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Abstract: Kaposi’s sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus
subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to
hijack host E3 ubiquitin ligases to modulate the host’s immune response and to support the viral life
cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication
and transcription activator) hijacks the host’s ubiquitin–proteasome pathway (UPP) to target cellular
and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA’s targets
are either potent transcription repressors or they are activators of the innate and adaptive immune
response, which block the lytic cycle of the virus. This review mainly focuses on what is currently
known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV
life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in
UPP-mediated protein degradation.
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1. Introduction

As obligate intracellular parasites, viruses need their host to survive and, as a result,
they have adapted themselves to hijack, subvert, and circumvent the anti-viral safe-guards
of the host; and herpesviruses are no exception [1]. Herpesviruses are large, enveloped,
double-stranded DNA viruses that express several viral factors to avoid detection by the
host’s immune system, thereby allowing them to establish lifelong infections. The Her-
pesviridae family is further divided into three subfamilies: Alphaherpesvirinae, Betaher-
pesvirinae, and Gammaherpesvirinae. The subfamily Gammaherpesvirinae is comprised of
Kaposi’s sarcoma-associated herpesvirus (KSHV), Epstein–Barr virus (EBV), Herpesvirus
saimiri (HVS), Rhesus macaque rhadinovirus (RRV), and Murine gammaherpesvirus 68
(MHV68). Several viral encoded genes of the Gammaherpesvirinae subfamily are highly
conserved, such as the immediate-early gene ORF50, which encodes the replication and
transcription activator RTA [2]. The aim of this review is to highlight what is known about
the role of KSHV RTA and its contribution to host-immune evasion through the hijacking
of the ubiquitin–proteasome pathway (UPP). Congruently, this review will also touch on
the role of other gammaherpesvirus RTA proteins and their role in immunomodulation
through the UPP.

KSHV, also known as Human Herpesvirus 8 (HHV-8), was discovered in 1994 and has
since been identified as the etiological agent of KSHV Inflammatory Cytokine Syndrome
as well as of several cancers and lymphoproliferative diseases such as Kaposi’s Sarcoma,
Primary Effusion Lymphoma, and Multicentric Castleman’s disease [3–7]. As with all
herpesviruses, KSHV has a biphasic lifecycle—a latent (dormant) state and a lytic (active)
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phase. During KSHV infection, the UPP is essential for viral entry of KSHV into certain cell
types as well as viral egress from infected cells [8]. KSHV will enter the lytic cycle when
its RTA protein is expressed. RTA is an immediate-early viral protein that is a potent viral
transcription factor, which can directly induce the expression of several cellular and viral
genes [9–13]. RTA is necessary and sufficient for the latent-lytic switch of KSHV where all
viral lytic genes are expressed in a temporal, cascade-like manner: immediate-early (IE),
early (E), and late (L) [2]. In addition to being a potent transcription factor, KSHV RTA has
also been shown to ubiquitinate and induce the degradation of proteins through the UPP
with its own intrinsic E3 ligase activity, which is mediated by its RING-like domain [14].
This review encompasses what is known about KSHV RTA’s role in host immune evasion
through the hijacking of the UPP, and examines whether any other gammaherpesvirus RTA
homologs are known to hijack the UPP in a similar function.

2. The Ubiquitin–Proteasome Pathway (UPP)

Ubiquitin (Ub) is a reversible, posttranslational modification that can be covalently
attached to a substrate protein. Ub is a 76-amino acid polypeptide whose sequence and
structure is conserved in all vertebrates [15–17]. Cells utilize the UPP to recycle misfolded
proteins, for the recycling of membrane bound proteins, the regulation of gene transcription,
DNA repair and signaling pathways, and to control the expression of tightly regulated
proteins like cell cycle regulatory factors [18–22]. The UPP is composed of multiple enzymes
that function in a temporal cascade: E1—ubiquitin activating enzyme, E2—ubiquitin
conjugating enzyme (ubiquitin carrier protein), and E3—ubiquitin-protein ligase [23–25].
There are only two E1 enzymes, approximately 40 E2 enzymes, and 500–1000 E3 ligases
(Figure 1) [26–28].
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Figure 1. The ubiquitin–proteasome pathway is comprised of three enzymes that function in a
temporal cascade leading to cell signaling, protein degradation, DNA repair. The enzymes involved
in this cascade are the ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and
ubiquitin ligase enzyme (E3). The amount of each type of enzyme in depicted above with E1 being
the most conserved amount vertebrates while there are several E2 proteins that can transfer ubiquitin
to a variety of E3 ligases.

