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Abstract: PRRSV infects CD163-positive macrophages and skews their polarization toward an M2
phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein
A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against
PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing
CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except
for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate
the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their
ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar
macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated
them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differen-
tiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system.
To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our
results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3
antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3
repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant
upregulation of proinflammatory genes (TNF-α, IL-6, IL-1β and IL-12). Upon immunological synapse
activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-
12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation
by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant
protein A3 provided better protection against PRRSV infection, suggested by its capability to reedu-
cate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are
prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type
immune response within the immunological synapse.

Keywords: porcine alveolar macrophages; porcine reproductive and respiratory syndrome virus; M1;
M2; Toll-like receptors

1. Introduction

PRRSV, or porcine reproductive and respiratory syndrome virus, infects pigs and
causes significant economic losses for pig farmers [1–4]. PRRSV is a single-stranded RNA
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virus belonging to the family Arteriviridae. The PRRSV genome consists of a positive-sense
RNA molecule, which is approximately 15 kb in length [5]. The genome contains at least
10 open reading frames (ORFs), including ORF1a, ORF1b, ORF2a, ORF2b, and ORF3-7,
which encode for viral structural and nonstructural proteins (NSPs): NSP1α, NSP1β, and
NSP2 to NSP12 [6,7]. PRRSV is transmitted mainly through direct contact with infected
pigs or their body fluids, such as nasal secretions, saliva, semen, and feces [8,9]. Indirect
transmission can also occur through contaminated fomites, such as clothing and equipment.
In addition, the virus can be transmitted vertically from infected sows to their offspring
during pregnancy [10–12]. Porcine alveolar macrophages (PAMs) are the main target cells
for PRRSV replication in the body. This is because the virus has a preference for cells
of the monocyte–macrophage lineage and is able to replicate efficiently in PAMs. As a
result, PAMs play a crucial role in the immune response to PRRSV infection and are an
important focus of vaccine development [13,14]. There are several vaccines available for
PRRSV currently, but their efficacy can vary. One of the major limitations of these vaccines
is that they may not effectively stimulate the Toll-like receptors (TLRs) of the pig immune
system [15]. The activation of TLRs by PRRSV vaccine has been proposed as a potential
mechanism to inhibit replication of the virus. TLR stimulation also plays a significant role in
the fate of CD4+ T helper 1 (Th1) cells during infection or vaccination [16]. To protect against
most pathogens, it is necessary to stimulate Th1 immune responses. Upon encountering
a virus, Th1 cells become activated and produce cytokines, including interferon-gamma,
which trigger other immune cells to attack and remove the virus [17]. Th1 cells also play a
role in memory immunity, which helps the body to remember and respond more effectively
to a previously encountered virus by promoting the development of long-lived memory B
and T cells [18].

PRRSV vaccines are typically designed to induce an immune response by exposing
the pig to an avirulent or inactivated form of the virus [19]. However, if the vaccine does
not effectively mimic the viral molecules that bind to the TLRs, the vaccine may not be able
to effectively activate the immune response, thereby reducing its efficacy. There are several
ways to increase the efficacy of vaccines targeting TLRs, such as using the codelivery of
costimulatory molecules with the antigens [20]. The costimulatory proteins CD40, CD80
(B7.1), CD86 (B7.2), and CD70 are upregulated on antigen-presenting cells (APCs) after
TLR activation [21].

Another significance of TLRs in vaccination is their capability to induce the activa-
tion of cross-priming CD8+ T cells, a crucial factor in enhancing the efficacy of vaccine
responses [15]. Cross-priming is the process by which naïve CD8+ T cells are activated
by APCs that have taken up antigens from other cells [22]. This process helps the body
mount a strong immune response to vaccines that target intracellular pathogens that require
cytotoxic lymphocyte (CTL)-mediated immunity. It has been shown to occur through the
stimulation of TLR3 and TLR9 [23]. TLR3 stimulation led to cross-priming in a vaccine
model using virus-infected cells, while CpG ODNs stimulate B cells and DCs to initiate
cross-priming through the TLR9 pathway [24–26].

