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Abstract: Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS)
reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system
and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid
(4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA
on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly
decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the
positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment
can restore the weight of JEV-infected mice, decrease the level of IL-1β in serum and alleviate the
abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level
of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA
treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5
RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused
by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001),
but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral
activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to
the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.

Keywords: Japanese encephalitis virus; 4-PBA; UPR signaling pathway; non-structural protein 5

1. Introduction

Japanese encephalitis (JE) is an acute and severe zoonotic infectious disease caused
by the Japanese encephalitis virus (JEV), which induces encephalitis in human beings
and reproductive disorders in pigs, and causes significant harm to public health and the
pork industry. JEV has a positive single-stranded RNA genome, which is cleaved by viral
proteases, producing viral structure proteins of C, PrM, E and non-structural proteins of
NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5. Non-structural proteins of JEV are responsible
for virus replication [1] and are components of the viral replication complex (VRC) formed
on the Endoplasmic Reticulum (ER) [2]. The ER activates the ER stress response due to
the accumulation of newly synthesized unfolded proteins. At this time, cells will produce
a compensatory regulation mechanism to adjust the protein misfolding and homeostasis
imbalance in the endoplasmic reticulum cavity, which is called unfolded protein response
(UPR). After virus infection, the endoplasmic reticulum shows obvious proliferation and
hypertrophy. A variety of pathogens interact with the endoplasmic reticulum. Among
them, 35 animal viruses and one plant virus can induce endoplasmic reticulum chaperones
and activate UPR, and most of them are RNA viruses [3]. JEV can activate three UPR
signal paths. To eliminate pathogens, GRP78 interacts with the E protein of JE to activate
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the downstream XBP1 gene [4]. Endoplasmic reticulum stress plays an important role in
eliminating foreign pathogens and inhibiting virus proliferation.

The aromatic fatty acid, 4-phenyl-butyric acid (4-PBA), inhibits histone deacetylase
and regulates the chaperone effect [5], and can improve the folding ability of ER [6–8] by
regulating the binding of the chaperone hydrophobic region with an unfolded protein. It is
also used to treat FDA-approved urea cycle disorder [9]. In endoplasmic reticulum-related
diseases, 4-PBA regulates the hydrophobic region of GRP78, inhibits downstream inflam-
mation [10] and UPR activation [11] and reduces adipogenesis [12]. When the endoplasmic
reticulum environment is disordered, it inhibits the pain response [13], reduces Ca2+ ac-
cumulation [14] and increases mitochondrial membrane potential (MMP) [15]. In other
diseases, 4-PBA inhibits muscle growth and glomerular injury mediated by leptin [16], re-
duces cell apoptosis [17] and reduces spinal cord injury induced by endoplasmic reticulum
stress [18]. In viral therapy, 4-PBA interferes with the assembly of the HCV replication
complex [19] and can also reduce endoplasmic reticulum stress and autophagy reaction to
affect the titer of IAV [20].

Our study evaluated the effects of 4-PBA on JEV replication and ERS, providing
insights into the mechanism of 4-PBA treatment of JEV.

2. Materials and Methods
2.1. Virus, Cell and Animal

The JEV strain (HW1 Genbank is NC-001437.1) and mouse glial cells (BV2) were
preserved by our laboratory. The experimental animals were SPF BALB/c female mice
aged 5 weeks (Wuhan, China). BV2 cells were maintained in MEM supplemented with
10% fetal bovine serum (HyClone, Logan, UT, USA), 1% penicillin/streptomycin (HyClone,
Logan, UT, USA) and 1% glutamine (HyClone, Logan, UT, USA). Cells were incubated at
37 °C with 5% CO2.

2.2. Infection and Treatment

BV2 cells grown to approximately 80–100% confluence were infected with JEV at a
multiplicity of infection (MOI) of 1.5. After 2 h of adsorption, infected cells were maintained
in MEM medium supplemented with 2% fetal bovine serum incubation, and 2.5 ug/mL of
tunicamycin (Sigma-Aldrich, St. Louis, MO, USA). The 4-Phenylbutyric acid (MCE Inc.,
Bloomfield, NJ, USA) was added to the medium at a concentration of 1 mM/mL at 2 h post
infection (hpi). The RNA, protein and supernatant were harvested to evaluate the TCID50
of JEV and GRP78 levels.

