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Abstract: The COVID-19 pandemic caused by the SARS-CoV-2 virus is still a global health concern.
Several spike (S) protein-based vaccines have been developed that efficiently protect the human
population against severe forms of COVID-19. However, some SARS-CoV-2 variants of concern
(VOCs) have emerged that evade the protective effect of vaccine-induced antibodies. Therefore,
efficient and specific antiviral treatments to control COVID-19 are indispensable. To date, two drugs
have been approved for mild COVID-19 treatment; nevertheless, more drugs, preferably broad-
spectrum and ready-to-use therapeutic agents for new pandemics, are needed. Here, I discuss the
PDZ-dependent protein-protein interactions of the viral E protein with host proteins as attractive
alternatives for the development of antivirals against coronavirus.
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1. Introduction

In the past 20 years, three highly pathogenic coronaviruses (CoVs) have emerged
as threats to humans: severe acute respiratory syndrome coronavirus (SARS-CoV-1) in
2002; Middle East respiratory syndrome coronavirus (MERS) in 2012; and the currently
circulating SARS-CoV-2, the causative agent of the recent COVID-19 pandemic [1]. These
three highly pathogenic CoVs belong to the β-coronavirus genera and can cause severe
airway infection and acute respiratory distress syndrome (ARDS). CoVs are enveloped
viruses with a single-stranded positive RNA genome that encodes four structural proteins:
nucleocapsid (N), membrane (M), S, and E [2]. The S protein of SARS-CoVs recognizes
cell receptors to initiate infection; thus, many efforts toward vaccine development, as well
as therapeutic and diagnostic tools, have focused on this protein. Several S protein-based
vaccines have been developed, including those based on mRNA or adenoviral vectors,
which efficiently protect the human population against severe forms of COVID-19 [3].
However, some SARS-CoV-2 variants of concern (VOCs) evade the protective effects of
vaccine-induced antibodies. In this scenario, efficient antiviral treatments, and the two
currently used to control COVID-19, are indispensable. Many experimental efforts have
resulted in a variety of compounds, including small molecule inhibitors [4,5], bioactive
natural products, and/or traditional medicine products that have shown effectiveness
against SARS-CoV-2 [6–8]. It is necessary to deepen the study of these compounds until an
adequate drug design is obtained. This study focused on the E protein of highly pathogenic
CoVs, with an emphasis on SARS-CoVs as a potential target for designing novel therapeutic
molecules against COVID-19 and their possible use as broad-spectrum antivirals.

2. Highly Pathogenic Coronaviruses

SARS-CoV-1 was first detected in China in late 2002 and spread to 29 other countries,
killing more than 800 individuals with almost 9000 confirmed cases and an average mortal-
ity of 10%. This public health emergency prompted research on CoVs. Among the distinct
lines of research, scientists noticed the existence of a large reservoir of SARS-CoV-1-like
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viruses in diverse animals, with bats being the most important, and warned about the pos-
sibility of SARS-CoV-1 re-emergence or the emergence of other novel CoVs, suggesting the
need for preparedness for other outbreaks caused by CoVs [1,9,10]. As predicted, another
highly pathogenic CoV, MERS, emerged by the end of 2012. A close relative of SARS-CoV-1,
MERS has a threefold mortality rate which fortunately was less efficient in human-to-
human transmission. MERS remained limited to the Middle East, causing 858 deaths out of
2494 confirmed infections [2,9]. Now, SARS-CoV-2 has been circulating worldwide for three
years, representing the deadliest respiratory disease pandemic since the Spanish Flu of
1918, with almost seven million deaths worldwide (https://covid19.who.int/ accessed on
14 April 2023) [9,11]. Among the diverse recommendations of public health organizations
since the emergence of SARS-CoV-1, the development and stockpiling of drugs that target
a wide range of viral pathogens (broad-spectrum antiviral drugs) have been a constant
recommendation that, unfortunately, has not been adequately addressed [12]. The current
pandemic is a reminder that antivirals against SARS-CoVs should be developed and that
we are still unprepared for the next outbreaks that will undoubtedly occur.

