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Abstract: Viruses with rapid replication and easy mutation can become resistant to antiviral drug
treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel
antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for
treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as
defensins, have also been identified as possessing antiviral activities, including direct antiviral effects
and the ability to induce indirect immune responses to viruses. To promote the development of
antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The
database provides general information, antiviral activity, structure information, physicochemical
information, and literature information for peptides and proteins. Because most of the proteins and
peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral
peptide’s structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August
2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can
be accessed from the web interface. The DRAVP database aims to be a useful resource for developing
antiviral drugs.
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1. Introduction

Viruses with rapid replication and easy mutation can become resistant to antiviral
drug treatment. In the past two decades, there have been various epidemics, including
severe acute respiratory syndrome coronavirus (SARS), Middle East respiratory syndrome
coronavirus (MERS), Ebola virus, Zika virus, etc. [1–4]. Additionally, there was an outbreak
of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which spread globally [5]. The pandemic became a great
threat to human health. Although scientific advances have successfully discovered vaccines
and antiviral drugs for several kinds of viral pathogens, the emergence and re-emergence
of mutant epidemics require persistent efforts to discover novel antiviral agents.

Antiviral drugs can be divided into virus-targeting antivirals and host-targeting an-
tivirals [6]. Virus-targeting antivirals mainly play an inhibitory role in a virus’s life cycle,
such as inhibiting virus replication and transcription, blocking virus adhesion to host
cells, inhibiting the activity of viral enzymes, etc. [7–9]. Host-targeting antivirals focus on
regulating the function of host factors or other cellular processes in host cells.

The cytokines involved in the innate immune response to virus invasion act as in-
terferons (IFNs), and interleukins have been explored as modulators of viral infections
for decades [10,11]. Among them, IFNs were first discovered by Isaacs in 1957 and have
been in clinical use since the 1980s [12,13]. The advances in recombinant DNA technology
enabled cytokine production and the detection of their protective effect against microbial
pathogens in vitro and in vivo, including IL-1, IL-6, TNF, CSF, etc. [14]. Proteins bound to
viral particles have also been considered to inhibit virus invasion. For example, mannose-
binding lectin (MBL) has previously been shown to bind to the SARS-CoV spike protein,
which is complementarily activated by the lectin pathway [15].
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Peptides that possess the potential to inhibit viruses are considered antiviral peptides
(AVPs) [8]. Compared with traditional small molecule drugs, AVPs are highly specific and
effective, with fewer side effects and host toxicity and show great potential as antiviral
drugs [16–19]. Numerous studies have indicated that AVPs exhibit excellent antiviral
activities. For example, EKL1C was shown to have broad-spectrum anticoronavirus activity
and potent protection of human angiotensin-converting enzyme 2 (hACE2) in transgenic
mice against authentic coronavirus infection [20,21]. Currently, antiviral therapies based on
peptides and peptide-related antivirals have been confirmed for human immunodeficiency
virus (HIV) and hepatitis C virus (HCV). Enfuvirtide (T-20) was the first FDA-approved
fusion inhibitor to treat HIV infection, and in a recent study, Ahmadi et al. recommended that
enfuvirtide has the potential to enter the clinical trial phase for treating COVID-19 [22,23].
Additionally, boceprevir and telaprevir are synthetic peptides used for treating chronic
hepatitis C [24,25]. Meanwhile, several peptidomimetics, peptide-like small molecules, and
amino-acid-like derivatives are currently under investigation in clinical trials for treating
various viral infections [26]. Brilacidin is a mimetic of defensin being tested under phase II
clinical trials for treating COVID-19 (NCT04784897) [27].