However, it is important to note that development of a PRRSV vaccine is complicated.
There are multiple genetic strains of the virus, and it can adapt to new environment and
immune pressure, which further complicate the situation. Thus, developing a PRRSV
vaccine can be a challenging task. In our previous study, we found that a recombinant
protein derived from PRRSV-2 named A1 antigen, which consists of the complete sequence
of ORF5 and a partial sequence of ORF6, as well as T-cell epitopes, can stimulate the
repolarization of M2 PAMs to M1 and activate the Th1 response [27]. However, there
was a lack of response of TLRs to this A1 antigen. Based on this bias, we hypothesized
that changes in the amino acid composition of the spike protein may improve antigen
recognition, specifically for certain TLRs, by APCs. Our recently developed antigen, A3,
which was also produced from PRRSV-2, shares similar components with A1, but has a
partial modification of ORF5 and ORF6 sequences. It possesses the remarkable ability not
only to repolarize M1 PAMs but also boost the expression of TLR3, TLR7, and TLR9 in
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PAMs, resulting in an immunological synapse activation of the Th1 cells. In contrast, the
other antigen (A4), composed of ORF7, NSP10, and NSP11, does not possess such abilities.
Our findings indicated that A3 is providing a more promising option for a vaccine as it not
only can reduce viral entry by inducing M1 macrophage repolarization but also trigger
TLR activation and Th1 immune response of macrophages as a well-functioning APC other
than just a host cell of PRRSV.

2. Materials and Methods
2.1. Ethics Statement

The Institutional Animal Care and Use Committee at the National Pingtung University
of Science and Technology in Taiwan granted approval for the acquisition of lung tissue
and the euthanizing of pigs (NPUST-106-053).

2.2. Pigs and Inoculations

This research was conducted using specific pathogen-free (SPF) piglets that were
around eight to eleven weeks old and weighed nine to twelve kilograms. These piglets
were raised in a positively pressurized room at the National Pingtung University of Science
and Technology Animal Diagnostic Center.

2.3. Construction of the Recombinant Protein Antigen

Antigen A3 (ORF6L5) was constructed from the complete sequence of ORF5 com-
bined with the partial sequence of ORF6 (Supplementary Material Figure S1). Antigen
A4 (NLNsp10L11) was constructed by the combination of ORF7 with NSP10 and NSP11
(Supplementary Material Figure S2). The recombinant antigens were specifically engineered
to include BamHI and EcoRI sites to facilitate efficient cloning and expression of the target
protein. These sequences were then expressed using the baculovirus expression system.

2.4. Collecting Porcine Alveolar Macrophages (PAMs)

The pigs were put down through exsanguination, and to prevent the lungs from
fully collapsing, the trachea was secured. Afterwards, the heart and lungs were extracted
from the chest, and alveolar macrophages were gathered from the fresh lungs in a sterile
manner. To obtain the alveolar macrophages, the lungs were rinsed with phosphate-
buffered saline a few times through the trachea, and the resulting solution containing the
alveolar macrophages was centrifuged for 10 min. The collected alveolar macrophages
were placed in 12-well plates and maintained in a complete RPMI-1640 (Corning, Manassas,
VA, USA) medium containing 10% fetal bovine serum at 37 ◦C in a humidified 5% CO2
atmosphere.

2.5. PRRSV-Infected PAMs

PAMs were placed in 24-well plates and allowed to grow until they formed a confluent
monolayer. At that point, the PAMs were infected with PRRSV in multiples of infection
(MOI) of 0.01 and 0.05. The PRRSV inoculum in 200 µL of Optipro serum-free medium was
added to each well. After one hour of incubation at 37 ◦C in a 5% CO2 atmosphere, the
medium was removed from the wells, and the cells were washed with phosphate buffered
saline (PBS). Then, 500 µL of PAM culture medium was added to each well. The cell culture
supernatants were collected 48 h after infection.

2.6. PAMs Received Antigen Stimulations

To conduct the experiment, 12-well plates were used to place PAMs, which were then
divided into five different groups. The first group served as the control group, which
did not receive any treatment. The remaining four groups were treated with different
stimulations—1 µg/mL LPS (Sigma-Aldrich, Steinheim, Germany), 20 ng/mL IL-4
(BIOTECH, INC, Alpharetta, GA, USA), 2 µg/mL of A3, or 2 µg/mL—of A4, respec-
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tively. After treating the PAMs with these stimulations for 24 h, the cells were collected and
RNA extracted for further analysis using qPCR.