3. Antivirals against Coronaviruses

For years, therapeutic approaches to treat viral infections have been focused on tar-
geting viral components; for example, the proteins that recognize cell receptors to initiate
infection, the RNA-dependent RNA polymerases, or other viral enzymes [13]. Antivirals
targeting viral components are highly susceptible to drug resistance owing to the rapidly
evolving viral genome. This is exemplified by the emergence of influenza strains that are
resistant to adamantanes, inhibitors of the M2 ionic channel, and oseltamivir, an inhibitor
of neuraminidase [14]. Moreover, influenza strains with dual adamantane-oseltamivir resis-
tance have been reported [15]. The risk of developing resistance is particularly important
when using drugs targeting only one viral component; therefore, additional approaches for
antiviral development are necessary.

Another strategy for developing antivirals has also been proposed. Viruses take over
the host cellular machinery for replication and dissemination. Therefore, targeting the host
elements essential for the viral life cycle is an attractive alternative for the development of
antivirals [13,16]. Distinct experimental approaches, including computational, proteomic,
and genetic analyses, have been used to identify these essential virus–host interactions.
Based on this strategy, for example, silencing or inhibition of the host C-terminal Src kinase
(Csk) was found to reduce hepatitis C virus (HCV) replication [17,18].

Since the emergence of SARS-CoV-1, efforts to identify antiviral molecules have shed
light on the strategies for developing specific or pan-coronavirus inhibitors. Papain-like
(PL) or main (3CL) CoVs proteases have emerged as efficient antiviral targets [10,19,20]. In
contrast, as an example of host targeting, the inhibition of p38 mitogen-activated protein
kinase (p38 MAPK) has shown an effective antiviral function [21,22].

The two drugs currently approved for mild COVID-19 treatment, Molnupiravir and
Nirmatrelvir, belong to the first type of antivirals that target viral components. Molnupiravir
is a prodrug that is metabolized to the cytidine nucleoside analog beta-D-N4-hydroxycytidine
(NHC), which, upon phosphorylation, generates the nucleotide analog NHC-TP. During
replication, NHC-TP is incorporated into the SARS-CoV-2 RNA by viral RNA polymerase
instead of cytidine or uridine nucleotides, causing permanent mutations in the viral genome.
Hence, molnupiravir inhibits replication by interfering with the viral RNA polymerase [19,23].

In contrast, nirmatrelvir inhibits the SARS-CoV-2 main protease Mpro. It was obtained
by improving a previous inhibitor of SARS-CoV-1. Mpro is required for post-translational
proteolytic processing of two polyproteins translated from the open reading frame (ORF)
1a and ORF1b to generate nonstructural viral proteins (NSPs). Therefore, nirmatrelvir may
play a key role in blocking viral transcription and replication [19,22,23]. Nirmatrelvir is
administered with ritonavir, which increases its bioavailability (Table 1).

Remdesivir, first designed for the prevention of Ebola infection, is another nucleotide
analog that targets viral RNA polymerase and was approved for COVID-19 treatment in
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May 2020 [24]. However, the World Health Organization removed it from the list of effective
drugs against COVID-19 in November 2020 and reported that, based on a large number of
clinical trials, there was no evidence that remdesivir improved survival and other outcomes
in patients (https://www.who.int/news-room/feature-stories/detail/who-recommends-
against-the-use-of-remdesivir-in-covid-19-patients, accessed on 6 March 2023).

Table 1. Description of FDA-approved antiviral drugs. GFR: glomerular filtration rate.

Antiviral Indications and Dosage Interactions with
Other Drugs Effectiveness References

Molnupiravir
(Lagevrio)

Outpatient treatment of mild
to moderate COVID-19 in
adults (≥18 years). Initiate as
soon as possible and within
5 days of symptom onset. No drug interactions

with molnupiravir have
yet been identified.

Antiviral activity against
SARS-CoV-2 in cell culture
assays with a 50% effective
concentration (EC50) ranging
between 0.67 to 2.66 µM. NHC
had similar activity against the
variants including Alpha, Beta,
Gamma, and Delta.

[23,25,26]Oral use: 200 mg capsules. The
authorized dose is 800 mg
every 12 h for 5 days.
Not recommended in severe
renal impairment
(eGFR < 30 mL/min).

Nirmatrelvir-
Ritonavir
(Paxlovid)

Outpatient treatment of mild
to moderate COVID-19 in
adults and in children down to
age 12 who weigh at least
40 kg. Initiate as soon as
possible and within 5 days
of symptom onset.

Of major concern,
altered drug
concentrations are
contraindicated due to
possible serious or
life-threatening
reactions.