The E1 activates Ub through ATP hydrolyses causing the formation of a thioester
bond between a cysteine in E1′s active site and the carboxyl terminus of Ub [29]. It then
transfers the activated Ub to the ubiquitin-conjugating enzyme (E2) using another thioester
bond [29,30]. The Ub molecule can then be transferred to the target protein through two
different mechanisms by the ubiquitin conjugating enzyme when the E2 interacts with the



Viruses 2023, 15, 730 3 of 20

ubiquitin ligase protein (E3) [27]. The E3 mediates the transfer of Ub to the substrate protein
through a covalent isopeptide bond using various mechanisms that involve different E3
proteins with distinct protein domains: (i) E3 can bring the substrate and E2 into close
proximity with the target protein to directly transfer Ub to the substrate protein (such as
E3 ligases with Really Interesting Gene (RING) domain) or (ii) the E2 transfers the Ub to a
cysteine residue of a Homologous to E6AP C-terminus (HECT) domain- or RING-between-
RING (RBR) domain-containing E3 ligase that leads to a E3-Ub intermediate before the E3
transfers the Ub to the substrate protein (Figure 2) [31,32].
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Figure 2. The ubiquitin–proteasome pathway. E1 activates and transfers ubiquitin to E2, the ubiquitin-
conjugating enzyme then binds to an E3 ligase, where the ubiquitin is transferred onto the substrate
protein. When ubiquitin in linked through K48 chain on a substrate protein it can lead to the
degradation of the substrate through the proteasome. However, ubiquitin is a reversible post-
translational modification that can be removed by deubiquitinating enzymes (DUBs) to prevent the
degradation of a substrate through the UPP.

The addition of polyubiquitin (polyUb) chains, multiple Ub molecules in the form of an
isopeptide-linked polymer, to different internal lysine residues of the substrate protein by an
E3 ligase can lead to multiple outcomes for the substrate protein such as internalization of
a membrane bound protein, activation, cell signaling, or degradation [33–36]. For example,
lysine 48-linked (K48) polyUb chains lead to the proteasomal degradation of the target
substrate, whereas K63 polyUb can modulate protein trafficking and signal transduction
pathways [37,38]. The sites within each substrate protein in which these PolyUb chains
are deposited can differ based on the substrate protein itself, as well as the E2 and E3
enzymes conjugating Ub onto the target proteins [27]. To date, there are six identified
amino acid residues/sites where a PolyUb chain can be polymerized from: Lysine, Serine,
Threonine, Tyrosine, Cysteine, and the free Methionine residue of the N-terminus [39,40].
Polymerization of a PolyUb chain from an internal lysine residue is the most canonical site
for ubiquitin conjugation of proteins targeted for degradation through the UPP. However,
proteins can be targeted for degradation through N-terminal ubiquitination, a non-canonical
pathway as well (Figure 2). This mechanism is not synonymous to the N-end rule, where an
E3 ligase recognizes and binds the N-terminus of a protein containing a degron sequence,
which leads to the conjugation of PolyUb chain to an internal lysine residue [41]. In contrast,
the N-terminal ubiquitination occurs in a lysine-independent mechanism, where a lysine-48
linked polyUb chain is polymerized from the free N-terminal residue of the target protein
(Figure 2) [42].
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The covalent binding of ubiquitin molecules to substrate proteins can be reversed
by a superfamily of cellular ubiquitin specific proteases called deubiquitinases (DUBs)
(Figure 2) [43]. DUBs play an important role in regulating the ubiquitin–proteasome
pathway, cell signaling, gene silencing, and the stabilization and subcellular localization of
proteins [44,45]. During the co-evolutionary adaptation to their hosts, viruses additionally
evolved to utilize both the UPP and DUB pathways to modulate the function of cellular
and viral proteins in infected cells with the goal of resisting detection by the hosts immune
system in order to enable reproduction [46].

3. KSHV-Encoded Viral Factors Inducing Protein Degradation

KSHV encodes for several viral proteins to target host or viral proteins for degradation
such as Latency Associated Nuclear Antigen (LANA), K3 (MIR1), K5 (MIR2), Processivity
Factor-8 (PF-8/ORF59), ORF34, and RTA [14,47–52]. These viral proteins either contain
intrinsic E3 ubiquitin ligase activity themselves, or hijack and recruit a host E3 ubiquitin
ligase to degrade a target substrate protein; some viral proteins have the capacity to do
both, depending on the cellular context (Figure 3). These viral factors are important for
immune modulation, the promotion of viral maintenance, or virus production, and the
majority of their roles have been previously discussed in other reviews [53,54]. This review
will focus on what is currently known about the role of KSHV RTA as an E3 ubiquitin ligase
and its homologs within the gammaherpesvirus subfamily.
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the UPP.

RTA and its transactivating function have been studied since 1998; however, its E3
ligase activity was not identified until 2005 [14,55]. While all of RTA’s functions are
fundamental for the survival and dissemination of KSHV, the goal here is to highlight the
importance of RTA’s bimodal activity in targeting proteins for degradation through using its
own E3 ligase activity or by stabilizing and chaperoning host E3 ligases. Since the discovery
of RTA’s E3 ligase activity, literature has shown that RTA preferentially targets sumoylated
proteins for proteasomal degradation through the UPP [56]. This function of RTA helps to
subvert the host’s innate and adaptive immune responses while also modulating the host
transcriptome and protein landscape to promote virus production.