2.7. Gene Expression Profiling by Quantitative Real-Time Polymerase Chain Reaction

In this study, total RNA was extracted from the samples using Trizol reagent (Invit-
rogen, Waltham, MA, USA), a widely used chemical for isolating RNA from biological
samples. The extraction process was carried out according to the protocol provided by
the manufacturer. Once the RNA was extracted, it was reverse-transcribed into cDNA
using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). This kit contains all the
necessary enzymes and reagents for the reverse-transcription reaction, which converts the
single-stranded RNA molecules into double-stranded cDNA molecules. The cDNA was
then used as a template for quantitative real-time PCR, which is a widely used technique
for measuring the relative expression levels of specific genes.

For the qPCR reactions, the KAPA SYBR FAST qPCR Master Mix Kit (KAPA Biosystem,
Wilmington, DE, USA) was used, which contains all the necessary enzymes, buffers, and
dNTPs for the PCR reaction. The reactions were performed using a Qiagen Rotor Gene
Q Real-Time PCR machine (Qiagen, Germantown, MD, USA), which is a highly sensitive
and accurate instrument for measuring the amplification of specific DNA sequences in real
time. The specific primer sequences for the target genes are listed in the Supplementary
data (Table S1). The amplification consisted of a 3 min step at 95 ◦C to denature the DNA,
followed by 40 cycles of denaturation at 95 ◦C for 3 s and annealing at 60 ◦C for 20 s. The
data were analyzed using the comparative Ct method, which is a widely used method for
calculating the relative mRNA levels of specific genes. This method involves normalizing
the target gene expression levels to those of a reference gene, using the equation 2(−∆∆Ct),
where ∆∆Ct is the difference in Ct values between the target gene and the reference gene in
the experimental and control samples.

2.8. Surface Protein Expressions by Flow Cytometry Analysis

PAMs were collected at a concentration of 106/mL and cleansed with phosphate-
buffered saline that contained 0.5% bovine serum albumin (BSA) (Sigma-Aldrich, Stein-
heim, Germany). They were then incubated with a specific monoclonal antibody that
targetedproteins located on the surface of the PAM cells, which included SLA II+ (Bio-Rad),
CD14+ (Invitrogen), CD80+ (Invitrogen), TLR4+ (Invitrogen), and CD163+ (Invitrogen).
The cells were allowed to bind for 20 min while they were kept on ice and in the dark.
Following this incubation period, flow cytometry was utilized to analyze the cells. The
BD FACSDiva Software (BD Biosciences, CA, USA) and FlowJo Software (Tree Star, Inc.,
Ashland, OR, USA) were both used in the flow cytometry analysis.

2.9. Porcine Cytokine Assay

To analyze the phenotype of the immune reaction induced by the recombinant antigen
A3, we cocultured 2 × 106 PAMs with T-cell subsets. The coculture was performed using
an indirect transwell coculture (Corning, Corning, NY 14831, USA) system in standard
conditions (5% CO2; 37 ◦C) for 48 h.

Then, conditioned medium of PAMs and T-cells were collected for porcine cytokine
assay. Cytokine concentrations were determined from a standard curve created with a
reference preparation of commercial ELISA kit IL-10, IFN-γ (Thermo Fisher Scientific,
Vienna, Austria), and IL-12 (R&D System, Abingdon, UK) according to the protocols
provided by the manufacturer. The optical density A450 nm of each well was determined
by EZ Read 400 Microplate Reader (Biochrom, Cambridge, UK).

2.10. Statistical Analysis

The data are expressed as means ± standard error of the mean where appropriate.
A t-test with a 95% confidence limit and one-way ANOVA followed by Tukey’s test for
multiple comparisons were used for statistical analysis. Data analysis was performed
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using Prism 8.0 software (GraphPad Software Inc., San Diego, CA, USA). Differences were
considered statistically significant if the p-value was less than 0.05.

