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Abstract: Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment
protocols and traditional immunotherapy are poorly effective as they do not significantly increase the
long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative
approach. Combining OVs with some modern treatment options may also provide significant benefits
for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs
and their combination with other therapies. The personalized use of OVs and their combination
with other treatment options would become a significant area of research aiming to develop the most
effective treatment regimens for glioblastomas.

Keywords: glioblastoma; immunotherapy; CAR T; oncolytic viruses; poliovirus; viral vector; recom-
binant strain; cancer immunotherapy; nanoparticles; proteomics

1. Introduction

Glioblastoma remains one of the most aggressive and incurable malignancies [1].
Gliomas represent 30% of primary brain tumors and 80% of all malignant ones [2]. Gliomas
are classified by the World Health Organization (WHO) into four grades, with glioblastoma
categorized as grade IV [3]. These grades indicate a different degree of malignancy and
help to select the proper treatment for each case [4]. In 2021, WHO updated its classification
of central nervous system (CNS) tumors in which genetic features and molecular patterns
alongside histopathological ones are used in designating different kinds of gliomas [1,5].
Glioblastoma is recognized as an IDH-wildtype diffuse glioma and the “IDH-mutant
glioblastoma” term was eliminated [5]. This review uses the abbreviation “GB” to indicate
glioblastoma instead of “GBM”, originally used for glioblastoma multiforme. GB is the
most aggressive glioma, accounting for about 50% of all cases [6]. The median overall
survival for GB ranges from 14.6 to 20.5 months, with less than 5% of patients surviving
five years after diagnosis [7,8]. The standard treatment for GB involves a surgical resection
followed by radiation therapy and chemotherapeutic temozolomide (TMZ) [9]. Along
with the TMZ, four drugs and one medical device are approved by FDA for GB treatment:
bevacizumab (BVZ), lomustine, intravenous carmustine, carmustine wafer plants, and
tumor ultrasound fields [10]. Despite different treatment approaches, GB still has one of
the lowest overall survival rates in all cancer types. No identified causes for developing
GB have been established so far. Some risk factors such as a high dose of radiation [11],
obesity [12], human cytomegalovirus (CMV) [13], and family cancer history [14] are among
the ones to be studied. The molecular characteristics of GB include high intratumoral
heterogenicity [15], tumor-induced immunosuppressed microenvironment [16], low infil-
trating immunity [17], presence of stem-like cells called glioma stem cells (GSCs) [18,19],
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the existence of the blood–brain barrier (BBB) [20], and low tumor mutational burden in
GB [21,22]. Advances in molecular pathogenesis are translated today into a more accurate
characterization of the GB microenvironment, including genomic, epigenomic, transcrip-
tomic, and proteomic characterization and its interactions with the immune system [23].
Therefore, novel therapeutic strategies are urgently needed to surpass the current obstacles
in GB therapy. Oncolytic viruses (OVs) are among the most promising treatments for GB
and brain tumors [24]. At the beginning of the nineteenth century, several studies have
shown that viral infections can lead to the regression of neoplastic lesions [25]. In the
early twentieth century, a woman with acute leukemia showed clinical remission after a
viral infection [26]. Active exploration of oncolytic virotherapy started in the 1990s with
recombinant DNA technologies for virus genome engineering. Herpes Simplex Virus (HSV)
was the first genetic modification designed to selectively destroy GB cells in vitro and
in vivo [27]. Several ongoing clinical trials evaluate the potential of different OVs in GB
treatment [28,29]. OVs use various mechanisms to destroy cancer cells and amplify their
therapeutic effects.

Several immunotherapy combinations with oncolytic viruses are developing to foster
outcomes and minimize adverse effects [30]. For example, immune checkpoint inhibitors
(ICIs) [31], Chimeric Antigen Receptor T therapy (CAR-T) cells [32], vaccine therapies [33],
focused ultrasound therapy [34,35], and novel bioengineered nanoparticles [36] are all in
the pipeline for GB treatment.

In this review, we discuss the status of oncolytic viruses in GB therapy and other
combination therapies that are developing today. Also, we look through recent progress in
preclinical and clinical trials and future perspectives for emerging developments.

2. Oncolytic Viruses in GB

OVs are suitable for GB treatment due to their characteristics: alignment to the brain
environment, no distant metastases, and fast-growing cells that attract virus replication [37].
The antitumor immune response initiates by turning the immunosuppressive microen-
vironment “cold tumors” into immune-responsive “hot tumors” [38]. Immunogenic cell
death (ICD) is characterized by inducing an immune response to indirectly kill the cancer
cells using different mechanisms such as apoptosis, necrosis, and autophagy [39]. This is
represented by releasing tumor-associated antigens (TAAs), damage-associated molecular
patterns (DAMPs), viral pathogen-associated molecular patterns (PAMPs), and several
other cytokines [40]. Oncolytic viruses facilitate the function of antigen-presenting cells
(APCs), which migrate to the lymph nodes to activate the cytotoxic CD8+ T lymphocytes
(CTLs) and recruit them to the infection site leading to tumor cell killing [41] (Figure 1).

The most frequent immune cells in the glioblastoma tumor microenvironment (TME)
are macrophages that originate from peripheral-derived monocytes and are called tumor-
associated macrophages (TAM) [42,43]. TAMs express mainly surface marker M2 and
produce IL-10 and TGF-β with STAT3 expression to favor immunosuppressive condition
“cold” tumors in glioblastoma [44]. Also, the exhaustion of T cells with upregulating
inhibitory molecules and increasing Treg cells are among the characteristics of glioblas-
toma [45]. Furthermore, recent studies show that several chemokine expressions, such as
CXCL2, CX3CL1, CCL5, and CCL2, are significantly higher in glioblastoma [46]. Hence,
oncolytic viruses can benefit the therapy by reversing these conditions in favor of more
immune infiltrating and better tumor killing [47].