2.3. Plasmid Construction and Transfection

The eukaryotic expression recombinant plasmids of JEV NS3, NS4B and NS5 proteins
were constructed based on pEGFP-N1 (primers shown in Table 1). The recombinant
plasmid was transferred into competent Escherichia coli DH5a cells and was validated by
sequencing. The plasmid was transfected into BV2 cells by using Lipofectamine 2000. The
expression of NS3, NS4B and NS5 proteins were examined by western blot.

Table 1. primer used in the study.

Gene Primer Sequence Production

NS3
F:CGGCTAGCGCCACCATGGGGGGCGTGTTTTGGGACAC 1857 bp

R: CCCTCGAGTCTCTTCCCTGCTG-
CAAAGTCTTTG

NS4b
F:CGGCTAGCGCCACCATGAACGAGTACGGGATGCTAGA 765 bp

R: CCCTCGAGCCTTTTCAAG-
GAGGGCTTGTC

NS5 rdrp
F: CGGCTAGCGCCACCATGGAGGAAGAT-

GTCAACCTAG 1920 bp
R: CCCTCGAGGTATCTCCTGAGTGAAGTC

The gene registration number is NC-001437.1.
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2.4. RNA Extraction and Quantitative Real-Time PCR

Total RNA was cleaved by Trizol reagent, and extracted by FastPure®Cell/Tissue Total
RNA Isolation Kit V2 (Vazyme Biotech Co., Ltd, Nanjing, China). RNA concentration was
detected by spectrophotometer. RNA was reverse-transcribed into cDNA using HiScript III
All-in-one RT SuperMix (Vazyme Biotech Co., Ltd, Nanjing, China). ChamQ SYBR®qPCR
Master Mix (Vazyme Biotech Co., Ltd, Nanjing, China) was used to perform qPCR.The
procedure for qPCR reactions was 95 °C for 5 min (1 cycle), 95 °C for 30 s, annealing
temperature for 30 s and 72 °C for 30 s (45 cycles). The results were normalized with β-actin
by the ∆∆CT method and are depicted as fold change over mock-infected control. Primer
sequences are provided in Table 2.

Table 2. Primer sequences of real-time PCR.

Gene Sequence Product Length/bp Accession

GRP78
F:TCGGACGCACTTGGAATGA 181 bp NM_001163434.1R:GCCTCAGCAGTCTCCTTCA

β-actin
F:GTGCTTCTAGGCGGACTGT 239 bp NM_007393.5R:GCTCCAACCAACTGCTGTC

2.5. Immunoblots Analysis

The cells (5 × 105 or 1 × 106) were lysed with a RIPA Lysis Buffer (Beyotime, Shanghai,
China) containing protease inhibitors. BCA (Beyotime, Shanghai, China) was used to deter-
mine the protein concentration. The protein was separated on 10% SDS-PAGE gel, transferred
to PVDF membrane and sealed at room temperature with 5% skimmed milk powder in
Tris-Buffered saline (TBS) for 1 h. Then the protein was incubated at 4 °C overnight with a
primary antibody. The secondary antibody was incubated at room temperature for 2 h, and
then the enhanced chemiluminescence (ECL) reagent was used for image capture.

2.6. In Vivo Experiment in Mice

JEV (106.5 TCID50) was intracranially injected into the 5-week-old BALB/c mice. The
4-PBA diluent is recommended by the instructions. 4-PBA (80 mg/kg) is injected once
before the challenge. After the challenge, 4-PBA is injected once a day for a total of
9 times. After the blood is collected from the eye vein of mice, the brain tissue is taken for
pathological section, immunohistochemistry, Western blot and qPCR. Pathological section
and immunohistochemistry experiment and result analysis are contracted by Wuhan Pinofei
Biotechnology Co., Ltd., Wuhan, China.