Antiviral peptides can be obtained from computational, natural, and biological sources.
Among them, the computational approach is an efficient and convenient method of identi-
fying antiviral peptides. Through molecular docking and simulating peptide structures,
peptides and peptidemimics with high affinities interacting with the target can be de-
veloped and designed, which is more conducive to developing clinical antiviral drugs.
In addition, deep learning and machine learning methods have been widely used in
identifying antiviral peptides, with various prediction models being published, such as
DeepAVP [28] and AVPIden [29]. To facilitate drug development and to identify antiviral
peptides, establishing a comprehensive database of antiviral peptides is necessary. In
recent years, antimicrobial peptide (AMP) databases such as DBAASP [30], DRAMP [31],
and APD [32] have been built and have collected a large number of AMPs with diverse
biological activities, such as antiviral, anticancer, antifungal, and so on. These databases
greatly contribute to designing and identifying AMPs. However, most of the common
AMP databases did not fully annotate the antiviral peptides. Some special databases, such
as HIPdb [33] and ACovPepDB [34], are focused on anti-HIV peptides and anticoronavirus
peptides and contain relatively few entries. The special antiviral peptide databases, such
as AVPdb [35], have not been updated since 2014. Additionally, antiviral proteins and
clinical information have not been included in AVPdb. To promote bioinformatics and
assist experimental researchers working in the field of AVPs and antiviral-protein-based
therapeutics, a complete data repository of antiviral peptides and proteins was established.

In this study, we developed a comprehensive data repository of antiviral peptides and
proteins (DRAVP). The database contains information related to the sequence, antiviral
activity, structure, and physicochemical properties of antiviral peptides and proteins.
Meanwhile, we also provided information about approved and under-investigation drugs
for antiviral therapy based on peptides and proteins. The database integrates search and
sequence alignment function to facilitate the data analysis. We believe that DRAVP will be
an invaluable resource for identifying and designing antiviral peptides. DRAVP is freely
available online at http://dravp.cpu-bioinfor.org/ (accessed on 30 August 2022).

2. Materials and Methods
2.1. Data Collection and Extraction

To develop a comprehensive database of antiviral peptides and proteins, an extensive
search was carried out on published articles and public databases. To collect the antiviral
peptides, “((virus[Title/Abstract] OR viral[Title/Abstract]) AND (peptide[Title/Abstract]
OR peptides[Title/Abstract])) AND (inhibit*[Title/Abstract] OR block*[Title/Abstract])”
were used to search PubMed. This search provided 9559 peer-reviewed articles. From
these articles, only antiviral peptides with known amino acid sequences and experimental
information were manually extracted. For the antiviral proteins, a text search was carried
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out in UniProt [36] and PubMed using keywords “antiviral protein*”. After that, the
proteins with antiviral effects were screened and registered in DRAVP. Eventually, a total of
1986 antiviral peptides and 139 antiviral proteins, along with detailed information such as
the sequence, source, name, modifications, IC50, EC50, etc., were systematically compiled.
DRAVP collects all antiviral activity data as much as possible from articles. Additionally,
the physicochemical properties of antiviral peptides were calculated using SciDBMaker [37].
For the structure information, the experimental three-dimensional structures were mainly
retrieved from PDB through a sequence blast against the PDB [38] database. If an exact
match was obtained, the corresponding PDB ID was assigned to the database. In addition,
we also served the modifications and stereochemistry for each sequence on the detailed
information page.

To support the clinical research of antiviral therapies, information about antivirals
based on peptides and proteins that have been approved or are in the clinical stage was
extracted from the literature and drug databases. To facilitate user access to more detailed
information about clinical and drug entries, we also provided abundant external links for
each entry. Additionally, the clinical trials of each entry were compiled in the database.

2.2. Structure Prediction and Evaluation

Antiviral peptides’ structures play an important role in drug development. Due to the
experiment’s difficulty, we could only collect a small number of experimentally determined
structures from the PDB database. For antiviral peptides and proteins lacking experimental
structures in DRAVP, AlphaFold [39] was used to predict the structures. The structure
parameters for prediction were set as model: monomer; and multiple sequence alignment
information (MSA) database: full_dbs (all gene databases). For each entry, five structures
were generated, and the best-ranking structure was selected according to the predicted
local distance difference test (pLDDT) score, then displayed on the web interface using Mol*
Viewer [40]. To evaluate the structure’s accuracy predicted using AlphaFold, we randomly
selected 10 antiviral peptides to benchmark. The structure prediction’s accuracy was judged
by comparing the predicted structures with the experimentally determined models and
calculating the root-mean-square deviation (RMSD). Additionally, Whatcheck [41] and
Procheck [42] were used to evaluate the predicted structures’ quality levels. Whatcheck
checks the stereochemical parameters of residues in the model and compares the differences
between the submitted peptide structure and the normal structure. Procheck evaluates the
stereochemical quality of peptide structures by analyzing whether the Φ/Ψ angle of the
amino acid residues is in a reasonable region. Both methods provide “error”, “warning”, or
“pass” levels for each evaluation indicator.