Today, virotherapy is considered a promising type of immunotherapy for GB. OVs
are classified into two groups: (1) replication-competent OVs that selectively replicate
in cancer cells; and (2) replication-deficient viral vectors used as vehicles for other ther-
apeutic genes. The first group can be divided into naturally occurring and genetically
engineered viruses. The first are parvoviruses, reoviruses, and Newcastle disease viruses
(NDV). Adenoviruses (Ad), HSV, vaccina viruses (VV), vesicular stomatitis viruses (VSV),
polioviruses, and measles viruses (MV) are vulnerable to genetic manipulation that re-
duces their pathogenicity and increases their tumor selectivity. Specific OVs use selective
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receptors expressed on tumor cells to allow virus replication and further induction of the
antitumor immune response.
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Over 20 oncolytic viruses have been tested in clinical trials for GB treatment. Among
them are HSV-1 [48–50], Ad [51], Reovirus [52], MVs [53,54], NDVs [55], and poliovirus [56]
(Table 1). In addition, new techniques in OVs delivery are improved to avoid the BBB
limitation, as in the convection-enhanced delivery (CED) of the recombinant nonpathogenic
polio-rhinovirus chimera (PVSRIPO) [28]. CED is a sophisticated new technique that uses a
pressure gradient in a catheter to transfer therapeutic compounds in the interstitial spaces
of the CNS [57]. The efficient and safe delivery of oncolytic viruses is crucial for successful
virotherapy. The challenge of delivering viruses to the CNS and the elimination by the
immune system led to choosing intratumoral delivery as the primary way [58]. Neverthe-
less, the oncolytic virus ideally should be delivered systematically to infect primary and
metastatic tumor sites [59]. Fortunately, glioblastoma has a low frequency of metastatic
spread incidence outside CNS [60].
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Table 1. Complete oncolytic viruses in clinical trials for GB patients.

Oncolytic Virus Status Primary Outcome NCT Number

DNA viruses

Herpesvirus

Genetically engineered HSV-1
MVR-C5252 (C5252) Not yet recruiting phase I Safety and tolerability DLTs

and MTD NCT05095441

Genetically engineered HSV-1 M032 Recruiting phase I MTD NCT02062827

A single dose of G207 infused
through catheters into tumors Recruiting phase I Safety and tolerability NCT03911388

Oncolytic viral vector
rQNestin34.5v.2 Recruiting phase I MTD NCT03152318

Adenovirus

Genetically engineered Adenovirus
DNX-2440 Unknown phase I Safety, OS, and ORR 1 NCT03714334

Adenoviral Nsc-crad-s-pk7 Phase I NCT03072134

Adenovirus DNX-2401 Recruiting phase I MTD and Incidence of AEs NCT03896568

Parvovirus

H-1 Parvovirus (H-1PV) Completed phase I/II Safety and tolerability NCT01301430

RNA viruses

Poliovirus

Recombinant nonpathogenic
polio-rhinovirus chimera

(PVSRIPO) administered via CED
into a tumor

Active, not recruiting phase I MTD, DLTs, and RP2D NCT01491893

PVSRIPO Active, not recruiting phase I Toxicity within 14 days after
PVSRIPO treatment NCT03043391

PVSRIPO administered via CED
into a tumor Active, not recruiting phase II ORR rate and DORR at 24 and

36 months NCT02986178

Reovirus

Live, replication-competent
wild-type reovirus REOLYSIN Completed phase I MTD, DLTs, and 6- month

response rate NCT00528684

Combinations of OVs

Combination of modified vaccinia
virus TG6002 and 5-FC unknown phase I/II DLTs and tumor progression

at 6 months NCT03294486

1 Most data were obtained from findings from www.clinicaltrials.gov (accessed on 3 November 2022) using the
search terms “GB” and “oncolytic”; OS overall survival, ORR objective response rate, IFN-γ interferon Gamma,
SOC Standard of Care, DLT dose-limiting toxicities, AE adverse event, MTD maximum tolerated dose, HSV herpes
simplex virus, CED convection-enhanced delivery, RP2D recommended phase 2 dose, ORR objective radiographic
response, DORR duration of objective radiographic response.

Several factors should be accounted for when choosing a method of delivery. That
includes whether the virus can cross the BBB and its immune clearance, the feasibility of
intratumoral delivery, and the dose limit of the virus. The challenge of innovating new
methods that can deliver therapeutic effects to distant tumor sites compared to injected
ones would be critical to the success of virotherapy in the future. Thus, several studies are
testing new modifications to use biological vectors and other bioengineering methods to
enhance virotherapy efficiency. Thus, alternative approaches that include various biological
vectors and bioengineering methods are being tested to improve the therapeutic delivery
of OVs to tumor sites. For example, neural stem cells (NSCs) have been used to deliver the
oncolytic Ad (NSC-CRAd-S-pk7) in phase I clinical trials for glioma patients. This method

www.clinicaltrials.gov
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was safe and effective, with minimal dose-limiting toxicity [61]. In addition, lymphocytes
can be thought to be used as vectors for oncolytic viruses after altering their characteristics
with immortalization by herpes virus saimiri (HVS) [62]. Thus, the emergence of new
treatments is a life necessity. The permanent development of OVs against GB improves
their characteristics and provides effective agents to be tested in clinical trials (Table 1).