4. RTA Suppresses Innate and Adaptive Immune Responses Induced by KSHV Infection

The innate immune system is the host’s first line of defense against viruses, which
can be triggered during both primary KSHV infection and viral reactivation from latency.
The innate immune system is comprised of several pattern-recognition receptors (PRRs)
that can detect foreign materials produced from pathogens called pathogen-associated
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molecular patterns (PAMPs). In this regard, adaptor proteins such as MyD88, TRIF and
TRAM play a crucial role to initiate a cascade of several signaling molecules downstream of
the PRRs leading to the activation of NF-κB and IRFs ultimately resulting in the production
of type I IFN and various proinflammatory cytokines [57]. RTA is also known to inhibit
pathways of the host’s immune responses [14,58]. In fact, 50% of the proteins that RTA is
known to target for degradation are instrumental in the regulation of innate and adaptive
immune system. RTA blocks innate immune responses mediated by TLR3 and TLR4 signal
transduction and type I IFN induction through targeting TRIF, MyD88, IRF3, and IRF7.

4.1. Toll-Interleukin-1 Receptor Domain-Containing Adaptor Protein-Inducing Interferon β (TRIF)

TRIF, an adaptor protein in the TLR signaling pathway, is necessary to mediate signal
transduction from TLR3 and TLR4 to IRF3, resulting in type I IFN production [59,60]. KSHV
RTA was shown to mediate the degradation of TRIF through the ubiquitin–proteasome
pathway as another mechanism to suppress host innate immunity [61]. It was later found
that the activation of the TLR3-TRIF pathway enhanced the expression of RTA through
increasing the translation efficiency of RTA mRNA [62]. In the context of KSHV infection, it
is believed that this feedback loop is activated during KSHV infection where the TRL3-TRIF
pathway is stimulated and increases the amount of RTA protein expression, which, in turn,
degrades TRIF to dampen type I IFN production [62].

4.2. Myeloid Differentiation Factor 88 (MyD88)

MyD88 is a multifunctional adaptor protein that is essential for mediating cell signaling
initiated by interleukin-1 (IL-1), IL-18, and IL-33 receptors and all TLR signaling except
for TLR3 [63–65]. As such, MyD88 is integral to innate and adaptive immunity [66].
During KSHV lytic reactivation and de novo infection, KSHV RTA has been shown to
mediate the degradation of MyD88 through the ubiquitin proteosome pathway using its
E3 ubiquitin ligase activity by direct interaction and poly-ubiquitination of this adaptor
protein [67]. Thus, KSHV RTA is equipped to dampen innate and adaptive immune
responses by targeting MyD88 and TRIF, two vital adaptor proteins for receptor-mediated
signal transduction, for degradation through the ubiquitin–proteasome pathway.

4.3. Interferon Regulatory Factors 3 and 7 (IRF3 and IRF7)

Type I interferon (IFN), IFN-α and -β are activated during viral infection and can
block viral replication through several different mechanisms that are employed by the
vast range of IFN-induced gene products [68]. Interferon regulatory factors (IRFs), more
specifically, IRF1, IRF3, IRF5, and IRF7, are important for the induction of IFNs and
Interferon-stimulated genes (ISGs) during viral infection [68,69]. As with other viruses,
KSHV encodes for several viral proteins to counteract the IFN signaling pathway, such
as viral interferon regulatory factors (vIRFs), ORF10, ORF45, K8, ORF52, LANA, and
RTA [67,70–77]. It was first shown that RTA itself can bind and degrade IRF7 via the
ubiquitin–proteasome pathway using its own E3 ubiquitin ligase activity through its RING-
like domain [14]. This mechanism leads to the attenuation of type I IFN production, and its
antiviral affect during KSHV de novo infection and reactivation [14]. The same group later
found that in addition to RTA’s direct interaction with IRF7, KSHV RTA also stabilizes and
recruites the cellular HECT E3 ubiquitin ligase RAUL (RTA-associated ubiquitin ligase, also
known as KIAA10 or UBE3C) to target both IRF3 and IRF7 for degradation through the
ubiquitin–proteasome pathway [58]. RTA was shown to bind, stabilize, and enhance RAULs
E3 ligase activity towards IRF3 and IRF7 by recruiting host deubiquitinating enzyme, USP7,
to further stabilize RAUL [58]. Taken together, this shows that RTA hijacks USP7 to bind
and sustain RAUL expression, leading to an enhanced suppression of IRF3, IRF7, and type
I IFN production and antiviral activity.
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4.4. Signal Transducer and Activator of Transcription 6 (STAT6)