3. Results
3.1. A3 Directs Macrophages Polarization toward M1 Subtype and Downregulation of
CD163 Expression

PAM cell lines that stably express CD163, an M2 macrophage marker, are highly sus-
ceptible to infection by both the PRRSV-1 Lelystad strain and PRRSV-2 VR-2332 strain [28].
Our study involved outlining a gating strategy that utilizes the characteristics of cell size
and granularity, as measured by forward light scatter and side light scatter (FSC-A/SSC-A),
to differentiate between positive and negative cells. Additionally, we excluded aggre-
gated cells by using FSC-W/FSC-H and SSC-W/SSC-H measurements (Figure 1a). In
our study, we found that in healthy PAMs, up to 99% of cells expressed high levels of
CD163+ (Figure 1b). Interestingly, the PRRSV infection led to a significant decrease in the
population of CD163+ and other markers of PAMs, suggesting that the cells were targeted
for infection or killed by the virus. On the other hand, PAMs induced with the antigen
A3 or A4 did not shrink the CD163+ population (Figure 1c). This finding is consistent
with our earlier results on A1 [27], which indicated that our recombinant antigens did not
significantly impact the expression of surface protein CD163.

However, we found that A3 was better able to decrease the mRNA expression of CD163
in PAMs compared with that of A4 or the PRRSV infection (Figure 2a). The reduction in
CD163 expression in PAMs suggests a potential role of A3 in reducing the recycling of
CD163 receptor that was susceptible to PRRSV infection. This result was in parallel to the
previous result of A1 [27].
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(a) Representative of gating strategy to distinguish between positive and negative cells. Dot plots
(FSC-A vs. SSC-A) from a representative pig. The circles indicate living potential PAMs according
to light-scatter properties (size and granularity). The arrows indicate the hierarchical sequences of
analysis. (b) Expression of surface proteins SLA II+, CD14+, CD163+, CD80+, and TLR4+ on isolated
PAMs by flow cytometry. High expression of CD163 was shown on fresh isolated PAMs. (c) Surface
protein marker of PAMs after PRRSV infection or the recombinant antigen induction. PRRSV infection
showed significant aberration in the percentage of CD163+ cells compared with normal cells. Cell
percentage and mean fluorescence intensity (MFI) of SLA II+, CD14+, CD163+, CD80+, and TLR4+

were detected by flow cytometry. * p < 0.05 compared to control, θ p < 0.05 compared to 0.01 MOI,
ψ < 0.05 compared to 0.05 MOI. Data presented as means ± SEM, calculated from 4 pigs.
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polarization. (a) A3 decreased the expression of CD163 in PAMs. Untreated PAMs were used
as control. The mRNA expression profile of (b) M1 and (c) M2 subtypes of PAMs measured by
quantitative PCR (qPCR). A3 promoted upregulation of proinflammatory genes (M1 phenotypes) and
downregulation of anti-inflammatory genes (M2 phenotypes). * p < 0.05 compared to control group,
θ p < 0.05 compared to 0.01 MOI, ψ p < 0.05 compared to 0.05 MOI. Data presented as means ± SEM,
calculated from 4 pigs.

Furthermore, we also proved that A3 have the same ability as A1 in repolarization of
PAMs toward M1, suggested by the upregulation of M1 macrophages genes marker (TNF-α,
IL-1β, IL-6, and IL-12) and downregulation of M2 macrophages genes marker (PPAR-γ and
Arg-1). In contrast, A4 did not reproduce the same effect on those genes, except for PPAR
(Figure 2b).

3.2. A3 Stimulates the Expression of Toll like Receptors (TLRs) in PAMs

Toll-like receptors (TLRs) are a type of immune receptor that play a crucial role in
detecting pathogen-associated molecular patterns (PAMPs) on various microbes as well as
viruses, and initiating an innate immune response [29]. Our present study demonstrated
that A1 was incapable of stimulating the expression of TLRs (Figure 3a). In contrast, we
surprisingly found that TLR3, 7, and 9 were significantly upregulated, up to 90-fold, in
PAMs that were stimulated with A3, but not A4 (Figure 3b). This upregulation of TLRs
in PAMs may devote to the activation of the innate and adaptive immune response and
potentially enhance the effectiveness of vaccines against PRRSV infection.