2.1. DNA Viruses

Herpes Simplex Virus Type I

The HSV-based oncolytic virus was the first designed virus strain tested for experi-
mental therapy in a murine GB model [27]. HSV-1 is a double-stranded DNA virus and a
member of the Herpesviridae family. HSV-1 attaches to cell surface protein CD111(nectin-1),
which is highly expressed in GB [63]. The granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF)-expressing talimogene laherparepvec (T-VEC) got the approval of the US food
and drug administration (FDA) in 2015 to treat unresectable advanced melanoma [64–66].
Several modified HSV constructs are undergoing clinical trials in patients with GB, in-
cluding G207, HSV-1716, M032, and MVR-C252 (Table 1). Both copies of the RL1 gene
encoding the virus protein (ICP34.5 inducing neurovirulence) were deleted in all HSV re-
combinants [67], leading to enhanced tumor selectivity [68]. The G207 recombinant variant
of HSV with broken viral ribonucleotide reductase (RR) could not replicate in normal cells.
Tumor cells compensate for the loss of RR by synthesizing the homologic gene [69]. The
G47∆ strain represents a third-generation oncolytic HSV-1 (named DELYTACT), which
demonstrated promising results in phase II clinical trials [70]. G47∆ was developed by
adding deletion modification to the ICP47 gene to the enhance anti-tumor response via
immune recognition using MHC class I [71]. G47∆ was initiated in a phase 2 single-arm
trial for 19 adult patients with residual or recurrent glioblastoma. G47∆ was administered
intratumorally in up to six doses. The defined endpoint was met with a one-year sur-
vival rate of 84.2%. Fever was the most common adverse event in 17 out of 19 patients.
Tumor-infiltrating CD4+/CD8+ lymphocytes were observed in the patients’ biopsies [72].
Another phase I/II study of G47∆ in recurrent/progressive glioblastoma patients indicated
a median overall survival of 7.3 months with 38.5% having a 1-year survival rate [73]. These
studies led G47∆ to be granted conditional approval in Japan in 2021. Tumor-specific pro-
motors (such as Nestin-1) are used in recombinant virus rQNestin34.5, controlling ICP34.5
expression for enhanced cytolytic activity in tumor cells [74]. M032 is a recombinant HSV
expressing human interleukin 12 (IL-12) to increase interferon-gamma (IFN-γ) production
and antitumor activity [75,76]. NG34 is a new oncolytic HSV (oHSV)-developed form
of rQNestin34.5 with deletions in the ICP6 and ICP34.5 genes. NG34 revealed a similar
effectiveness to its predecessor though with less toxicity in vivo [77]. rRp450 is another
oHSV that contains a deletion in ICP6 and an insertion of CYP2B1 to enable activating
the prodrug cyclophosphamide (CP) [78]. This virus improved survival in tumor-bearing
mice with enhanced efficacy after adding the CP agent. OV-CDH1 is an engineered HSV
expressing E-cadherin to increase the virus spread in the tumor by increasing the oncolytic
effect and inhibiting the NK-mediated immunity in the infected cells [79,80]. Another oHSV
expresses matrix metalloproteinase 9 (MMP) targeting tumor-specific EGFRvIII mutant
antigen and enhances the tumor spread [81]. Also, this virus bears a specific recognition
site for miR-124 to inhibit important virus protein ICP4 in normal glial cells and improve
its specificity against tumor brain cells [82]. The oHSV that expresses Flt3L has revealed
a complete GB clearance in preclinical studies [83]. Another oHSV expressing TRAIL, a
protein that activates TNF–CD95L and induces apoptosis, exhibited cytotoxic activity in
GB models in mice with prolonged survival rates [84]. oHSV armed with PD-1 antibody
showed curable effects against GB mouse models [85].

Adenovirus

Adenoviruses are double-stranded DNA viruses with icosahedral non-enveloped
structures [86]. Several versions of conditionally replicative adenoviruses (CRads) were
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produced and have given promising results in clinical practice against GB [87]. Additionally,
a genetically engineered adenovirus is currently undergoing clinical trials in patients with
GB alone or combined with other ICIs (Table 1). Another approach in using gene-mediated
cytotoxic therapy was reported to be safe and beneficial in malignant glioma [88]. The
phase II clinical trial was conducted using adenovirus glatimagene besadenovec (AdV-
tk), which contains the HSV thymidine kinase gene that destroys cancer cells after acting
on alacyclovir [89]. Deletion of the viral replication genes is one strategy to avoid off-
targets in normal cells and can still replicate in tumor cells. H101 (Oncorine), similar to
oncolytic adenovirus ONYX-015, was approved in China for the treatment of head and
neck cancer [90,91]. A deletion in the E1B-55K gene in the recombinant adenovirus ONYX-
015 oncolytic restricted viral replication to the p53-defective tumors [92]. Two genetic
modifications were introduced in DNX-2401, a serotype 5 Ad (Ad5)-based OV [93]. A
deletion in the E1A gene and inclusion of an RGD-4C motif in the HI loop of the fiber
redirects virus replication to cells with defective pRB pathways that express αvβ3- and
αvβ5-integrins, both of which are characteristics for glioma cells [94]. The modification
enables adenoviruses to enter cells, even with low levels of their primary receptor on brain
tumor cells, the coxsackie-adenovirus receptor [95]. The second generation of DNX-2401,
DNX-2440 (or Delta-24-RGDOX), expresses the OX40L gene to improve T cell-mediated
immunity by increasing the proliferation of CD8+ specific-tumor T cells [96,97]. Delta-
24-ACT is an oncolytic adenovirus expressing 4-1BB ligand to further stimulate T cells
in murine glioma models [98]. Delta-24-RGD is another oncolytic adenovirus armed
with glucocorticoid-induced TNFR family-related gene ligand (GITRL) that enhanced the
survival and inhibited further rechallenge with glioma cells in mice [99]. Also, using
another oncolytic adenovirus (Delta-24-RGDOX) expressing co-stimulator OX40 ligand
(OX40L) resulted in CD8+ T-cells proliferation and cancer-specific immunity in vivo [100].

Vaccinia Virus (VV)

Vaccinia is a double-stranded DNA virus belonging to the Poxviridae family. VV
helped in the eradication of smallpox. VV can infect any type of cell as it penetrates through
membrane fusion with a non-integrative replication cycle, making it an attractive platform
for oncolytic virus engineering against GB [101]. The only recombinant VV that showed
clinical benefits in patients with brain malignancies is TG6002 [102]. Two gene deletions of
the thymidine kinase (TK) gene and the RR gene were introduced in the TG6002 genome.
Also, the FCU1 gene was inserted to convert the chemotherapeutic prodrug 5-flucytosine
(5-FC) into 5-fluorouracil (5-FU) [103].

Myxoma virus

Myxoma virus (MYXV) is a double-stranded DNA member of the poxvirus fam-
ily [104,105]. MYXV replicates in the cells with a disabled interferon system, such as GB,
where it can induce an oncolytic effect [105]. The M011L-deficient MYXV virus, which has
a deleted version of the viral antiapoptotic protein M011L, increased apoptosis in tumor
glioma cells [106].