Antiviral activity against
SARS-CoV-2 Alpha, Beta,
Gamma, Delta, and Lambda
variants. Activity against
SARS-CoV2 in A549-ACE2
cells is of 77.9 and a 90%
effective concentration (EC90)
of 215 nM.

[23,27]

Oral use: 150 mg nirmatrelvir
and 100 mg ritonavir.
The authorized dose is
300–100 mg every 12 h
for 5 days

Understanding the molecular interactions between SARS-CoV-2 and human cells,
specifically protein–protein interactions (PPIs), will allow the identification of key host
proteins hijacked by the virus for their essential role in its life cycle. This knowledge is
the basis for developing strategies to target these essential host–virus interacting elements
and, considering that the virus is less likely to mutate at such specific, essential interacting
moieties, to reduce the emergence of drug resistance [13,22].

Since the emergence of SARS-CoV-2, efforts to identify virus–host PPIs have identified
targets for drug design and repurposing. In a pioneer study, Gordon et al. (2020) cloned
26 out of 29 viral proteins and identified 332 host-interacting proteins, 66 of which were
druggable targets of existing compounds, with 29 approved by the Federal Drug Adminis-
tration (FDA) [28]. Among druggable host targets, proteins involved in processes such as
trafficking, lipid remodeling and endoplasmic reticulum (ER) stress response, translation,
and several innate immune signaling proteins related to the interferon pathway were found
as targets of diverse viral proteins. For example, the translation regulatory protein eIF4H
was identified as the target of the viral NSP9 protein. Zotatifin is an inhibitor of protein
biogenesis by targeting eIF4A, a partner of eIF4H in a translational functional complex. This
compound showed a strong anti-SARS-CoV-2 effect in vitro and is currently in clinical trials
for cancer treatment and, more recently, also for COVID-19 treatment based on in vitro and
in silico models [28–30].

Moreover, in another study, Gordon et al. (2020) extended their analyses to compare the
virus–host PPIs of three highly pathogenic CoVs and complemented them with functional
assays. In this manner, the authors identified conserved interactions across the three highly
pathogenic CoVs, as well as the cellular processes affected, pointing to the design of pan-
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coronavirus antivirals [31]. Such integrative studies represent new approaches in drug
design from which pan-viral inhibitors can emerge, which may help prepare for future
outbreaks and/or pandemics.

4. The Envelope (E) Protein of SARS-CoVs

These three highly pathogenic CoVs belong to the β-coronavirus genera. Phylogenetic
analyses locate MERS more distant from SARS-CoV-1 and SARS-CoV-2, which share
approximately 85% sequence similarity. The CoVs genome encodes four structural proteins:
spike (S), membrane (M), nucleocapsid (N), and envelope (E) [9,20]. The CoVs E protein is a
transmembrane protein of 75–109 amino acids (aa) and 8–12 KDa present in low quantities
in viral particles but highly expressed in infected cells. It can be divided into three domains:
a short N-terminal hydrophilic domain, a transmembrane domain, and a C-terminal domain
containing diverse motifs for glycosylation, palmitoylation, and PPI (Figure 1A) [32,33].
SARS-CoV-1 E protein is susceptible to N-glycosylation at the N66 residue conserved in
SARS-CoV-2, although the functional outcome of such modification is still unknown [33,34].
The conserved cysteine residues C40, C43 and C44 can be palmitoylated; this modification
might regulate E trafficking and association with lipid rafts [33,35,36].
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Figure 1. The E protein of SARS-CoV-1 and SARS-CoV-2 are 96% similar. (A) Alignment of the E protein
sequence of SARS-CoV-1 (upper sequence) and SARS-CoV-2 (lower sequence); the three domains and
the PDZbm (red box) are shown. * show amino acid differences and deletions between both proteins.
Purple triangles indicate residues susceptible to posttranslational modification. (B) Alignment of the last
ten amino acids of the highly pathogenic (left) and low pathogenic human CoVs showing the PDZbm.
(C) Pentameric homo-oligomerization of the E protein forms an ion channel or viroporin. (D) Structure
of the first PDZ domain of PALS1 in complex with the E protein of SARS-CoV-2 (PDB ID: 7NTK). Three-
dimensional structure of PDZ1 domain of PALS1 (purple) in complex with the PDZbm of the E protein
of SARS-CoV-2 (yellow); Figure is drawn with ChimeraX 1.2.5. (University of California at San Francisco,
San Francisco, CA, USA).