Drawing on the findings of this study, we propose that A3 has the potential to activate
immunity against PRRSV more effectively than A4. In order to test this hypothesis, further
analysis of costimulation for T-cell differentiation status was conducted.
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3.3. A3 Regulates Signaling Pathway-Related T-Cell Differentiation Status

In a previous study of ours, it was discovered that A1 was able to activate the Rap1
and C-type lectin receptor pathways, which were involved in the signaling mechanisms
that influence T-cell differentiation status [27]. We tested the expression of certain genes
that are related to signaling pathways unveiled from our previous transcriptomic analysis
of PAMs induced by A1. The results indicated that A3, similarly to A1, upregulated genes
that play a role in the regulation of the Rap1 signaling pathway (as depicted in Figure 4a),
while there was no impact observed in cells with the induction of A4.
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Figure 4. A3 drives signaling pathway-mediated T-cell differentiation status. (a) Representative genes
regulate the Rap1 signaling pathway confirmed by real-time PCR. The Rap1 pathway is one of the key
regulators of T-cell activation [30]. Those genes increased by A3 regulate the Rap1 signaling pathway.
(b) Representative genes regulate the (c) C-type lectin receptor signaling pathway confirmed by
real-time PCR. The representative genes regulating activation of the CLR pathway are represented
by the red box. Untreated PAMs were used as control. * p < 0.05 compared to PAMs or CD4 group,
# p < 0.05 compared to PAMs cocultured CD4 group (without any challenge or treatment), θ p < 0.05
compared to 0.01 MOI, ψ p < 0.05 compared to 0.05 MOI. Data presented as means ± SEM, calculated
from 4 pigs.

Additionally, we observed gene expression levels in our A3-induced PAMs (Figure 4b)
according to the C-type lectin receptor (CLRs) pathway in A1-induced PAMs. Our data
revealed that genes related to the C-type lectin receptor (CLR) pathway, such as NF-kβ,
p65/RELA, NFATC1, and IL-1β, were significantly upregulated in the A3 group compared
to the control or the PRRSV-infected PAMs (as shown in Figure 4b). Despite this, A4 only
demonstrated a significant effect on the expression of p56/RELA. The representative genes
regulating activation of the CLR pathway were confirmed by real time-PCR (Figure 4c).
This was in accordance with the results showing that CLRs mediate T-cell receptor (TCR)
signaling pathway activation, thus promoting proliferation, survival, and gene activation,
especially of NF-κB [31].

3.4. TLRs in PAMs Stimulated by A3 Lead to Activation of Th1 Immune Response

Recent studies indicate that TLRs may be involved in the process of activating immune
responses by activating APCs, which then activate CD4+ T-cells [21]. Most research has
focused on the role of TLRs and the signaling pathways involved in regulating Th1-type
immune responses [32,33]. According to these references, we then analyzed the gene
expression and protein secretion that led to Th1 activation on both PAMs and T-cells in the
coculture system. Our data demonstrated that the expression of IL-12 was significantly
upregulated in both cells (Figure 5a,b), but only PAMs secreted IL-12 and IFN-γ under A3
induction (Figure 5c,d). It is worth noting that the expression of the immunosuppressive
cytokine IL-10 at both gene and protein levels was reduced by A3 induction in PAMs and
T-cells compared to that of cells infected with PRRSV or induced by A4 (Figure 5). This
result indicates that A3 can reverse the immunosuppressive effect of PRRSV infection.
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cell compartment in cocultured system analyzed by ELISA to determine cytokine levels. Data pre-
sented as means ± SEM, calculated from 4 pigs. * p < 0.05 compared to PAM or CD4+ group, # p < 
0.05 compared to PAM cocultured CD4+ group (without any challenge or treatment), θ p < 0.05 com-
pared to 0.01 MOI, ψ p < 0.05 compared to 0.05 MOI. 
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Figure 5. Th1 response modulated by A3-mediated TLR activation. Signature of (a) PAMs and
(b) T-cell compartment in cocultured system by gene profile analysis. Signature of (c) PAMs and
(d) T-cell compartment in cocultured system analyzed by ELISA to determine cytokine levels. Data
presented as means ± SEM, calculated from 4 pigs. * p < 0.05 compared to PAM or CD4+ group,
# p < 0.05 compared to PAM cocultured CD4+ group (without any challenge or treatment), θ p < 0.05
compared to 0.01 MOI, ψ p < 0.05 compared to 0.05 MOI.