Parvoviruses

Parvoviruses are single-stranded icosahedral DNA viruses that belong to the Par-
voviridae family. About 134 distinct parvoviruses serotypes can infect various animal
species [107]. H-1 parvovirus is a minor oncolytic virus that showed antitumor activity
against GB [108]. In addition, H-1PV induces apoptosis in glioma cells and overcomes
their resistance against several chemotherapeutic agents [109]. Preclinical findings of the
H-1PV revealed tumor regression in human U87-MG glioma models in rats [110]. This
led to the initiation of the ParvOryx01 trial in recurrent GB patients (NCT01301430). Par-
vOryx01 indicated the role of tumor-infiltrating lymphocytes (TILs) in stimulating immune
effects in the resected tumor tissues of GB patients [111]. Radiation increases H-1PV viral
oncolysis in high-grade human gliomas and can potentially be considered in animal glioma
models [112]. A combination of bevacizumab and H-1PV extended the mean survival
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to 15.4 months in five recurrent GB patients and caused remission in three patients [113].
These effects are related to the synergistic effect of H-1PV and bevacizumab in modulating
GB TME and inhibiting the vascular endothelial growth factor (VEGF) [114]. The first
clinical evidence of using H-1PV with an immune checkpoint inhibitor (nivolumab) and
bevacizumab was reported in the multimodal clinical trial of three recurrent GB patients.
Tumor regression and clinical improvement were documented in all subjects, with 78%
of cases showing complete or partial remission [102]. Altogether, these data indicate the
potential of parvoviruses for combination immunotherapies against GB.

2.2. RNA Viruses

Measles Virus

Measles virus (MV) is a negative-sense, single-stranded RNA virus and a member
of the Paramyxoviridae family [103]. The MV enters cells by interacting with the viral
hemagglutinin (H) protein and the CD46 cell receptor overexpressed on tumor cells [103].
Recombinant MVs showed significant antitumor activity in glioma xenografts and entered
clinical trials [104,105]. Such recombinants express human carcinoembryonic antigen (CEA)
or the human sodium iodide symporter (NIS) to track viral expression in cells [106]. NIS
permits virus monitoring using different isotopes and could be used to increase virus
cytopathic effects [107,108].

Vesicular Stomatitis Virus (VSV)

The VSV is a negative-sense, single-stranded RNA virus and a member of the Rhab-
doviridae family. The VSV uses the connection between its spike glycoprotein (G) and the
low-density lipoprotein receptor (LDL-R), which is a ubiquitous cell receptor [109]. The VSV
replicates in tumor cells using the aberrations in their interferon system and is used as an
oncolytic agent against several tumors [110,111]. rVSV(GP) and VSV-EBOV are engineered
VSV with the envelope glycoprotein (GP) replaced with GP from the non-neurotropic
lymphocytic choriomeningitis virus and Ebola virus, respectively [112,113].

Reoviruses

Reoviruses are double-stranded RNA non-enveloped viruses that can replicate in the
glioma cells with the activated Ras-signaling pathway [114].

Newcastle Disease Virus (NDV)

NDV is a negative-sense, single-stranded RNA-enveloped virus and a member of the
Paramyxoviridae [115]. The NDV is mainly an avian virus that preferentially replicates in
tumor cells and triggers the type I interferon response by expressing interferon-stimulated
genes (ISGs) in humans [116,117]. Studies show that NDV may be effective against GB [118].

Seneca Valley Virus Isolate 001 (SVV-001)

The SVV-001 is a positive-sense single-stranded RNA member of the Picornaviridae
family [119]. The SVV-001 has exhibited oncolytic activity against solid tumors with
selective tropism to the cells expressing the endothelial receptor TEM8/ANTXR1 [120].
Enriched in several cancer types, TEM8/ANTXR1 is an integrin-like, transmembrane
glycoprotein adhesion molecule that meditates cell movement and its interactions with the
extracellular matrix (ECM) [121]. TEM8/ANTXR1 represents a first biomarker oncolytic
viral therapy using SVV [122]. SVV-001 can cross the BBB intravenously and provide
antitumor activity [123].

Polioviruses

Polioviruses are positive-sense single-strand RNA viruses and members of the Pi-
cornaviridae family [124]. Polioviruses infect cells by using the CD155/PVR receptor
frequently over-expressed on malignant cells [125].

PVSRIPO is based on an attenuated poliovirus type 1 (Sabin) vaccine strain in which
its internal ribosome entry site (IRES) was replaced by IRES from the human rhinovirus
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type 2 to restrict the potential neurovirulence [126,127]. The phase I trial (NCT01491893)
investigating the intratumoral CED of PVSSRIPO in patients with recurrent GB proved
the safety and the absence of neurovirulence. Consequently, the PVSRIPO was granted
a breakthrough therapy status by FDA in 2016 [28]. Furthermore, the data reveal that
the survival rate in this trial was higher, at 24 and 36 months, reaching 21% higher than
the rate among the historical controls. A phase II trial (NCT02986178) of PVSRIPO alone
or in combination with lomustine is going on in GB patients, and its results are much
awaited [128].

RVP3 is a new recombinant poliovirus type 3 vaccine strain with IRES replaced by
the human rhinovirus type 30 that replicates selectively in tumor cells without infecting
normal cell lines [129]. RVP3 revealed oncolytic efficacy on different glioma models and
primary glioma cells from different patients [129].

Sindbis virus

The Sindbis virus is an avian positive-sense single-stranded RNA virus and a member
of the Togaviridae family [130]. Sindbis infects cancer cells by attaching to the laminin
receptor (LAMR) [131] and induces apoptosis by activating the tyrosine phosphorylation
of protein kinase C delta in glioma cells [132].