The E protein maintains the viral particle structure by interacting with the M protein.
The E protein can homo-oligomerize to form a cation-selective ion channel (IC) or viroporin
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under physiological conditions and is mainly located in the Golgi, ER, and ER-Golgi
intermedium compartment (ERGIC) of infected cells, with the N-terminus towards the
lumen and the C-terminus towards the cytosol, where it is involved in morphogenesis
and viral assembly [32,37]. Ion channel formation appears to be one of the first and most
important events in direct viral pathophysiology [38]. Many viruses express viroporins;
for example, the protein M2 of the influenza A virus, whose activity is indispensable for
viral RNA release from the endosome to the cytoplasm, is an ion channel and was the first
discovered viroporin. Other viruses, such as HIV-1, RSV, and Hepatitis C, have been shown
to express the viroporins Vpu, SH, and p7, respectively, which are relevant elements in the
viral life cycle [33,39]. In general, viroporins are proteins with IC activity that interfere with
different cell membranes, affecting membrane permeability, membrane potential, ionic
gradients, and pH, among other features, with consequences for diverse cellular processes,
such as trafficking, signal transduction, and apoptosis [39].

The E viroporin acts as a major trigger for the host inflammatory response by activating
the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome, thus
inducing interleukin (IL)-1β secretion, as well as tumor necrosis factor-alpha (TNFα) and
IL-6, and is a determinant of pathogenicity [32,40]. Recombinant viruses with an E protein
lacking ion channel activity are attenuated in mice with a considerable reduction in lung
epithelial damage and inflammation and reduced mortality, despite similar viral replication
in vivo compared to the wild-type virus [41]. Since the SARS-CoV-1 emergence, blockers
of ion channel activity of the E protein have been shown to counteract virus-induced
diseases [37]. Amantadine is a broad-spectrum viroporin inhibitor that was previously
used to treat influenza A. Broad-spectrum antivirals are molecules with proven efficacy
against distinct viruses, even from different viral families; this feature of such antivirals
is particularly relevant when there is an urgency to manage emerging virus outbreaks,
as was the case with SARS-CoV-2 [42]. Amantadine was assayed for its potential use in
SARS-CoV-induced diseases; however, it showed only moderate inhibition of the E protein
IC activity of CoVs [33,43]. In silico docking analyses of large sets of approved drugs have
revealed several molecules with the potential to block the IC activity of the SARS-CoV
E protein for potential use in humans, which need to be analyzed in clinical trials for their
effectiveness. Currently, there are virus-directed inhibitors intended to block the IC activity
of the E protein SARS-CoV-2 with encouraging results from in vitro assays [32,43,44].

Studies conducted on SARS-CoV-1 showed that recombinant viruses lacking the
E protein were attenuated in diverse animal models, leading to a significant reduction
in pulmonary edema in mice and lower mortality rates than wild-type viruses [40,45].
Attempts to use these viruses as live-attenuated vaccines have been evaluated both with
complete E-deleted recombinant viruses (rSARS-CoV-∆E) or partial deletions of the protein.
Immunization with rSARS-CoV-∆E induced high serum neutralizing antibodies levels
in hamsters and almost completely protected mice against lethal challenge with mouse-
adapted SARS-CoV. Notably, these recombinant viruses induce both humoral and cellular
responses [46–48].

E protein contains a short linear motif (SLiM) in its carboxy-terminal sequence, which
has been identified as a PDZ-binding motif (PDZbm) [21]. This motif is defined by the four
last aa in a protein and is classified into three types according to the consensus sequence:
X-S/T-X-Φ for type I, X-Φ-X-Φ for type II, and X-D/E-X-Φ for type III (where X is any amino
acid, and Φ is a hydrophobic amino acid) [49]. The E protein of SARS-CoVs contains a class
II PDZbm corresponding to the DLLV sequence (Figure 1), which allows the E protein to
interact with diverse host PDZ (PSD-95/DLG/ZO-1) domain-containing proteins, favoring
viral dissemination as explained below [21,50]. In the case of the most pathogenic CoV,
MERS, it bears an E protein with a type II PDZbm (DEWV) capable of interacting with a
greater number of PDZ proteins compared to SARS-CoVs. (Table 2).
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Table 2. PDZ interactors with the E protein of the most pathogenic coronaviruses.