STAT6, like all seven members of the STAT family, are transcription factors that are
activated through cytokines and growth factors to mediate signal transduction from the
plasma membrane to the nucleus [78]. STAT6 is vital for both innate and adaptive immune
responses. While STAT6 can be stimulated by interleukins 3 and 15 (IL-3 and IL-15), growth
factors, and interferon alpha, it is primarily activated by IL-4 and IL-13 [79]. A unique
characteristic of STAT6 is that it can be activated in a JAK-independent manner during viral
infection, which leads to the production of the chemokine CCL2 to recruit T cells to the
site of infection [80]. Additionally, STAT6 plays a role in the maturation and proliferation
of B cells, induces the expression of MHC class II, and promotes immunoglobulin class
switching to IgE and IgG1 [79]. KSHV has been shown to hijack STAT6 activation and
subcellular localization to promote cell survival and viral latency [81–83]. During KSHV
latency, it has additionally been shown that LANA induces the cleavage of STAT6 so that it
acts as a dominant negative regulator of the transcription to RTA, thus ablating the entire
lytic cycle [81]. It was recently discovered that during KSHV lytic reactivation, STAT6 is
downregulated at the protein level and not at the RNA level in PEL, iSLK, and endothelial
cells [84]. It was determined that KSHV RTA rapidly polyubiquitinated STAT6 through
K48 and K63 linked chains leading to the induction of its proteasome- and lysosome-
mediated degradation [84]. KSHV RTA’s E3 ligase activity in its RING-like domain was
also required to mediate the ubiquitination of STAT6. The degradation of STAT6 by KSHV
allowed for the cellular E3 ligase TRIML2 to by ubiquitinated to prolong cell survival and
a robust lytic cycle [84]. Overall, Weng et al., determined that STAT6 must be degraded
and TRIML2 must be ubiquitinated for KSHV RTA to be robustly expressed leading to
a potent activation of the KSHV lytic cycle [84]. They also determined that EBV, HCMV
and HSV-1 lytic replication leads to the degradation of STAT6 and the ubiquitination of
TRIM2L suggesting that the IE proteins from each of these viruses may also play a role in
the degradation of STAT6 and ubiquitination of TRIML2 [84]. Further studies will need to
be conducted to determine if there is a conserved interplay between the IE proteins of each
human herpesvirus subfamily from Herpesviridae and STAT6 or if this is a compounding
affect from several viral factors in certain herpesvirus subfamilies.

4.5. Major Histocompatibility Complex, Class II, DR Alpha (HLA-DRα)

HLA-DRα is a member of the MHC-II protein family and has an important role in
the adaptive immune response by presenting cellular and viral antigens to CD4 T helper
cells [85]. It is important for KSHV to evade this mechanism to ensure the survival of
infected cells in the host. RTA was shown to directly bind and promote the degradation
of HLA-DRα [86]. It was also determined that in addition to RTA directly inducing
HLA-DRα’s degradation, it can also upregulate the expression of the cellular E3 ligase,
MARCH8, to promote the internalization and degradation of HLA-DRα through the
ubiquitin–proteasome pathway [86,87]. In addition to RTA targeting MHC class II molecule
for degradation, KSHV also encodes for two additional E3 ligases, K3 and K5, to mediate
the protein degradation of MHC class I molecules [49,88]. RTA working in concert with
these two other viral E3 ligases KSHV can robustly repress the adaptive immune response
towards infected cells.

5. RTA-Mediated Degradation of Cellular Repressors of RTA

After de novo infection of KSHV, in most cell types, the default state of the KSHV is
latency. During latency, several cellular factors are upregulated to promote viral mainte-
nance by repressing lytic gene induction. In turn, during KSHV reactivation, RTA is now
known to target a couple of these factors for degradation to promote its own expression
and consequently the entire viral lytic cycle.
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5.1. Inhibitor of DNA Binding Protein (ID) Family

All four members of the ID protein family, ID1-ID4, are helix-loop-helix proteins
and potent transcriptional repressors [89]. In 2014, it was shown that LANA upregulates
ID1, 2, and 3 in KS lesion through the BMP-Smad1 pathway and they are involved in
KSHV-induced tumorigenesis [90]. Our group has recently shown that RTA induces the
degradation of ID2 during lytic reactivation of KSHV in primary effusion lymphoma (PEL)
cells. We demonstrated that RTA interacts with ID2 and polyubiquitinates it through
N-terminal ubiquitination to induce the degradation of ID2 through the UPP in order to
promote its own expression and virus production [91]. To our knowledge, this was the
first study to demonstrate that KSHV RTA can induce the N-terminal ubiquitination of a
substrate protein. We also interrogated whether the ability of KSHV RTA to target ID2 for
degradation through the UPP was evolutionarily conserved between other RTA proteins
from Gammaherpesvirinae and the members of the ID protein family. We determined
this interplay between the Gammaherpesvirus RTAs from KSHV, EBV, MHV68, and all
members of the ID protein family was indeed conserved by showing that each ID protein
was robustly reduced in the presence of each gammaherpesviral RTA [91]. Additional
studies will be needed to further elucidate the exact mechanism of how KSHV, EBV, and
MHV68 RTA degrades each ID protein as well as its importance for the regulation of the
life cycle of different gammaherpeviruses.