SFV4miRT is the Semliki Forest Virus with inserted target sequences for miR124,
miR125, and miR134 expressed more in normal CNS cells than in glioma cells [133]. Thus,
this virus has reduced neurotropism with oncolytic efficacy and a safer profile [134]. Re-
cently, studies have shown that the Zika virus (ZIKV) can infect the GB stem cells (GSCs)
and have oncolytic activity on them [135,136]. That suggests that engineering ZIKV to
target GB more selectively without normal neuronal cells can give better therapeutic re-
sults [137,138]. A 10-nucleotide deletion in the 3′ untranslated region of the genome (3-UTR)
resulted in ZIKV-LAV that has better oncolytic efficacy against GB with less neuroviru-
lence [139,140].

In general, most clinical trials with oncolytic viruses for GB proved the safety and effi-
cacy of OVs on glioma cells, but few of them proceed to phase III. Sitimagene ceradenovec,
an adenoviral vector encoding the HSV’s thymidine kinase gene followed by intravenous
ganciclovir, was evaluated in the phase III clinical trial “ASPECT”. However, no significant
effect on overall survival was noticed [141]. Toca511, which consists of the retroviral vector
with cytosine deaminase gene (CD), has entered a phase III trial. The CD gene in Toca511
converts the 5-flucytosine to the cytotoxic drug 5-fluracil to kill cancer cells [142]. Also, this
trial was ended for unclear reasons. It is worth noting that despite the safety and efficacy
of OVs in preclinical, the clinical effectiveness has not reached the promised level.

3. Oncolytic Viruses with Immunotherapy in GB

The most frequent immune cells in the GB tumor microenvironment (TME) are
macrophages that originate from peripheral-derived monocytes and are called tumor-
associated macrophages (TAM) [143,144]. TAMs mainly express surface marker M2 and
produce IL-10 and TGF-β with STAT3 expression to favor immunosuppressive condition
“cold” tumors in GB [145]. Also, the exhaustion of T cells with upregulating inhibitory
molecules and increasing Treg cells are among the characteristics of GB [146]. Recent
studies show that the expression of immunomodulatory chemokines CXCL2, CX3CL1,
CCL5, and CCL2 is high in GB [136]. Hence, oncolytic viruses can benefit the therapy by re-
versing these conditions in favor of more immune infiltrating and better tumor killing [147].
Immune checkpoint inhibitors (ICIs) and CAR-T therapies represent the main mechanisms
against GB. Immune checkpoints, in general, exist to inhibit further immune responses and
undesired immune reactions in a so-called “self-guarding” way to maintain a balanced
immune response. Unfortunately, tumors such as GB can use this mechanism to evade
immune surveillance by increasing immune checkpoints such as PD-1, PD-L1, IDO, and
CTLA-4. The primary role of immunotherapy in GB is to change its “cold” tumor envi-
ronment into a “hot” one that can react to different therapeutic applications. One study
showed that combining the CTLA-4 blocker and IL-12-induced T cell mediated glioma
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rejection in a GB murine model [148]. However, no single ICI demonstrated an apparent
clinical effect in the phase III trials, and the FDA has not issued any approval [32].

Given that most ICIs work in tumors with a high mutational burden [149], GB with a
low mutational burden represents a significant challenge to immune checkpoint blockade
therapy. That explains the need to identify next-generation immune checkpoints and better
characterize the GB biomarkers, including their mutational burden. Also, new strategies
for using oncolytic viruses with ICIs should be developed. The newly discovered cluster
of differentiation 47 (CD47) sends inhibitory signals to the innate immunity and protects
the tumor from macrophage attack [150]. Several studies examined the CD47/SIRPα axis
blockade for GB tumors by targeting CD47 [149]. The Anti-CD47 antibody stimulated
phagocytosis and induced microglia remodeling in GB tumors in vivo [151]. In addition,
the CD47 blockade induced phagocytosis via macrophages, enhancing the overall survival
in human GB models in mice [152].

Additionally, anti-CD47 immunotherapy could remodel the GB microenvironment and
can be combined with other treatments such as OVs, irradiation, and chemotherapy [153].
CD73 is considered a new target for the immune checkpoint as it degrades adenosine
monophosphate (AMP) to adenosine (ADO) that mediates immunosuppression [154]. Pre-
clinical studies of the CD73 blockade in GB models decrease the GB growth and modulate
the microenvironment [155]. The data from several GB immune profiles identify CD73 as a
specific target for human GB therapy [156]. Although all these findings are promising, it
remains to be seen whether the preclinical effects of CD47 and CD73 will be the same in
clinical trials on GB patients [157]. 4-1BB (CD137) is a costimulatory receptor that triggers
T and NK immune cell proliferation and activation [158,159]. Using anti-CD137 agonists
mediates antitumor activity and can be used with other monoclonal antibodies to induce an
antitumor response [158,160]. The combination of new checkpoints targeted with oncolytic
viruses seems to have a promising prognosis, as OVs can induce remodeling of the GB
immunosuppressive environment.