4. Discussion

Developing a vaccine that provides protective immunity against PRRSV is a complex
and ongoing challenge. While currently there are multiple available options for vaccines
against PRRSV, their efficacy can be inconsistent. One of the limitations of these vaccines
can arise from their ineffectiveness in targeting the TLRs of the pig’s immune system, which
plays a key role in recognizing and responding to pathogens [34]. The protective immunity
and distinct responses of many successful vaccines come from activating multiple TLRs [35].
TLR pathways play a role in vaccine responses by controlling the activation of adaptive
immunity through various mechanisms, such as cross-priming of CD8+ T cells, inducing
the expression of cytokines and costimulatory proteins, and reversing tolerance [16,36,37].
Additionally, TLR9 has been shown to be important in inducing the production of type
I interferons (IFNs), particularly via plasmacytoid dendritic cells, during viral infection.
TLR signaling and T-cell receptor pathways are known to be involved in host–vaccine
interaction [38]. Therefore, understanding and enhancing the innate immune response,
especially TLRs to viruses, is an important goal for vaccine development [37,39,40].

Our previous study found that recombinant PRRSV-2 antigen A1 stimulated the
repolarization of M2 PAMs to M1, leading to a reduction in CD163 expression that provided
broad protection against PRRSV-1 and PRRSV-2 strain infection. A1 also stimulated a
Th1 response, activating the T-cell receptor signaling pathway in PAMs and causing the
secretion of IFN-γ from T cells [27]. However, we did not observe any enhanced expression
of TLRs. These receptors are known to play a role in the immune system, so their absence
in our study was noteworthy.

In this study, we developed a new PRRSV-2 recombinant antigen in two different
ways. We created ORF6L5, which is made up of the same components as A1, but has a
different sequence of ORF5 and is without T-cell epitopes. The reason that we did not
include T-cell epitopes was that we hypothesized that their presence might be the cause of
the absence of TLRs in this antigen. A limitation of vaccines that primarily focus on T-cell
epitopes is that viruses may have an increased chance of evading the immune response [41].
Viruses may use various strategies to evade the immune system, including changes in the
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amino acid sequences of epitopes, which can hinder recognition and processing by the
immune system and potentially reduce the effectiveness of a vaccine [42]. We also altered
the ORF5 sequences by eliminating the initial 20 amino acids in the GP5 complement of
A3 to boost B-cell production. Nan et al. (2017) demonstrated that the main sequence of
the B epitope was being located between amino acids 37 and 45 of PRRSV-GP5 [43]. The
other recombinant protein is NLNsp10L11, which consists of ORF7 plus NSP 10 and NSP11.
It is well established that nonstructural proteins (NSPs) are the first viral proteins to be
produced in cells infected by PRRSV [44]. Following our previous study, we examined the
expression of CD163 in PAMs and the capacity for PAM repolarization by A3 and A4. Our
findings showed that only A3 can reduce the mRNA expression of CD163 in PAMs and
cause M1 repolarization when compared to that infected with PRRSV at an MOI of 0.05
(Figure 2a. This was confirmed by the upregulation of M1 genes (TNF-α, IL-1β, IL-6, and
IL-12) and the downregulation of M2 genes (PPAR-γ and Arg-1) in PAMs (Figure 2b).

TLRs play a key role in the immune system, so understanding whether A3 can stimu-
late their expression in PAMs could have important implications for the immune response
to infection. However, instead of TLR4 and 8, we found that A3, but not A1 or A4, can
trigger the expression of TLR3, 7, and 9 in PAMs to the same extent as cells infected by
PRRSV (Figure 3b). The result is in accordance with a study finding that the activation
of TLR7 had a significant impact on the deletion of TLR8 in monocytes and dendritic
cells [45]. TLRs 3, 7, 8, and 9 are intracellular TLRs that are located within cellular com-
partments such as endosomes and are able to detect nucleic acids, both DNA and RNA.
When virus-derived pattern molecules are detected, these TLRs stimulate the production of
antiviral genes, such as type I interferon, as a response [46,47]. Thus, TLR activation leads
to the upregulation of costimulatory proteins, such as CD40, CD80 (B7.1), CD86 (B7.2), and
CD70, on antigen-presenting cells, hence differentially activating the Th1 developmental
pathway [21].