5.2. Hairy/Enhancer-of-Split Related with YRPW Motif Protein 1 (Hey1)

During KSHV latency, LANA promotes KS angiogenesis by activating the Notch
signaling pathway and hijacking Hey1, a downstream target of Notch [92]. Hey1 is a
basic helix-loop-helix (bHLH) transcription repressor. By homo-/hetero-dimerizing with
other bHLH proteins, Hey1 will bind a target promoter and recruit corepressors such as
mSin3A [93]. RTA was shown to induce Hey1 expression while Hey1 can repress the RTA
promoter, which results in the maintenance of latency [94]. Another study found that,
RTA induces the degradation of Hey1 through the UPP during KSHV reactivation in PEL
cells [94,95]. When considering both studies, their findings coincide with the timepoints
interrogated during the lytic reactivation of KSHV, since Gould et al. explored the interplay
between Hey1 and RTA within the first 24 h of KSHV reactivation while Yada et al. looked
at or after 24 h [94,95]. Taking these two observations together, there seems to be a cyclic
feedback loop between RTA and Hey1. While RTA initially depletes Hey1 by targeting it for
degradation through the UPP up to 24 h post-reactivation to allow for the robust induction
of RTA, Hey1′s mRNA abundance eventually increases, and its protein level rebounds to
suppress RTA expression allowing for the lytic cycle to progress through the early and late
stages of reactivation [94,95]. This exchange by RTA with Hey1 subtly mimics the interplay
between RTA and the cellular repressor K-RBP.

5.3. KSHV-RTA Binding Protein (K-RBP)

K-RBP, also known as MGC2663 or ZNF426, is a Kruppel-associated box (KRAB)-
containing zinc finger protein, which was discovered to interact with KSHV RTA in the yeast
two-hybrid system [96]. It was demonstrated that K-RBP binds RTA and acts synergistically
with it to enhance the transactivation of several of RTA’s target genes such as ORF57, K8,
vMIP-I (aka K6), and RTA itself [96]. However, it was later determined that while K-RBP
does promote RTA transactivation, it is only when K-RBP is at lower concentrations [97,98].
When K-RBP is more abundant in the cell, it acts as a transcriptional repressor even in the
context of KSHV infection [97,98]. After K-RBP’s repressive function was revealed, it was
determined that during KSHV reactivation, RTA itself promoted the degradation of K-RBP
through the UPP using its RING-finger like domain to promote the lytic cycle of KSHV [99].

5.4. Structural Maintenance of Chromosome 5 and 6 (SMC5/6) Complex

The SMC5/6 complex is one of four chromosome maintenance complexes that share
core characteristics: a pair of SMC ATPases hinge to bring their N- and C-terminal together
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to form a ring structure that contains ATPase and DNA-binding activity [100]. There
are six additional members in the SMC5/6 complex; they are called non-SMC elements
(NSEs), and each cofactor plays an important role in the structure and function of the
complex [100,101]. The SMC5/6 complex plays an important role in chromosomal DNA
repair, such as double-stranded breaks, and it is also involved in replication fork stabil-
ity [100]. This complex has also been shown to further compact the DNA through its
ATPase activity [100]. The SMC5/6 complex has been shown to repress the replication of
DNA viruses through epigenetic silencing, such as Hepatitis B virus, unintegrated viral
DNA of Human Immunodeficiency Virus (HIV), Human papillomavirus (HPV), Epstein–
Barr virus (EBV), and Kaposi’s Sarcoma-associated Herpesvirus (KSHV) [102]. Recently,
it was determined by Han et al. 2022 that the SMC5/6 complex inhibits the lytic repli-
cation of KSHV when overexpressed, while the knockdown of the complex promotes
lytic replication of KSHV [103]. Additionally, they determined that the SMC5/6 complex
suppressed the lytic cycle of KSHV by removing H3K27ac from the KSHV chromatin in
a ATPase and DNA-binding dependent mechanism to cause further condensation of the
viral episome [103]. However, they found that during reactivation of the virus KSHV RTA
targets the SMC5/6 complex for ubiquitination and subsequent degradation through the
UPP [103]. Interestingly, they determined that the RTA proteins from Epstein–Barr virus
(EBV), nonhuman primate rhesus Rhadinovirus (RRV), herpesvirus saimiri (HVS), and
murine γ-herpesvirus 68 (MHV68) can also downregulate SMC5 and SMC6 suggesting
an evolutionarily conserved interaction between the γ-herpesvirus RTAs and the SMC5/6
complex [103].

6. Viral Targets of KSHV RTA for Protein Degradation
6.1. K-bZIP (K8)

K8 is an early viral protein induced upon KSHV reactivation [104]. Unlike RTA,
K8 is not sufficient for the latent-lytic switch of KSHV; however, it is instrumental for
viral replication to occur during de novo infection [105]. K8 is responsible for binding
to ori-Lyt and recruiting the viral and cellular factors that make up the viral replication
complex in conjunction with RTA [106,107]. It has been shown by several groups that
K8 binds to RTA in reactivated cells to selectively repress RTA transactivation activity
towards certain viral promoters and repress the viral lytic cycle when over-expressed
during reactivation [108,109]. There is currently only one study that has demonstrated that
RTA causes the degradation of K8 through the UPP [99]. Further studies will be needed
to determine the exact mechanism by which RTA targets K8, what the cellular context is
for K-bZIP degradation, and why K8 is targeted. However, based on the literature as a
whole, it seems that RTA ablates the expression of K8 to further promote the lytic cycle
since studies have shown that RTA overexpression can compensate for the loss of K8 to
progress through the lytic cycle [110].