Using OVs with immune checkpoint inhibitors (ICIs) has given promising results in
several studies [161]. MV infection in GB models increased the expression of the PD-L1
molecule [162]. Thus, using both MV and anti-PD-1 antibodies resulted in a better survival
rate in mice glioma models than in each therapy alone [163]. Another study indicated an
enhanced survival rate in GL261 tumor-bearing mice after intravenous infusion of reovirus
expressing GM-CSF followed by anti-PD-1 antibodies [164]. Also, oncolytic adenovirus
DNX-2401 with anti-PD-1 significantly altered the tumor microenvironment and enhanced
the survival of both GL261 and CT2A murine glioma models [165]. Combination therapy
of miR-124 oHSV with anti-PD-1 demonstrated an antitumor immune response in the
GB model [166]. The synergistic effect of oHSV expressing IL-12 with the two ICIs, the
anti-PD-1 and anti-CTLA-4 antibodies, was assessed in a triple-combination therapy [167].
This approach proved its effectiveness in reversing the immunosuppressive TME of GB and
eradicating GSCs [168]. Another study using VSV encoding three TAAs, HIF-2α, Sox-10,
and c-Myc, with two ICIs, the anti-PD-1 and anti-CTLA-4 antibodies, turned out to be more
effective than using VSV alone or with either ICI alone [169]. A phase II clinical trial of
oncolytic virus DNX-2401 in combination with the anti-PD-1 antibodies (pembrolizumab)
indicated a 100% survival rate at nine months in the first treated patients [170]. The parallel
use of the double-deleted Vaccinia virus (vvDD) or MYXV expressing the IL15Rα-IL15
fusion protein with other combinations such as rapamycin, celecoxib, and specific glioma
neoantigen (GARC-1), resulted in a higher efficacy in GL261 murine glioma models [171].
OVs can synergize with CAR T-cell therapy to alter the TME of glioma cells and enhance
T-cell infiltration and effective functions. Several studies revealed the success of such a
strategy in different solid tumors [172,173]. However, a recent study of VSV encoding
interferon beta (IFNβ) showed a reverse effect on CAR-T cells targeting EGFRvIII in B16
murine tumors [174]. Such a result leads to taking into consideration further optimization
to understand all the immunological aspects of this combination [175]. Of note, such a
combination is still to be tested in GB as it possibly would enhance the efficacy of the
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treatment. Several combinations of OVs with the chemotherapeutic drug TMZ revealed
enhanced survival rates [176–178]. The Oncolytic virus Delta-24-RGD increased CD8+ T
cell infiltration in the presence of TMZ, improving overall survival in the murine GL261
model [179]. Toca 511 and TG6002 OVs can convert 5-FC prodrug into cytotoxic 5-FU in
clinical trials [180]. The Oncolytic virus vvDD expressing enhanced green fluorescence
protein (EGFP) in combination with rapamycin or CP prolonged the survival rate in glioma
models of immunocompetent mice [181]. Recently, the clinical potential of CAR-T in GB
therapy was examined using targets of ephrin-A2 (Her2), interleukin 13 receptor alpha-2
(IL-13Rα2), and the epidermal growth factor receptor variant III (EGFRvIII) [182–184].
The first promising results were obtained by specific CAR-T cells against IL-13Rα2 in GB
treatment [185]. Tumor regression and increased levels of immune response (cytokines and
infiltrating immune cells) were observed in the tumor region [186]. Another study revealed
that the infusion of HER-2-CAR autologous virus-specific T cells (HER2-CAR-VSTs) in GB
patients resulted in safe and clinically beneficial progress [187]. No survival benefit was
observed when using EGFRvIII-CAR-T cells in recurrent GB patients expressing EGFRvIII,
even with the secure treatment profile [188]. GB heterogenicity and antigen escape are
the primary mechanisms for avoiding CAR-T therapy, as lower expressions of previous
antigens were noticed [189]. Bispecific T cell engagers (BiTEs) were proposed to reduce
these obstacles by using a bi-targeted platform, which connects T cells to tumor cell-specific
antigens [179]. BiTEs prevented antigen escaping and indicated antitumor activity in GB
treatment [190]. In summary, thoroughly understanding each treatment mechanism is
essential in combining different therapies to choose the most convenient ones. Selecting
the best OVs in parallel with the best delivery method is crucial to address each cell type
and consider a personalized approach here.

Novel Pre-Clinical Oncolytic Viruses in GB

Few new developments have led to approved drug therapies for glioblastoma [190].
The permanent development of new OVs against glioblastoma aims to improve their
characteristics and provide the most promising candidates to be tested in clinical trials.
NG34 is a new oHSV derivate of rQNestin34.5, in which a double deletion in the ICP6 and
ICP34.5 genes is introduced. NG34 revealed a similar effectiveness to its predecessor with
less toxicity in vivo [77]. rRp450 is another oHSV that contains a deletion in ICP6 and an
insertion of CYP2B1 to enable activating the prodrug cyclophosphamide (CP) [78]. This
virus improved survival in tumor-bearing mice with enhanced efficacy after adding the CP
agent. OV-CDH1 is an engineered HSV expressing E-cadherin to increase tumor spread
by protecting infected cells from NK-mediated lysis [79,80]. Another oHSV-expressing
matrix metalloproteinase (MMP) 9 protein that is tumor-specific, EGFRvIII, is a mutant
antigen and enhances tumor spread [81]. Also, this virus bears a specific recognition site
for miR-124 to inhibit important virus protein ICP4 in normal glial cells and improve its
specificity against brain tumor cells [82]. oHSV that expresses Flt3L revealed complete
glioblastoma clearance in preclinical studies [83].

Another oHSV expressing TRAIL, a protein activating TNF–CD95L and causing
apoptosis, exhibited cytotoxic activity in glioblastoma models in mice with a prolonged
survival rate [84]. oHSV armed with the PD-1 antibody showed curable effects against
glioblastoma mouse models [85]. Delta-24-ACT is an oncolytic adenovirus expressing the
4-1BB ligand to further stimulate T cells in murine glioma models [98]. Delta-24-RGD is
another oncolytic adenovirus armed with glucocorticoid-induced TNFR family-related gene
ligand (GITRL) that enhanced the survival and inhibited further rechallenge with glioma
cells in mice [99]. Also, using another oncolytic adenovirus (Delta-24-RGDOX) expressing
the co-stimulator OX40 ligand (OX40L) resulted in CD8+ T cell proliferation and cancer-
specific immunity in vivo [100]. The M011L-deficient MYXV virus, which has a deleted
version of the viral antiapoptotic protein M011L, increased apoptosis in tumor glioma
cells [106]. rVSV(GP) and VSV-EBOV are engineered VSV with the envelope glycoprotein
(GP) to be replaced with GP from the non-neurotropic lymphocytic choriomeningitis virus
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and Ebola virus, respectively [125,126]. SFV4miRT is a Semliki Forest virus with inserted
target sequences for miR124, miR125, and miR134 that are more expressed in normal CNS
cells than in glioma cells [146]. Thus, this virus has reduced neurotropism with oncolytic
efficacy and a safer profile [136]. Recent studies have shown that the Zika virus (ZIKV) can
infect and destroy glioblastoma stem cells (GSCs) [147,148]. This suggests that engineering
ZIKV to target glioblastoma more selectively without normal neuronal cells can give better
therapeutic results [149,150]. A 10-nucleotide deletion in the 3′ untranslated region (3-UTR)
resulted in engineering ZIKV-LAV, which is less neurotoxic and has better oncolytic efficacy
against glioblastoma [149,151].