2.3. Database Construction

The DRAVP web architecture was based on the platform Linux-Apache-MySQL-PHP.
After collecting and screening, all the data were stored in the MySQL database as the
back end. The visualization software Navicat for MySQL was used to manage the data.
Additionally, HTML, PHP, and JavaScript were applied to develop the front-end web
interfaces. The database is planned to be updated every three months. To expand the data
in the database, a submission page was created for users to submit antiviral peptides and
proteins that were not included. We will review the submitted information and add it to
our database. The database construction workflow can be overviewed as shown in Figure 1.

3. Results and Discussion
3.1. Database

DRAVP is freely available at http://dravp.cpu-bioinfor.org/ (accessed on 30 August
2022). Currently, DRAVP contains 1986 antiviral peptides, 139 antiviral proteins, and
64 clinical entries. In the database, 1327 entries of antiviral peptides have predicted
structures, while 40 entries have experimentally determined structures from the PDB
database. The homepage of DRAVP provides a brief introduction to the database. The
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navigation bar and quick search tool ensure the use of the website is convenient. The main
web page of the DRAVP database contains the following interfaces: Search, Browse, Blast,
Statistics, and Download. In addition, users can learn more information from the help page.
Figure 2 shows screenshots of the web interfaces, and a brief function description of each
page is provided below.
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Figure 1. Overview of DRAVP database construction.

(i) Search page: This page can help users to more conveniently fetch the desired data.
To meet different needs, a simple search and advanced search for data retrieval were
set up. The simple search allows users to retrieve data from a specific field from
the dropdown menu. The advanced search is carried out through a combination of
multiple fields, such as sequence, target virus, or UniProt ID, to achieve more accurate
data retrieval.

(ii) Browse page: The database provides three cross-linked browse tables based on
different criteria: (1) classification based on data type, including antiviral peptides,
antiviral proteins, patent data, and clinical data; (2) classification based on targeted
virus type, with a total of 47 different virus types; and (3) classification based
on virus family, such as coronaviridae, flaviviridae, and retroviridae. Some basic
information, such as DRAVP ID, peptide name, source, and target organism, is
provided in the overview table.

(iii) Blast: To facilitate the sequence analysis in database, the Blast [43] search tool was
integrated into DRAVP. A user can submit sequences in the FASTA format and choose
the score matrix to obtain the sequence alignment results, which contain the score,
E value, identities, positives, and gaps. The sequence alignment is shown for the
peptides or proteins found to be identical or similar in the database.

(iv) Download page: All the data and website source code are freely available for users.
Three types of data files are provided on this page to satisfy different requirements.
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Meanwhile, the predicted structure and installed package of the Blast software are
also collected on the page for download.
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Figure 2. Screenshots of DRAVP web interface. (a) The advanced search page, which enables the user
to access the desired data through multifield combination retrieval. (b) The cross-linked browse page,
which provides three classified methods to facilitate browsing: by data type, by target virus, and by
virus family. (c) The BLAST analysis tool, which enables users to access the most relevant sequence
by its local alignments. (d) The download page, which provides three types of files of the data and
the predicted structures.
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3.2. Database Content

Table 1 shows detailed information related to antiviral peptides and proteins that are
displayed on the interfaces. Each entry of the antiviral peptides includes five parts: general
information, activity information, structure information, physicochemical information,
and literature information. Low cytotoxicity and hemolytics are essential conditions for
developing antiviral peptides as drugs. For the convenience of researchers to design
antiviral peptides with high activity and low toxicity, we have collected experimental
information on cytotoxicity and hemolytic in the database. All the data were manually
extracted from articles. Additionally, the data’s exactitude is one of the most important
criteria for database evaluation. To prevent any possible errors, we provided literature
sources for each included activity data on the web interface. All the data are available on
the DRAVP website. In the physicochemical information section, we show each peptide’s
amino acid distribution, which is helpful for analyzing the differences and rational design
of the antiviral peptides. For antiviral proteins, we also provided comment information,
which includes some information such as the half-life and antiviral mechanism.