6.2. Latency-Associated Nuclear Antigen (LANA)

LANA encoded by the viral gene ORF73 is an essential latent viral protein necessary
for viral episome maintenance, as well as host immunomodulation, during KSHV latency
(reviewed in [111]). In addition to this, LANA regulates specific viral and host factors
to promote latency. LANA antagonizes RTA’s expression in several different ways. For
example, LANA represses RTA expression by recruiting KAP1 onto the promoter of ORF50
and by binding RBP-Jκ, a known activator and co-factor of RTA, to block the Notch signaling
pathway while also sequestering it away from RTA’s promoter [112–117]. It has been
shown that LANA is targeted by RTA for proteasomal degradation when they are co-
transfected into cells [99]. Further studies are needed to elucidate the exact mechanism of
the RTA-mediated degradation of LANA and to determine if RTA can target LANA for
protein degradation in KSHV-infected cells as well. LANA and all other latent proteins
are constitutively expressed and are essential for viral maintenance so even though RTA
does target LANA for proteasomal degradation, its protein level is not fully abolished.



Viruses 2023, 15, 730 9 of 20

Instead, it seems that RTA reduces its abundance to a certain level that is permissive
for robust KSHV lytic reactivation [99]. Further studies are needed to elucidate whether
RTA’s E3 ligase activity is necessary for LANA’s degradation or if it is mediated through a
different mechanism.

6.3. vFLIP

The viral FLICE inhibitory protein (vFLIP) encoded by ORF71 is constitutively ex-
pressed during KSHV latency similar to LANA, and it promotes KSHV latency by inhibiting
viral lytic replication [118]. vFLIP interacts with and activates the IκB Kinase complex and
subsequently leads to the induction of the NFκB pathway which in turn inhibits lytic gene
activation [119–121]. The vFLIP-mediated stimulation of this pathway has been shown
to be necessary for the maintaining of viral latency in promoting cell survival [122,123].
RTA has been shown to mediate the degradation of vFLIP through the UPP by recruiting
host E3 ubiquitin ligase, ITCH [124,125]. This interaction results in the downregulation of
NFκB signaling, a reduction of TNFα production, and an induction of lytic gene expres-
sion [124,125].

7. Gammaherpesvirus RTA Homologs

KSHV RTA targets both cellular and viral proteins for proteasomal degradation to
promote the lytic cycle of KSHV (Figure 4). By targeting these cellular and viral factors
KSHV RTA establishes an environment that promotes efficient virus production without
alerting the hosts immune cells and being eradicated. Because KSHV RTA has homologs in
other gammaherpesviruses that all have similar transactivation functions, we looked to see
if other studies had shown that these RTA homologs could also target specific cellular and
viral proteins for degradation through the UPP [126,127].
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7.1. The Lymphocryptovirus: Epstein–Barr Virus (EBV)

EBV is a lymphocryptovirus that can cause infectious mononucleosis, Burkitt lym-
phoma, nasopharyngeal carcinoma, Hodgkin’s lymphoma, and other cancers [128]. In EBV,
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Rta upregulates the expression of Zta to induce reactivation from latency, however, it does
not play the same sole master regulatory role as KSHV’s RTA [129,130]. In addition to being
a transactivator protein, EBV Rta has immunomodulatory effects by negatively regulating
the promoter activity of IFN-β as well as IRF3 and IRF7 endogenous expression at both
the protein and RNA level [131]. It was also demonstrated, through co-transfection in
HEK293T cells, that expression of FLAG-tagged IRF1, IRF2, IRF3, and IRF7 were abolished
in the presence of Rta [131]. Although this group did not use proteasome inhibitors to see
if IRF1, IRF3 and IRF7 protein levels could be restored in the presence of RTA, this data
infers that EBV Rta is inducing the downregulation of these IRFs at the protein level [131].
An additional study identified that EBV Rta can induce the downregulation of the SMC5/6
complex at the protein level although they also did not use a proteasome inhibitor to test
if EBV Rta degraded the complex through the proteasome pathway [103]. Since KSHV
and other IE proteins from other herpesvirus subfamilies have been shown to induce the
degradation of IRFs, it is possible that EBV Rta may also have this ability even though it
was not explicitly indicated in this study [131]. However, another study demonstrated that
EBV Rta can induce the degradation of SUMOylated proteins in a proteasome-dependent
manner, which resembles to the activity of KSHV RTA [56,132]

7.2. The Rhadinoviruses: Herpesvirus Saimiri (HVS), Rhesus Monkey Rhadinovirus (RRV), and
Murine Gammaherpesvirus 68 (MHV-68)

Herpesvirus Saimiri (HVS) is a gammaherpesvirus that causes persistent infection of a
subset of T lymphocytes in squirrel monkeys (Saimiri sciureus) and is part of the Rhadinovirus
genus [133,134]. While HVS does not cause maladies in its natural host, squirrel monkeys,
it has been shown to cause acute T cell lymphomas in several New World primate species
such as cinnamon ringtail monkeys, common marmosets, and owl monkeys [135–137]. As
with all gamma-herpesviruses, HVS encodes an ORF50 gene, also referred to as EcoRI-D
or HVS R protein, and shares significant sequence homology to EBV Rta and induces the
reactivation from latency [138–140]. However, to date, no studies have determined if HVS
R protein contains any intrinsic E3 ligase activity or can stabilize and chaperone a host E3
ligase. However, Han et al., identified that HVS R protein can downregulation the SMC5/6
complex at the protein [103]. Additional studies are needed to determine if the HVS R
protein contains intrinsic E3 ligase activity.