In general, most clinical trials with oncolytic viruses for glioblastoma confirmed the
safety and efficacy of OVs against glioma cells, but few proceed to phase III. Sitimagene
ceradenovec, an adenoviral vector encoding the herpes simplex thymidine kinase gene
followed by intravenous ganciclovir, was evaluated in the phase III clinical trial “ASPECT”.
However, no significant effect on overall survival was noticed [152]. Toca511, which consists
of a retroviral vector with cytosine deaminase gene (CD,) has entered a phase III trial. The
CD gene in Toca511 converts the 5-flucytosine to the cytotoxic drug 5-fluracile to kill cancer
cells [153]. However, this trial was ended for unclear reasons. It is worth noting that
despite the safety and efficacy of OVs in preclinical studies, the clinical effectiveness has
not reached the promised level.

4. Other Therapeutic Approaches in GB
4.1. Targeting GB-Specific Antigens

Cancer vaccines emerged as a new promising therapy [191]. The most studied antigen
in GB is EGFRvIII. A mutant EGFR is expressed in 25–30 % of GB cases [192]. A pep-
tide vaccine named rindopepimut (or CDX-110) indicated improved median survival of
24 months after targeting EGFRvIII in a phase II trial for GB patients [193]. A phase III was
launched based on previous findings, but no survival benefit was detected compared to the
control group [194]. The reason behind such results could be antigen loss and heterogenous
expression [195]. Recently, another study showed the effectiveness of rindopepimut in
EGFRvIII-positive GB patients in a double-blind, randomized phase II trial [196]. ICT107
is a dendritic-cell (DC) vaccine against GB antigens in HLA-A2-positive GB patients that
led to beneficial outcomes [195]. Another DC vaccine, DCVaxL, which uses tumor lysate
to induce patients’ DCs, gave promising results regarding the median overall survival
(OS) rate in GB patients [8]. However, the results of a large phase III clinical trial of an
autologous dendritic cell vaccine had a median OS of 23.1 months and was considered
superior to the 15–17 median OS in previous trials [33]. Again, the absence of specific GB
antigens and the high rate of heterogenicity hinders the development of more effective
vaccines against GB.

Nonetheless, advances in bioinformatics and sequencing methods led to identifying
neoantigens, tumor-specific antigens derived from somatic tumor mutations. Neoantigens
target personalized antigens in cancer patients to initiate robust T-cell response and anti-
tumor activity [197]. A study on MGMT-unmethylated GB patients showed an increase
in tumor-infiltrating T cells after vaccinating with neoantigens [198]. Unfortunately, the
immune response did not last, and tumor recurrence was observed, revealing clinical ob-
stacles in the tumor microenvironment [198]. In summary, current vaccines are insufficient
to treat GB, given tumor heterogenicity and immunosuppressive factors. Thus, combining
vaccines with other therapies such as oncolytic viruses may be an excellent solution to alter
the defects in the immune response against GB.

4.2. Nanoparticles for GB Treatment

Nanomedicines are therapeutic formulated materials used in different immunotherapy
applications [199]. Nanoparticles (NPs) can enhance GB therapeutic efficacy using their
distinctive properties in increasing bioavailability and accumulation in the TME [200,201]
(Figure 2). NPs can be used as carriers for immunotherapeutic agents such as small
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interfering RNAs (siRNAs), neoantigens, and immune adjuvants [202,203]. Also, these
compounds’ release can be controlled through NPs using their surface-to-volume ratio,
surface modification, and drug-loading capacity [204]. Lipid-based nanoparticles are
compatible with delivering hydrophobic and hydrophilic targeting agents due to their
bilayers of phospholipids structure [205]. In several studies, liposome NPs indicated a
therapeutic effect against GB [201,202]. Applying mannosylated lipid NPs resulted in
tumor regression and macrophage phenotype shift from pro-tumorigenic phenotype (M2
phase) into anti-tumorigenic one (M1 phase) in glioma cells [206]. Another study showed
that a liposome loaded with three different herbal compounds revealed antitumor activity
and suppressing GSCs with repolarizing of TAMs [207]. Combining Paclitaxel (PTX)
chemotherapy and immunotherapy using CpG material as an immune modulator was
encapsulated in chitosan-coated lipid nanocapsules against GB models. Results exhibited
an improved survival rate in mice compared to control groups and the only-treated-with-
PTX group [208]. Lipid nanocapsules (LNCs) with a size of 100 nm efficiently target
myeloid-derived suppressor cells (MDSCs) isolated from GB patients and induced their
inhibition [209]. To notice the clinical significance of NPs is still to be discovered, but their
therapeutic potential is promising.
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4.3. Multi-Omics in GB

Several genetic and epigenetic abnormalities are involved in the molecular pathology
of GB [210]. DNA methylation patterns differ from normal cells, such as the hypermethyla-
tion of MGMT promoter in about 40% of glioma cells [211]. Several studies showed the
importance of miRNAs in controlling other mRNAs in GB tissues [212,213]. Inhibition of
MiR-221/222 reduces tumor growth and malignant cell invasion in a xenograft glioma
model [214]. A recent study showed that chromatin remodeling and histone modification
could accelerate GB growth [215]. Thus, using novel epigenetic therapy in GB treatment is
promising. Histone Deacetylase Inhibitors (HDACi) entered clinical trials to treat gliomas
and recurrent GB [216]. The inhibition of the enhancer of Zeste homolog 2 (EZH2), which
is H3K27 methyltransferase, resulted in the regression of GB primary cell cultures [217].
Developed proteomics using advances in mass spectrometry determines GB’s immunosup-
pressive patterns and protein heterogenicity [218]. Finding new biomarkers characteristic
of GBs could stimulate the designing of new oncolytic viruses that target such unique,
cancer-specific features [219]. Examining cell surface proteins or surfaceome expressions
is appealing to find key-associated genes and proteins for GB treatment. A recent study
identified 87 overexpressed surface proteins in GB models with five mutated proteins,
such as RELL1, CYBA, EGFR, and MHC I [217]. In parallel with proteomics, RNA se-
quencing (RNA-seq) and single-cell RNA-seq enable us to determine associations between
proteomic profiles and poor survival rates in different GB patients’ bulks [220]. Surfaceome
analysis identified six molecular signatures upregulated in GB models: HLA-DRA, CD44,
SLC1A5, EGFR, ITGB2, and PTPRJ [221]. Integrated metabolomic and proteomic data
identify distinct histone H2B acetylation patterns and allow for a better understanding of
the interrelated biological changes in GB models [222]. One study revealed five spatially
distinct transcriptional programs that clarify the tumor-host interdependence in GB [223].
However, a fully comprehensive surfaceome and proteome landscape has not been fully
elucidated. Thus, development in this direction will give potential candidates for new
cell-surface antigens and other proteins as promising targets for new therapeutic purposes.