Table 1. List of fields in antiviral peptides dataset.

Column Fields Description

General information

DRAVP ID The unique ID linking to the corresponding DRAVP entry
Peptide name Name of each peptide/protein

Sequence Amino acid composition of peptide/protein
Sequence length The length of peptide/protein sequence

UniProt ID The accessing link directing to external UniProt entry
Source The organism where the peptide/protein is extracted or isolated

Activity information

Target organism Type of targeted virus
Assay Methods for determining the antiviral activity

Activity Antiviral activity information against viruses; contains EC50,
IC50, etc.

Hemolytic activity Hemolytic activity against red blood cells
Cytotoxicity Cytotoxicity against cells except for RBCs

Binding target Peptide active action site
Mechanism Mechanism of peptides exhibit antiviral activity

Structure information

PDB ID Provide accessing link directing to the corresponding PDB entry
Predicted structure download Provide the predicted structure file

Linear/cyclic Peptide linear or cyclic structure
N/C-terminal modification The modifications of N/C-terminal according to the references

Other modification All bonds and special amino acids
Stereochemistry The L/D amino acids consist of peptides

Physicochemical information
Formula, mass, pI, net charge, absent amino acids, common amino acids, basic residues, acidic

residues, hydrophobic residues, Boman index, hydrophobicity, aliphatic index, half-life, extinction
coefficient cystines, absorbance 280 nm, and polar residues

Literature information Title, PubMed ID, journal information, and doi of reference articles

The clinical data include antiviral drugs based on peptides and proteins that are
approved or in the clinical trial stage. Table 2 shows the information displayed on the
web interface of the clinical entries. We also provided external links to access various
databases, such as PubChem [44], DrugBank [45], and ChEMBL [46], so users can gain
more comprehensive information about entries from other sources. The clinical data may
serve as data mining examples to help users focus on the most promising drug candidates.
At present, the drugs that are approved and under investigation in clinical trials are mainly
used for treating human immunodeficiency virus (HIV) infection, hepatitis C virus (HCV)
infection, and COVID-19.
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Table 2. List of fields in clinical dataset.

Field Description

DRAVP ID The unique ID linking to the corresponding DRAVP entry
Name Name of the entry

Sequence Amino acid composition of peptide
Molecular formula Molecular formula of the item
Condition/disease Diseases used for treatment

Group Clinical trials status
Type Peptide, protein, or other types of drugs

PubChem ID The accessing link directing to external PubChem entry
DrugBank accession number The accessing number in DrugBank database

Description Some information related to the entry, such as antiviral
mechanism, structure description, etc.

Active sequence/structure The chemical structure or modified sequence
CHEMBL ID The accessing link directing to CHEMBL database

UNII The accessing link directing to Global Substance Registration
System

CAS The accessing link directing to CAS common chemistry
Reference The PubMed ID of reference articles

Clinical trials information Including NCT number, study title, condition/disease, status,
sponsor, and phase of clinical trials

3.3. Structure Verification

AlphaFold has been verified to be highly accurate in protein structure prediction,
but the reliability and accuracy in peptide structure prediction remain to be evaluated.
Ten entries with experimentally determined structures were randomly selected from the
database to verify AlphaFold’s peptide structure prediction performance. Table 3 shows the
results of the Cα RMSDs between the predicted and experimentally determined structures.
From the results, we found that the antiviral peptides were predicted with good accuracy
and few outliers. The minimum RMSD value was 0.460 Å, and most Cα RMSDs were less
than 2 Å. Additionally, the peptides with long sequences had higher accuracies than the
short peptides on predicted structures.

Table 3. Comparison between predicted structures and experimental structures.