Rhesus monkey Rhadinovirus (RRV) was discovered in 1997 and was found to be
very closely related to KSHV in both genome organization and sequence [141–145]. RRV
lineage 1 (RV1), the most highly related lineage to KSHV, causes similar disease in rhesus
macaques that KSHV does in humans. Co-infection of rhesus macaques with simian
immunodeficiency virus (SIV), the equivalent to human immunodeficiency virus (HIV)
in humans, and RRV leads to the development of B cell hyperplasia lymphoproliferative
diseases that are seen in human AIDS patients that are coinfected with KSHV [146–149].
While both RRV and KSHV RTAs have been shown to have high transactivation activity
and have high sequence homology in their N-terminus, there are no studies that have
looked at the potential E3 ubiquitin ligase activity of RRV RTA [150–152]. The sequence
homology of RRV RTA in the N-terminus, where the RING-like domain of KSHV RTA
is located, suggest that there is potential E3 ligase activity of RRV RTA that may be an
untapped area in the field of RRV virology. It is possible that there may be divergence in the
type of targets RRV RTA may have from KSHV RTA’s E3 ligase activity, since we discovered
that RRV RTA was unable to cause the downregulation of the ID protein family, while
KSHV, EBV, and MHV68 RTA could [91]. There is, however, one study that demonstrated
that RRV RTA can induce the downregulation of the SMC5/6 complex at the protein level.
Although this group did not use a proteasome inhibitor to test if EBV Rta degraded the
complex through the proteasome pathway, this group’s evidence suggests that RRV RTA
might have intrinsic E3 ligase activity [103].

Murine gammaherpesvirus 68 (MHV-68), also known as Murid Herpesvirus-4 and
γHV68, naturally infects small, wild rodents and can cause pathogenesis in inbred and
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outbred mice [153–155]. Unlike other gamma-herpesviruses, initial MHV68 infection can
occur intranasally where it travels to the lung for up to a week before causing splenomegaly
and establishing latency in activated/cycling B cells [156–160]. Similar to EBV and KSHV
RTA, MHV-68 RTA plays a critical role in viral reactivation from latency and the expression
of its viral early and late genes during lytic replication [161,162]. To our knowledge, there
has been just one group that has demonstrated the E3 ligase activity of MHV68 RTA where
they discovered that RTA contains E3 ligase activity, which allows it to ubiquitinate and
induce the degradation of RelA through the ubiquitin–proteasome pathway to suppress
NFκB activation and cytokine production [163]. However, there is another group that has
implied that MHV68 RTA may also induce the degradation of SMC5/6 complex [103].

8. Structural Comparison of Gammaherpesvirus RTAs

Gammaherpesvirus studies have currently determined that the RTA encoded by KSHV
and MHV68 contain E3 ligase activity while EBV Rta’s putative E3 ligase activity has been
inferred but not determined [132,163]. There are no current studies indicating that HVS or
RRV encoded RTAs have intrinsic E3 ligase activity. There are several different types of
E3 ubiquitin ligases, but the type of E3 ligase domain that KSHV RTA resembles most is a
RING E3, because they are cysteine rich [14,164]. RING E3 ligases are known to coordinate
two zinc ions in their alphahelical domains [164]. KSHV RTA is not considered a RING
E3 ligase because it does not meet all the criteria, but is considered RING-like because
of its Cys/His rich-region from amino acid positions 118–207 [14,54]. Further studies
interrogating whether EBV, RRV, and HVS RTA also contain ubiquitin ligase activity would
be instrumental to the field of gammaherpesvirology since this could suggest evolutionary
conservation in the types of substrate proteins that these gammaherpesvirus RTA proteins
target for degradation. For example, our group recently published findings suggesting this
phenomena with MHV68, EBV, and KSHV RTA since they were all able to downregulate
protein level of all the ID protein family members [91].

The alignment of the amino acid sequences of all the gammaherpesvirus RTAs implies
a slight homology in their N-terminal region where KSHV RTA’s RING-like domain is
found (Figure 5). To further examine this sequence, we used the protein structure pre-
diction software AlphaFold to determine if EBV RTA structurally contains the E3 ligase
domain of KSHV and MHV68 in the same region based on the predicted folding of each
RTA protein [165]. The resulting structures were then superimposed using the software
program Coot and figures were made in PyMOL (version 0.9.4; Schrodinger) for visu-
alization (Figure 6) [166]. Figure 6 shows the structures of the RTA protein of KSHV
(blue) in A, EBV (magenta) in C, and MHV68 (green) in E, with corresponding close-up
views in B, D, and F, respectively. The views are oriented around the RTA residues C131,
C141, and H145 of KSHV, which have been implicated in the E3 ligase activity of KSHV
RTA [14,67,94]. Additionally, residues C141 and C152 in MHV68 have also been shown
in the literature to be required for E3 ligase activity [163]. While E156 of MHV68 has
not been shown, this residue is in the same location as KSHV H145 when superimposed,
suggesting it could play a role in the coordination of a zinc atom. EBV has yet to be shown
that it contains E3 ligase activity, but based on the structural modeling we propose that
residues S127, T135, and M140 could act as such a catalytic active site. In fact, serine,
threonine, and methionine residues, even though they are weaker co-factors, have previ-
ously been shown to coordinate zinc [167–169]. Additionally, the three amino acids of EBV
occupy the same special positioning as the three residues observed in KSHV, suggesting a
conserved function.