2.7. Laser Confocal Microscope

The recombinant plasmid NS3, NS4b and NS5 were transfected into BV2 cells. Four
hours after transfection, the control group without 4-PBA of 1 mM/mL and the treatment
group were set, respectively, and the immunofluorescence experiment was conducted 12 h
after the transfection. The detection method was introduced from [21], and the cell samples
were observed under a laser scanning confocal microscope.

2.8. Statistical Analysis

The real-time PCR test data were used as the mean value ± Standard deviation
(means), and the data were expressed by the percentage of the treated group relative to the
untreated group. The protein results were analyzed by Image J. Immunohistochemistry
was analyzed by Image-pro pus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA), and
three 200-fold visual fields were randomly selected from each section in each group to
determine the unified positive standard of all photos. The cumulative positive optical
density value (IOD) of each photo was obtained by analyzing each photo, and the average
optical density was calculated. A one-way ANOVA test in GraphPad Prism (version 5.0)
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software was used to analyze the significant differences of the data. p < 0.05 (*), indicating
significant difference; p < 0.01 (**) and p < 0.001 (***).

3. Results
3.1. 4-PBA Inhibits the Replication of JEV In Vitro

To investigate the effects of 4-PBA on JEV RNA replication, we detected the titer of JEV
in BV-2 cells. The results showed that 4-PBA could significantly reduce the titer of JEV in
BV2 cells at 6 hpi and 12 hpi (Figure 1A). The western blot results also showed that 4-PBA
could significantly inhibit the expression of the JEV NS3 protein (GeneTex, Irvine, CA, USA)
(Figure 1B).
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Figure 1. The titer of JEV virus decreased after treatment of 4-PBA. JEV (MOI 1.5) and 4-PBA of 1 mM/mL
were used to treat BV2 cells. (A) JEV titers at 6 hpi and 12 hpi; the cell supernatant was measured by
TCID50 assays. (B) The western blot at 12 h was used to test the NS3 protein expression of JEV. β-actin
was used as sample loading control. ** p < 0.01.

3.2. 4-PBA Inhibits the Replication of JEV In Vivo

Mice were intracranially injected with JEV at a titer of 106.5 TCID50 and then treated
with the 4-PBA by intraperitoneal injection at a dose of 80 mg/kg. The sagittal plane of the
mouse brains was collected for pathological section, immunohistochemistry and western
blot. The results showed that 4-PBA treatment could significantly inhibit JEV titers, and the
inhibition effect was positively correlated with the number of treatments (Figure 2A,D). In
addition, 4-PBA treatment can significantly restore the body weight and brain structure
damage of JEV-infected mice (Figure 2A,B). Pathological section results show that after JEV
infection, the brain tissue structure is moderately abnormal, some neurons disappear, a large
number of neurons in CA1 area degenerate, neurons can see fiber tangles and the number of
glial cells becomes more. After 4-PBA treatment, brain tissue structure was slightly abnormal,
individual nerve cells in the CA1 area degenerated and glial cells increased slightly. The
serum IL-1β (Enzyme-linked Biotechnology Co., Ltd., Shanghai, China) level of JEV-infected
mice was inhibited by 4-PBA treatment (Figure 2C).
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Figure 2. Therapeutic effect of 4-PBA in JEV-infected mice. (A) Detection of virus particles in brain
tissues by immunohistochemistry and pathological analysis on sagittal plane of brain tissue. (B)
Weight changes in mice infected with JEV and treated with 4-PBA. (C) Detection of IL-1β in serum.
(D) Detection of virus particles in brain tissues by western blot. Yellow arrow: neurons disappear;
blue arrow: a large number of nerve cells degenerate; red arrow: nerve fiber tangle; black arrow: glial
cell. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. 4-PBA Inhibits JEV-Induced Activation of the IRE1 and PERK Pathways