DRAVP ID PDB ID Sequence Length RMSD(Å)

DRAVPe00279 2ERI 31 0.486
DRAVPe01560 2LZI 18 1.327
DRAVPe00303 1ZMQ 32 0.409
DRAVPe01598 1ULL 17 1.772
DRAVPe00373 2JOS 22 2.158
DRAVPe00837 2MLT 26 1.507
DRAVPe01303 1ZMP 32 0.519
DRAVPe00295 1ZA8 31 0.680
DRAVPe01958 1FD4 41 0.460
DRAVPe00376 6GS5 13 2.305

According to Whatcheck and Procheck’s results, the predicted structures’ qualities
were at high levels (Table 4). The average error rate evaluated by Whatcheck was at a
lower level (11.42%). Additionally, in the Ramachandran plot created with Procheck, most
residues were distributed in the core regions. Only DRAVPe01958 had one residue (Val18)
in the disallowed region, but the Cα RMSD value of the entry between the predicted
structure and known structure was 0.460 Å, which explains why the predicted structure is
more accurate. McDonald et al. [47] found that AlphaFold predicted α-helical, β-hairpin,
and disulfide-rich peptides with high accuracy. Additionally, our research showed that
antiviral peptides were mostly α-helical peptides. Therefore, AlphaFold is reliable for
peptide structure prediction.
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Table 4. The evaluation results of predicted structures using Whatcheck and Procheck.

DRAVP ID
Whatcheck Procheck

Total Metrics Error Error Rate Core Regions Additional and Generous
Allowed Regions

Disallowed
Regions

DRAVPe00279 45 5 11.11% 80.0% 20.0% 0.0%
DRAVPe01560 37 6 16.22% 92.9% 7.1% 0.0%
DRAVPe00303 45 5 11.11% 100.0% 0.0% 0.0%
DRAVPe01598 39 5 12.82% 100.0% 0.0% 0.0%
DRAVPe00373 43 4 9.30% 100.0% 0.0% 0.0%
DRAVPe00837 42 4 9.52% 100.0% 0.0% 0.0%
DRAVPe01303 42 5 11.90% 96.3% 3.7% 0.0%
DRAVPe00295 43 5 11.63% 88.9% 11.1% 0.0%
DRAVPe01958 46 5 10.87% 96.7% 0.0% 3.3%
DRAVPe00376 41 4 9.76% 100.0% 0.0% 0.0%

Average 11.42% 95.48% 4.19% 0.33%

Additionally, to know each predicted structure’s exactitude, the Mol* Viewer integrates
the detailed information page to display the predicted structure, which allows users to
check each amino acid’s pLDDT score. Figure 3 shows some examples containing high-
and low-confidence regions. Currently, DRAVP contains 1327 predicted structures and
40 experimentally determined structures from the PDB database.
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3.4. Statistics

To further understand antiviral peptides’ features as a basis for peptide design, statis-
tics were calculated in DRAVP (Figure 4). Most peptides consisted of less than 40 amino
acid residues. As shown in Figure 4B, the proportion of hydrophobic residues in most
peptides was 30–50%, indicating that antiviral peptides in DRAVP are less hydrophobic.
By analyzing the results, we found that short peptides with low hydrophobicity were
relatively easy to form into antiviral peptides, which may be useful for designing antiviral
peptides. Among the antiviral peptides, the number with anti-HIV activity was largest, and
there were 124 entries with anti-SARS-CoV-2 activity. According to the secondary structure
statistics, the helix is the main component of secondary structures, followed by the coil,
and with the strand accounting for the least, which shows that antiviral peptides prefer an
α-helix in stable secondary structures. Now the database contains 64 entries of clinical data
consisting of 33 proteins, 24 peptides, and other antivirals with peptide structures such as
peptidomimetic. As can be seen in Figure 4E, 30 entries are approved or in clinical trials for
treating COVID-19, such as Aviptadil, which acts as an interleukin-6 inhibitor for treating
COVID-19 (NCT04843761) and is in a phase 3 clinical trial, and Sotrovimab, which is a
monoclonal antibody approved for COVID-19 treatment. For antiviral proteins, more than
half of the proteins were isolated from humans (55%), with others being extracted from
mice, pigs, rats, bovines, and so on. Among these antiviral proteins, IFN and IFN-induced
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proteins account for the majority, such as IFN-inducible transmembrane (IFITM) proteins
and Mx GTPases.
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Figure 4. Data statistics in DRAVP database. (A) The length distribution of antiviral peptides
in DRAVP. (B) Hydrophobic content distribution of antiviral peptides. The hydrophobic content
represents a ratio between total hydrophobic residues and total amino acids. (C) Number of antiviral
peptides target various viruses. (D) Distribution of secondary structure in predicted structures.
(E) Type of virus infection that the AVP used for treatment of clinical data. Among them, the number
of entries used to treat COVID-19 and HIV infections is largest. (F) Source of antiviral proteins.