Coronavirus SARS-CoV-1 SARS-CoV-2 MERS References

PDZbm Type 2: DLLV Type 2: DLLV Type 3: DEWV

Human PDZ
interactors

HTRA1
LNX2
MLLT4
PALS1
PARD3
PDZD2
PTPN13
SDCBP
TJP1

HTRA1
LNX2
MAST2
MLLT4
NHERF1
PALS1
PARD3
PTPN13
RADIL
SDCBP
SNX27
TJP1

APBA1
ARHGAP21
FRMPD4
GIPC2
GORASP1
GORASP2
HTRA1
HTRA3
INADL
LAP2
LNX2
LRRC7
MAGI1
MAGI2
PARD3
PDZD2
PTPN13
RGS3
RIMS1
RIMS2
SDCBP
SIPA1L2
SNX27
SYNPO2L
TJP1
TJP3

[21,51–55]

PDZ proteins constitute a large family of scaffold proteins that are highly conserved
among species and are characterized by the presence of at least one PDZ domain. These
proteins govern multiprotein complex formation and localization to diverse subcellular
sites; thus, they are involved in a variety of fundamental cellular functions, such as cell
trafficking, proliferation, signal transduction, and polarization. PDZ domains are the most
common protein–protein interaction domains in the human proteome. They are composed
of approximately 90 amino acids, and their 3D folding forms a hydrophobic cavity that
allows interactions with PDZbm in their ligands (Figure 1D) [56,57]. As mentioned above,
PDZ domains participate in multiple PPIs related to diverse fundamental cellular functions;
outstandingly, several viral pathogens have been described to express PDZbm motifs that
usurp host PDZ-dependent interactions for their own purposes [50,58]. Highly pathogenic
CoVs are among these viruses, and in the case of the SARS-CoVs, the E protein expresses
a PDZbm which is recognized as a major determinant of virulence; that is, the PDZbm-
dependent interactions established by E with host PDZ proteins play a major role in
SARS-CoV-2 virulence [59].

Recombinant SARS-CoVs with mutated PDZbm in the E protein or lacking the full-
length protein generally restore the PDZbm sequence or generate a novel chimeric gene to
restore the absence of PDZbm after several cell passages [21,60]. This reinforces the idea
that by mimicking endogenous ligands, PDZbm-dependent interactions established by E
with host PDZ proteins play a determining role in SARS-CoVs virulence and pathogenicity.
The envelope proteins of SARS-CoV-1 and SARS-CoV-2 are 96% similar, maintaining
conserved the IC-forming region, as well as the PDZbm. PALS1 (protein associated with
Lin seven-1) was the first PDZ protein to be described as a target for PDZbm of the
E protein of SARS-CoV-1 [51,52,59]. PALS1 is involved in the maintenance of apicobasal
epithelial cell polarity, and its targeting by the E protein destabilizes the integrity of the
epithelial layer, promoting viral dissemination [52]. Novel experimental assays have
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demonstrated that this interaction is strengthened by the E protein of SARS-CoV-2, and
it has been proposed that this increased affinity contributes to the increased virulence
of SARS-CoV-2 versus SARS-CoV-1 [52,53]. Syntenin is another PDZ interactor of the
E protein of SARS-CoV-1 that induces a high production of inflammatory cytokines by
activating p38 MAPK; this may increase the permeability of the epithelial barrier in favor
of viral dissemination [21]. Moreover, the PDZbm of the E protein of SARS-CoV-2 interacts
with the tight junction protein ZO-1, another PDZ protein involved in the integrity of the
respiratory tract epithelium layer [54,55]. Although this interaction needs to be confirmed
in in vivo assays, it seems that such an interaction would compromise epithelial integrity,
similar to the interaction of E with PALS1. The E protein is conserved in more than 98%
of SARS-CoV-2 isolates, including different emerging VOCs [33]. To date, several PDZ
proteins have been identified as E protein targets (Table 2), most of which have been
identified by physicochemical methods, such as affinity chromatography, equilibrium
binding titration by Förster Resonance Energy Transfer (FRET), calorimetric assays, and
yeast two-hybrid [55,61]. It is important to address whether these interactions occur in vivo
and the cellular functions they alter. Functional and structural analyses of specific PDZ-
dependent interactions are relevant for understanding these virus–human PPIs and their
potential for intervention. SLiMs are commonly expressed in intrinsically disordered regions,
and the C-terminal PDZbm of the E protein of highly pathogenic CoVs (SARS-CoV-1, MERS,
and SARS-CoV-2) is expressed within a more flexible structure than that of the less virulent
CoVs causing common cold (Figure 1B); the high flexibility of these PDZbms in highly
pathogenic CoVs has been proposed to contribute to their interaction with a large number
of host PDZ proteins and to cause more severe diseases [62]. Recent experimental data
appear to support this hypothesis. In recent work, a series of recombinant SARS-CoV-1 in
which E protein PDZbm was substituted with those from high or low pathogenic human
CoVs were generated [63]. Infection of mice with these recombinant viruses demonstrated
that PDZbm of low pathogenic CoVs partially attenuated SARS-CoV-1-induced pathology
reducing lung cellular infiltration and edema in infected mice. In contrast, mice infected
with recombinant viruses carrying PDZbms of the most virulent human CoVs developed
extensive cellular infiltration to the lungs, edema and pronounced weight loss leading
to the death of infected mice [63]. Furthermore, it has been demonstrated that the most
pathogenic MERS displays the largest array of PDZ interactors (Table 2).