Since TLRs play a crucial role in the immune response, we then sought the signaling
pathways involved in this response. According to our previous research, the Rap1 pathway
is the most prominently activated pathway in PAMs stimulated by A1, and its activity is
modulated by TCR activation [27]. Importantly, Rap1 signaling pathway enhances immune
response against viruses by promoting activation and proliferation of T cells, enhancing
their ability to kill virus-infected cells, and promoting the production of cytokines such as
interferon-gamma [48]. In order to confirm the consistency of our previous findings, we
collected some genes that are known to regulate the Rap1 pathway involving PI3K, PKC-γ,
PKD-1, and AFDN from our transcriptomic analysis. Expectedly, apart from PKD-1 and
AFDN, the expression of PI3K and PKC-γ was significantly upregulated (Figure 4a). Our
previous study had already reported the involvement of those genes in the Rap1 signaling
pathway [27]. Meanwhile, some collected genes, such as NF-kβ, BCL-3, p56, NFATC1, and
IL-1β, involved in C-type lectin receptor signaling were also detected from what we had
measured by A1 induction from our previously unpublished data (Figure 4b,c). While CLR
binds to a virus, it can trigger several signaling pathways, including the NF-κB, MAPK,
and PI3K pathways, leading to the production of proinflammatory cytokines, such as
interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as the activation
of antiviral responses [49]. These findings suggest again that A3 has similarity to A1 in
terms of effectiveness for a vaccine.

The immunological synapse between A1-induced PAMs and T cells can stimulate a
Th1 response, including the activation of the T-cell receptor signaling pathway in PAMs
and the release of IFN-γ. Similarly, our present results indicated that the expression of IL-12
was increased in both PAMs and Th1 cells when they were in a coculture system stimulated
with A3 (Figure 5a,b). However, only PAMs secreted IFN-γ and IL-12 (Figure 5c,d). The
production of IL-12 by macrophages may be due to the activation of TLRs via A3 induction.
Our findings align with the concept that TLRs have a major influence on the balance be-
tween the production of IL-12 and its related family members [50]. It has also been observed
in mice that TLR9 ligands, such as CpG oligodeoxynucleotides, are potent inducers of
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IL-12p70—a member of the IL-12 family of cytokines—synthesis [51]. Importantly, it has
been found that activating two or more TLRs can lead to higher levels of IL-12 production
compared to a single TLR activation [52]. We found that after infection with PRRSV, the
production of IL-10 was significantly increased in both PAMs and T cells. This suggests
that PRRSV infection suppresses T-cell activation and may potentially induce T-regulatory
(T-reg) cell activation, in line with prior results demonstrating that PRRSV infection signifi-
cantly induced IL-10 mRNA and protein expression and stimulated immunosuppression of
host cells [53]. The emphasis here is that the IL-10 in both mRNA and protein expression
was downregulated in PAMs induced by A3 (Figure 5a,c). On the other hand, A4 was
found to upregulate the expression of IL-10 mRNA in PAMs and T cells, indicating its
potential ability to activate T-reg cells (Figure 5a,b), the same reaction to PRRSV infection.
A potential explanation for how A4 may activate T-regs is the presence of nsp10. According
to Chen et al. (2017), the nsp10 found in PRRSV can increase the promoter activity of CD83,
a newly identified marker for activated T-reg cells via the signaling pathways of NF-κB and
Sp1 [54]. Finally, we have identified a new recombinant protein derived from PRRSV-2 that
has multiple functions for vaccine development: it can reduce CD163 expression to avoid
viral receptor-mediated entry, repolarize PAMs towards proinflammatory M1 macrophages,
and stimulate TLRs as functional APCs to further induce Th1 immune response. The
other advantage of A3 is related to its removal of 20 amino acids that potentially stimulate
B-cell production. It is our hope that the A3 antigen will not only elicit an innate immune
response but also stimulate the production of antibodies through the activation of B cells.
The activation of antibody-secretion plasma cells is crucial for the development of humoral
immunity against viral infections [55]. Apart from humoral immunity, the recombinant
antigen A3 has proved its potential for initiating a linkage of innate and T-cell-mediated
immunity to provide broad protection against PRRSV.

5. Conclusions

TLRs are important links between innate and adaptive immunity and help to mediate
antiviral immune responses by recognizing virus infections, activating signaling pathways,
and inducing the production of antiviral cytokines and chemokines. This is why TLRs are
crucial during vaccination, as they play a key role in stimulating the immune response
and promoting protection against pathogens. According to the results of our study, the
recombinant PRRSV-2 antigen A3 not only repolarizes M1 PAMs and reduces CD163
expression but also stimulates the activation of TLRs in PAMs. This TLR activation leads to
subsequent CLR and TCR signaling activation for activating Th1 immune response. While
the application of TLR signaling pathways to enhance vaccine effectiveness holds promise,
there are still questions about efficacy, feasibility, cross-strain specificity, and safety that
need to be further explored.
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