and the viral loads remained similar for most of the study duration.

To further characterize the immunophenotype of experimental FIV infection and cART,
lineage and activation markers in blood and lymph nodes were assessed. Evaluating the
infection and its response to cART in mandibular lymph nodes was especially important
since FIV has significant tropism for oral lymphoid tissue and may be an initial site for
circulating virus to infect resting T lymphocytes [38]. Initial infection with the FIVC36 strain
typically causes a transient increase in CD4+ T lymphocytes [40], followed by a shift to CD8+

cells and a gradual decline in CD4+ cells causing a characteristic inversion of the CD4+:CD8+

ratio [6,51–55]. Changes in CD4+ followed a similar pattern as previously seen [36], but
we did not observe the rapid initial increase in CD4+ T cells after infection that is typically
accompanied by sharp increases in viral and proviral loads [7,56]. Additionally, contrary to
our predictions, cART did not improve CD4+ T cells in the blood of treated FIV+ cats, and
this immunophenotype was in fact significantly lower in cART-treated FIV+ cats than in
placebo-treated FIV+ cats between weeks 5 and 16. Similarly, the proportion of CD21+ cells,
a broad marker for B cells, was significantly lower in cART-treated FIV+ cats compared
to placebo-treated FIV+ cats. However, this was likely due to proportional differences
prior to the initiation of cART, as the proportion of CD21+ cells did not differ between
cART-treated and placebo-treated FIV+ cats once treatment began. While the cause for
these discrepancies in lymphocyte lineage is unknown, these findings highlight a potential
impact of cART on overall immune function. Deficiencies in resting CD4+ T cells may cause
a predisposition to opportunistic infection, especially in the oral cavity and gastrointestinal
tract [38,57–59], while at the same time they may reduce the viral burden by decreasing
circulating target cells required for active viral replication. Future studies investigating
the direct consequences of cART on these critical lymphocyte immunophenotypes may,
therefore, have broad implications in both human and animal lentiviral infections.

We further evaluated the immunologic response during FIV infection by characterizing
Th1, Th2, and Th17 lymphocyte subtypes. CXCR3 is a marker of the Th1 subtype of lym-
phocytes [60–64], which are generally proinflammatory and can perpetuate an autoimmune
response [65]. Neither FIV infection nor cART appeared to impact Th1-type cytokines,
since there were no differences in the proportion of CD4+CXCR3+ lymphocytes in blood
and lymph nodes between any treatment group across the study. There were, however,
notable differences across all treatment groups in the proportion of circulating CD4+CCR4+

lymphocytes, a marker of Th2 subtypes [64,66] which are associated with atopy and/or an
anti-inflammatory response [65,67]. Naturally, the proportion of CD4+CCR4+ lymphocytes
in placebo-treated cats was slightly higher than in uninfected control cats, since FIV-infected
cats will mount some Th2 anti-inflammatory response to infection [37,68]. However, in
cART-treated FIV+ cats, the proportion of CD4+CCR4+ cells was significantly higher than
in placebo-treated FIV+ cats. The significance of this cART-induced shift in the Th2 im-
munophenotype is unclear, but it suggests that cART may suppress inflammation and
immune activation due to an upregulated Th2 immunophenotype [65], or may impact viral
clearance due to its role in inhibiting antiviral Th1 responses [69]. Although no data were
found in the timeframe of this study to support the latter, our results support Dean and
Pedersen’s conclusions that FIV infection causes a greater Th2-type response compared
to Th1 [70], a distinction from other reports that do not demonstrate a clear Th1 to Th2
shift [68,71–74].

There was also an increase in CD4+CCR6+ lymphocytes in the mandibular lymph
nodes of cART-treated FIV+ cats. CCR6 are a marker of the Th17 lymphocyte sub-
type [61,75,76], which are also proinflammatory cells [77] that can support FIV replica-
tion [78,79]. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense
against pathogens, and a decrease in Th17 cells due to HIV and FIV infection has been at-
tributed to the development of lentiviral-induced oral disease [12,38,80]. The proportion of
CD4+CCR6+ cells in lymph node aspirates of cART-treated FIV+ cats significantly increased
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to similar proportions seen in uninfected control cats, indicating that cART may rescue this
vital lymphocyte subtype and restore mucosal immunity. There was a transient decrease
in circulating (blood) CD4+CCR6+ cells in placebo-treated FIV+ cats at weeks 11 and 16,
suggesting a decreased inflammatory response as they transitioned from acute to chronic
infection. Collectively, these results suggest that FIV primarily induces a Th2 immunophe-
notype compared to Th1 and Th17, and the presented cART protocol may promote an even
greater Th2 response and partially restore Th17 cells in the oral compartment.

All three drugs in cART reached high plasma concentrations, but it is possible that the
drugs did not reach sufficient intracellular concentrations and or the duration of activity to
interfere with proviral load and viral replication. Tenofovir plasma concentrations reached
a Cmax considerably higher than simian immunodeficiency virus-infected macaques [81],
followed by a rapid decline. In humans receiving chronic therapy, the median tenofovir
trough plasma concentration was 50 ng/mL (35 to 77 ng/mL) 22 to 26 h after drug expo-
sure [82]. Similarly, humans receiving tenofovir 300 mg every 48 h or 150 mg every 24 h had
median minimum plasma concentrations of 40 ng/mL (8 to 100 ng/mL) or 70 ng/mL (30
to 140 ng/mL), respectively [83]. In this study, all cART-treated cats (6/6) reached plasma
concentrations below 40 ng/mL by 8 h. Like tenofovir, emtricitabine plasma concentrations
were considerably higher in cats compared to macaques [84], and exceeded human blood
levels for at least 8 h (Cmax 1820 ng/mL; Cmin 47 ng/mL) [85]. Dolutegravir’s Cmax mea-
sured in this study was similar to humans’ and macaques’ [86,87]. Its trough levels of 409
to 1260 ng/mL were higher than the plasma levels reported in macaques [88], and within
the range of levels attained in humans [86,89,90]. Furthermore, dolutegravir concentrations
were maintained above the purported target minimum concentration of 64 ng/mL [22,91]
at all timepoints.

The results of this study demonstrate new evidence of cART reducing myelosup-
pression of FIV. The rebound of circulating neutrophil levels after cART administration
illustrates that this protocol inhibits chronic neutropenia and associated immune dysfunc-
tion. The restoration of Th17 cells in the oral compartment suggests that cART represents
a plausible therapy to reduce or eliminate FIV-induced oral disease and concomitant
transmission. Among the three cART drugs investigated, dolutegravir may be the most
promising treatment since it was the most stable and long-lasting. Collectively, our results
demonstrate that refinement of the cART protocol may have positive benefits for cats with
chronic FIV immune dyscrasias.
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Appendix A. Clinical Impacts of FIV-C Infection

Physical examination findings, including weight, temperature, heart rate, and res-
piratory rate, did not differ between treatment and infection groups. Mild-to-moderate
swollen lymph nodes were most common from weeks 1 to 6. Popliteal lymph nodes were
intermittently swollen among cART and placebo-treated FIV+ cats from weeks 14 to 22,
and one cART-treated FIV+ cats had a unilateral mildly swollen prescapular lymph node at
week 22. No other clinical signs associated with FIV-infection were observed. cART did not
cause lesions or illness.
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