The 4-PBA is an inhibitor of ERS. BV2 cells at 2 h post infection (hpi) with JEV at MOI
of 1.5 and 2.5 ug/mL of Tunicamycin; the positive control group was set up. 1 mM/mL
of 4-Phenylbutyric acid (4-PBA) was added 2 h after JEV infection. Compared to that
in the untreated cells, the protein levels of GRP78, sXBP1 and pEIF2α in JEV-infected
cells treated with 4-PBA reduced (Figure 3A,B). Compared with that in the blank control
group, the effect of TM was significant. Those results indicated that 4-PBA significantly
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inhibits JEV-induced activation of the IRE1 and PERK pathways. At the same time, we
have confirmed that 4-PBA can inhibit the expression of the GRP78 protein and mRNA in
brain tissue (Figure 3C,D).
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Figure 3. 4-PBA inhibits JEV-induced activation of the IRE1 and PERK pathways. (A) The protein levels of
GRP78, pEIF2α, sXBP1 (Abcam, Cambridge, UK) were determined using western blot. (B) Densitometry
scans of the GRP78, pEIF2α and sXBP1 band in (A). (C) We have confirmed that 4-PBA can inhibit the
expression of GRP78 mRNA and protein (D) in brain tissue. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.4. 4-PBA Inhibits the Activation of ERS Induced by JEV Non-structural Proteins

In this experiment, we selected the most obvious JEV non-structural protein that can
induce the endoplasmic reticulum stress response of BV2 cells for detection (provided by
additional materials). The recombinant plasmid NS3, NS4b and NS5 were transfected into
BV2 cells. Four hours after transfection, the control group without 4-PBA of 1 mM/mL and
the treatment group were set, respectively. Compared to that in the untreated cells, the
levels of GRP78, sXBP1 and pEIF2α in NS4b and NS5 transfected cells treated with 4-PBA
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reduced, but that in NS3 transfection cells showed a non-significant difference of GRP78
(Figure 4A,B). 4-PBA inhibits the non-structural protein of JEV to activate ERS through the
PERK and IRE1 pathways.
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Figure 4. 4-PBA inhibits the fusion protein of JEV to activate the IRE1 and PERK pathways. (A) The
protein levels of GRP78, pEIF2α and sXBP1 in BV2 cells incubated with JEV (MOI 1.5) and 4-PBA of
1 mM/mL. (B) Densitometry scans of the GRP78, pEIF2α and sXBP1 brand of western blot from (A).
** p < 0.01; *** p < 0.001.

3.5. 4-PBA Inhibits NS5 Expression In Vitro

Since 4-PBA can protect cells by reducing ER stress, we examined whether 4-PBA
interfered with NS3, NS4b and NS5 replication by reducing ER stress. The recombinant
plasmids NS3, NS4b and NS5 transfected into BV2 cells. Four hours after transfection,
the control group and treatment group with and without 1 mM/mL 4-PBA were set,
respectively. The results revealed that the NS5 protein level was down-regulated by
4-PBA treatment (Figure 5A,B). Further analysis revealed that NS5 gene expression in
4-PBA-treated cells was significantly decreased compared with that in untreated cells; the
number of genes expressed varies from 12% to 5% (Figure 5C).
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4. Discussion

Viruses had the ability to induce host cells stress responses, hijack autophagy and UPR
mechanisms and promote host infection and virus replication. Continuous endoplasmic
reticulum stress worsens normal cell activity and induces autophagy and apoptosis [22].
JEV uses ER as its replication site by destroying ER homeostasis and activating ERS, leading
to a variety of common diseases, such as neurodegenerative diseases, kidney diseases and
so on. Dengue virus (DENV), hepatitis C virus (HCV) and Japanese encephalitis virus (JEV)
all belong to the Flaviviridae family. At present, many small molecule inhibitors can inhibit
virus replication [23]. The inhibition of protein translocation from ER to the cytosol or in-
hibiting the ER chaperone GRP94 by small molecule compounds led to a significant decrease
in DENV and ZIKV replication [24,25]. Moreover, 4-PBA, which disrupts virus-induced
hypo-acetylation of histone H3K9/K14, inhibits African swine fever virus (ASFV) [26]
replication and inhibits ZIKV replication via the UPR pathway [27]. The inhibition of HIV-1
Tat-induced UPR/ER stress by 4-PBA significantly alleviated astrocyte-mediated Tat neu-
rotoxicity [28]. Similar to the above results, our results show that 4-PBA can significantly
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inhibit JEV replication on BV2 cells. In vivo, we also performed experiments on mice to
find that after JEV brain infection in mice and 4-PBA was used, immunohistochemistry and
western blot results showed that JEV replication was affected. In addition, 4-PBA could
treat brain tissue damage caused by JEV infection, restore the body weight of mice, inhibit
the expression of inflammatory factors in serum.