4.4. 3D Organoid Models in GB

The development of new therapies for GB faces several hurdles in developing preclini-
cal models that resemble the tumor microenvironment (TME) [224]. Current models do
not recapitulate the complex relationships between tumor cells and oncolytic viruses [225].
Thus, engineering three-dimensional (3D) organoid models increases preclinical GB models’
scalability and accuracy in testing new treatments [226]. Complex GB organoids (GBO)
cultures were first gathered from multiple cell types derived from primary patient tumors
to reflect their heterogenicity [227]. Neoplastic cerebral organoids (neoCOR) were devel-
oped via genetically manipulating cerebral organoids to induce GB growth [228]. Later,
cerebral organoid GB co-cultures (GLICO) were generated from patient GSCs co-culturing
with brain organoids to reflect the tumor–brain interactions [229]. Recently, bioprinted GB
organoids were created as a GB-on-a-chip model that contains patient-derived multiple cells
with various tumor gradients [230]. To achieve that, a decellularized porcine brain “bio-ink”
composed of ECM proteins combined with GB cells from resected patients’ tumors. Also,
such models were provided with human umbilical vein endothelial cells (HUVEC) to
supply the organoids with important tumor features. Recently, other enhancements came
to form a “tetra-culture” that incorporates macrophages and resembles immune interac-
tions [231]. Culturing pluripotent stem cell-derived brain organoids with human GB stem
cells (GSCs) in 3D maintains a significant cell fate heterogenicity and establishes a viable
GB model [232]. A recent study indicated the GB organoid model reflects the entire tumor
in practice. Both arms of the study using the patient-derived cells and organoids showed a
similar molecular profile and resistance to a combination of TMZ and radiotherapy [233].
In general, organoids can be an alternative for the current 2D glioma models or the two
in vivo models: the patient-derived xenografts (PDXs) and genetically engineered mouse
models (GEMMs) [234]. Moreover, patient-derived GB organoids (PD-GBO) demonstrate
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representative results for molecular profiling to assign effective personalized treatment
in GB patient models [235]. These organoids can help choose the appropriate oncolytic
virus for each GB patient, depending on identifying biomarkers for specific OVs. Several
models, such as organotypic tissues and slices to mimic the tumor microenvironment, are
used in virotherapy. Individual patient “Virograms” is suggested for screening various
OVs on the patient-derived organoid and choosing the ideal oncolytic agent [236]. One
study suggested the 3D-direct evolution of several serotypes from adenovirus to be tested
on patient organoids to get the most potent and effective viral isolate [237]. Neverthe-
less, establishing such models is laborious and needs cellular architecture and relations
optimization. Problems in choosing the suitable model, reproducibility, cellular fate, and
screening protocols have not been established yet. In the future, co-culturing GB cells
after OV infection with immune cells may provide insights into the immune response
in virotherapy.

5. Future Perspectives and Conclusions

As was described in this review, GB remains one of the most dangerous and ma-
lignant diseases. Oncolytic viruses are of significant promise in treating and activating
the immune system against GB. Several considerations should be considered to get the
most out of OVs. These are the OV’s ability to replicate and infect tumor cells, the status
of the tumor microenvironment, the extent of immune cell infiltration, and the ability to
induce an antitumor response. This review discussed the current aspects of GB treatment
options using several approaches and specified oncolytic viruses currently used or tested in
clinical trials. We also described novel OVs and several combination therapies (particularly
immunotherapy) having potential therapeutic effects. Finally, we listed new techniques
that may help oncolytic virotherapy to increase their impact and improve overall patient
survival. Such approaches include applying nanoparticles in newly diagnosed patients,
screening OVs in 3D-organoids resembling the patients’ tumors, and using multiomics
analysis to understand the GB microenvironment better. Still, the future task in virotherapy
would be to identify new therapeutic biomarkers and better adapt OVs to target these
antigens in an individual–personalized manner. OVs can be the platform for designing
new immunotherapeutic approaches, especially when using CAR-T cells and bi-specific
T-cell engagers. Initial data from clinical trials for many ICIs and vaccine therapies were
disappointing due to tumor heterogenicity. Thus, using and optimizing oncolytic viruses
with such therapies seems to have considerable potential in GB treatment. Recent advances
in personalized medicine revealed many neoantigens and shifts toward personalized vi-
rotherapy. This approach suggests having several choices of OVs for each patient to lower
the tumor burden and improve the overall effect. Many OVs are in clinical trials today, and
several considerations, including viral delivery and optimal dose, are under testing. Ex
vivo personalized models may be developed to choose the most appropriate oncolytic virus
for each patient. In future clinical trials, several OVs will be tested to correlate with tumor
heterogenicity and immune status complexity. New monitoring and evaluation standards
should be applied in virotherapy as novel approaches are tested. Future research should
reveal the mechanism of OVs in different GB models using novel genetic engineering
and viral delivery techniques. In brief, virotherapy as a standalone treatment may be
effective, but combining strategies of immunotherapy and oncolytic viruses with the use of
personalized approaches will pave the way toward a more effective treatment regimens for
GB patients.
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