It is a rapid and efficient approach for researchers to design new antiviral peptides
with improved activity using the known peptides as templates. Table 5 lists the entries with
the highest antiviral activity targeting various viruses in DRAVP, such as SARS-CoV-2, HIV,
EBOV, etc. By analyzing antiviral mechanisms, most of the peptides were found to play an
antiviral effect by blocking viral entry into host cells, which indicates that preventing viral
entry is a promising target for antiviral intervention. These findings may contribute to the



Viruses 2023, 15, 820 10 of 13

rational design of novel peptides with improved activities and the clinical application of
antiviral peptides.

Table 5. List of antiviral peptides with the highest activity for eight different viruses.

DRAVP_ID Virus Target Mechanism IC50/EC50 Reference

DRAVPe00482 SARS-CoV-2 S protein

Prevent viral entry by
binding to the spike

receptor-binding
domain (RBD) and

blocking it from
binding to ACE2

23.54 pM Cao et al. [48]

DRAVPe00788
Human immun-
odeficiency virus

(HIV-1 and HIV-2)
Envelope protein

Inhibit viral entry by
binding to the

prehairpin intermediate
(PHI) conformation and
competitively prevent
its transition to 6-HB

0.43 pM ~0.026 nM Zhu et al. [49]

DRAVPe01747 Hepatitis C virus
(HCV) Envelope protein

Inhibit viral entry at the
postattachment step
and block cell-to-cell

transmission

1–5 nM Yin et al. [50]

DRAVPe01288
Dengue virus

(DENV1, DENV2,
DENV3, DENV4)

-

Interact with the viral
membrane bringing

peptides into the
low-pH endosome,

where full exposure of
the peptide site on the

E conformational
intermediate leads to

the tight, specific
binding that blocks
membrane fusion

IC90 = 0.1–4 µM Schmidt et al. [51]

DRAVPe01806 Ebola virus
(EBOV) -

Impair cathepsin
B-mediated processing
of EBOV glycoprotein,
thus preventing virus

entry

0.99 µM Yu et al. [52]

DRAVPe00757 Herpes simplex
virus (HSV-1) -

Inhibit the viral
attachment and viral

entry of HSV-1
0.67–2.88 µg/mL Zeng et al. [53]

DRAVPe01977 SARS-CoV ACE2
Inhibit viral entry by

blocking the binding of
S protein to ACE2

1.88 nM Ho et al. [54]

DRAVPe00407 MERS-CoV S protein

Inhibit viral six-helical
bundle (6-HB)

formation, thereby
preventing viral fusion
and entry into host cells

4.2 nM Xia et al. [55]

4. Conclusions

Recently, increasing reports of viral mutation and emergencies require constant work to
discover novel antiviral agents. Antiviral peptides exert both preventative and therapeutic
functions against viral infection. However, peptide drugs generally have short half-lives
and poor stability. To better promote the development of antiviral peptides as drugs, it
was necessary to construct a database. Here, we constructed a comprehensive database
of antiviral peptides and proteins that aims to be a useful resource for discovering and
designing novel antiviral drugs. A user-friendly interface was established to facilitate data
searching, browsing, and alignment. The database allows the user to download all the
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data and source code. DRAVP will continue to collect experimentally determined antiviral
peptides and reupdate all existing data. We promise to regularly update the database for at
least 5 years.
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