Glucose-regulated protein 78 (GRP78) is an ER chaperone protein that can restore
protein misfolding [29]. UPR is monitored by three typical branches of ERS sensors, which
are ER-mediated membrane-associated proteins: eukaryotic initiation factor 2 α Kinase
(PERK), inositol requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) [30].
In the well-functioning and “pressure-free” ER, these three transmembrane proteins bind
to chaperone BiP/GRP78 in the endoplasmic domain (the amino-terminal of IRE1 and
PERK and the carboxyl-terminal of ATF6). The ERS can interfere with their viral replication
through the UPR pathway [31–33]. Relevant research found that GRP78 is an important
host protein for JEV effect and replication, and can help JEV to enter the cell [34]. GRP78
and RdRp enhance viral replication in mitochondria [35]. The Hrd1 complex composed
of endoplasmic reticulum luminal lectin, chaperone, endoplasmic reticulum membrane
protein and cytoplasmic protein is the key factor of flavivirus replication [36,37]. GRP78
is a key protein for JEV to enter host cells and replicate [34]. Our result 3 shows that
JEV can regulate the expression of GRP78 in BV2 cells, and activate ER stress response
through the PERK and IRE1 signaling pathways. Further, we verified that 4-PBA can inhibit
JEV-activated endoplasmic reticulum stress and virus replication for the first time, and
in vivo experiments in mice indicated that 4-PBA could inhibit the expression of the GRP78
protein and mRNA in tissues.

JEV can activate the IRE1 pathway through PrM, E, NS1, NS2a, NS2b and NS4b
proteins, and only NS4B can induce PERK dimerization and apoptosis for JEV to active
PERK pathways [38]. After examining the effects of all non-structural proteins on ERS, we
found that NS3, NS4A, NS4B and NS5 had the most significant regulation on GRP78. For
NS3 and NS5 are the key proteins constituting the virus replication complex, and NS4B
is located in the endoplasmic reticulum, we detected the effect of 4-PBA on those three
proteins separately. The results showed that 4-PBA could inhibit their activated PERK and
IRE1 pathways.

As an endoplasmic reticulum stress inhibitor, 4-PBA can significantly inhibit the trans-
formation of LC3I/LC3II in PEDV-ORF3 of cells [39]. α-glucosidase inhibitors can inhibit
four serotypes of dengue virus infection by disrupting the folding of the structural proteins
prM and E [40,41]. NO can cause oxidative stress, but inhibit dengue virus replication
by inhibiting the activity of RdRp [42]. Antioxidants inhibit viral replication by reducing
the formation of negative-strand RNA and the accumulation of uncovered positive-strand
RNA [43]. N-(4-hydroxyphenyl) retinamide (4-HPR) inhibits viral replication by inhibiting
the transcription of the NS5 protein of DENV, but not through the PERK signal pathway [44].
A novel small-molecule compound (AO13) can inhibit replication of HCV, and might target
the NS5B RNA polymerase [45]. Compound 147 can correct protein misfolding of ER, and
the antiviral activity independent of ATF6 induction [46]. It is suggested that the antiviral
effect of small molecules is mainly based on its effect on viral proteins. Our results revealed
that the level of JEV NS5 protein and expression in cells was significantly decreased by
4-PBA. So, we believe that 4-PBA can inhibit JEV-activated endoplasmic reticulum stress
response and has antiviral activity independent of the UPR pathway.

Japanese encephalitis (JE), as a zoonosis with high mortality and widespread impacts,
seriously endangers the economic benefits of pig breeding. In some Asian countries, the
JEV vaccine is mandatory [47], but Australia has not yet obtained a licensed JEV vaccine
for pigs [48]. Therefore, the research and development of therapeutic drugs for JE virus
is meaningful. Studying the mechanism of 4-PBA treatment of JEV infection in host
cells at the molecular level can provide a new therapeutic target for the future research
and development of drugs for the treatment of Japanese encephalitis, and also provide a
theoretical basis for the research and development of new vaccines.
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