A superimposition of KSHV, EBV, and MHV68 RTAs is represented in Figure 6G.
Overall, this superimposition of atomic coordinates which minimized the global Root Mean
Square Deviation (RMSD) of these three RTAs are between 26–39 Å when comparing any
two of the RTA proteins. At first glance, this high RMSD would indicate no structural
homology, with variability across the entire family of proteins (Figure 6G), but when only
considering a conserved interior pocket that is present in all three proteins (Figure 6H)
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the RMSD for the alpha helical core (residues 1–340) of KSHV and the alpha helical core
(residues 1–340) of MHV68 is 1.3 Å; the core of KSHV and the alpha helical core (amino
acids 1–255) of EBV is 1.5 Å; and the cores of MHV68 and EBV is 1.2 Å. Hence, with these
three low RMSD values, the models indicate a conserved structural pocket exists within
the three RTA proteins.
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Figure 6. The predicted RTA protein structure of KSHV (blue), EBV (magenta), and MHV68 (green)
are depicted in panels (A,C,E) respectively. Additionally, zoom in views of the three gammaher-
pesvirus RTAs are respectively shown in panels (B,D,F) to highlight their three amino acids that
may possibly be involved in zinc coordination. A superimposition of the three herpesvirus RTAs
are shown in panel (G) with a zoom in view in panel (H) highlighting the conserved interior pocket
observed in all three herpesvirus RTAs.
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This structural conservation is significant, specifically as C141 of KSHV, S127 in EBV,
and C141 of MHV68 are structurally invariant, with an RMSD 1.7 Å between side-chain
sulfur and oxygen atoms of respective amino acids. While the other two binding sites in
the pocket are less conserved, they are similar enough between the viruses to suggest a
conserved structure motif for a zinc-binding site. The C131 of KSHV, T135 of EBV, and C152
of MHV68 are between 6.5 and 8.1 Å from one another’s side-chain oxygen or sulfur while
H145 of KSHV, M140 of EBV, and E156 of MHV68 are between 7.8 and 10.6 Å apart from
corresponding nitrogen, oxygen, and sulfur atoms in the residue side-chains of compared
RTAs. These three amino acids between the three viruses add to the hypothesis of a
conserved structure and function of RTA across the family of gammaherpesviruses for
binding zinc that corresponds to the E3 ligase activity.

It was previously reported that KSHV RTA has a RING-like domain from residues
118–207 [14]. In this stretch, there are four additional cysteines at positions 121, 155, 164,
and 196. Interestingly, in the predicted structures all four of these amino acids are located
within the same pocket observed in Figure 6B. As such, these may also be key functional
residues in E3 ligase activity that should be explored further. RING E3 ligases coordinate
two zinc ions in a “crossbrace” arrangement to allow for E2 binding and to catalyze the
addition of ubiquitin onto a substrate protein [170]. Since KSHV RTA contains a RING-like
domain, it is possible it can coordinate two zinc ions within its pocket with eight residues
that could be a combination of those described here or other known metal coordinating
amino acids, such as histidine, threonine, methionine.

9. Conclusions

KSHV encodes several, multifunctional viral proteins to modulate the hosts immune
response and to create an environment conducive for viral maintenance and production
by hijacking the UPP and causing the degradation of several cellular and viral proteins.
Some examples of these viral factors are LANA, K3, K5, PF-8, ORF34, and RTA (Figure 3).
A growing body of evidence shows that RTA is more than just a transcription activator
protein. This review focused on how KSHV RTA targets several cellular and viral factors
to allow for robust lytic reactivation. The substrate proteins of KSHV RTA fit into two
broad categories. They either repress transcription of viral genes, even the RTA promoter
itself, or they are involved in restriction of virus production by triggering the innate and
adaptive immune response (Figure 4). Because KSHV belongs to the Gammaherpesvirinae
subfamily and each virus in this subfamily encodes for an RTA homolog, we were interested
in whether any groups have previously shown that these RTA homologs have E3 ligase
activity similar to KSHV RTA. Using, in silico structural alignment and folding predictions,
we demonstrated that C131, C141, and H145 in KSHV RTA coincide with C141 and C152
in MHV68 RTA (Figure 6). While EBV Rta has not been experimentally shown to contain
E3 ligase activity, it does possess equivalent catalytic amino acids that KSHV and MHV68
encoded RTAs have. Remarkably, the RTAs from KSHV, MHV68, and EBV all contain a
pocket surrounding these three key amino acid residues where we hypothesize zinc could
be coordinated. Additional enzymatic and crystallographic experiments will be needed
to elucidate the significance of these findings and how they contribute to the function of
gammaherpesviral RTAs.
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