In addition, although PDZbm is conserved between SARS-CoV-1 and 2, it appears
that the SARS-CoV-2 E protein binds more host PDZ proteins than SARS-CoV-1, probably
with higher affinity, as has been suggested for PALS1. This may imply that amino acid
substitutions/deletions near PDZbm might affect the structure, and IC activity and/or
confer more flexibility to the SARS-CoV-2 E protein, thus defining its PDZ interactome
(Table 2) [61,62]. Notably, the E proteins of the three highly pathogenic CoVs share at least
five PDZ interactors, leading to the possibility of designing a pan-coronavirus inhibitor.

5. PDZ-Dependent PPI Inhibitors

PDZ-dependent PPIs have been widely studied as therapeutic targets, and both
endogenous and pathogen-derived PDZbms have shed light on important functional
interactions that are useful for drug design. Most inhibitors are directed to the interaction
interface between the PDZ hydrophobic cavity and the PDZbm ligand, acting as competitive
agonists to prevent the PDZ-PDZbm interaction [64]. Notably, many PDZ-dependent
interactions have been identified as targets of small molecules or peptides that bind with
high affinity, some of which have been assayed for their therapeutic function, mainly
against cancer and nervous system disorders, such as neuropathic pain or ischemic stroke.
At least one endogenous PDZ-PDZbm PPI inhibitor, a small molecule, is commercially
available for cancer treatment, and other small molecules and peptides are being assayed
in clinical trials [65]. Blocking PDZ-dependent interactions is a promising strategy for
developing specific treatments not only for COVID-19 but against diverse viral infections.
Furthermore, recently revealed PDZ-dependent interactions that are conserved among
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highly pathogenic CoVs may serve to design pan-viral inhibitors for further emerging
coronavirus epidemics and pandemics.

6. Conclusions

Mapping virus–host PPIs is important for understanding viral pathogenicity and
revealing the fundamental host proteins hijacked for successful viral replication. The E pro-
tein of CoVs is one of the most abundantly expressed in infected cells and is an important
virulence factor of highly pathogenic CoVs. Furthermore, within the E protein sequence,
the PDZ-binding motif has been recognized as a virulence determinant by itself; hence,
identification of its target proteins in infected cells is mandatory to gain insight into the
viral pathogenic mechanisms and, concomitantly, to document potential therapeutic targets.
Targeting host PDZ proteins seems to contribute significantly to the highly pathogenic CoVs
life cycle; thus, targeting these virus–host interactions may help control airway epithelial
damage and viral dissemination during COVID-19. Interfering the host–virus interface
could be a comprehensive strategy to reduce resistance emergence, as the virus is less likely
to mutate at such specific interacting moieties. It is tempting to consider the blockage
of PDZ-dependent interactions of the highly pathogenic CoV E protein with host PDZ
proteins as a promising method for the current COVID-19 pandemic control. Additionally,
since PDZbm is a conserved motif among distinct CoV strains, it would be appealing to
consider the generation of pan-CoV inhibitors using viral PDZbm-based PPIs.
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