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Abstract: Sporulation is a finely regulated morphogenetic program important in the ecology and
epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes
contribute to sporulation regulation and introduce diversity in the generally conserved sporulation
programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin
element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental
isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element
resembles previously reported mobile intervening elements associated with sporulation genes. Within
a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either
integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the
two observed conformations of the yin element was growth-phase dependent and likely mediated by
recombination events. The yin element was not required for sporulation by C. botulinum but triggered
an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element
has not been found in any other C. botulinum strains or other endospore-forming species. It remains to
be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence.

Keywords: Clostridium botulinum; mobile element; sporulation; prophage; yabG

1. Introduction

Some bacteria escape starvation and other adverse conditions by forming resistant
endospores through a time- and energy-consuming differentiation process called sporula-
tion, elaborately described in several Bacillus, Clostridium, and related species [1–4]. The
process is coordinated and timely controlled by multiple sigma factors and accessory
transcriptional regulators. Spores can survive extreme conditions over long periods of
time [5,6] and, for pathogenic species, play a major role in the epidemiology of bacterial
diseases, such as anthrax caused by Bacillus anthracis [7], Clostridioides difficile infection [8],
tetanus caused by Clostridium tetani [9], Bacillus cereus infection [10], and botulism caused
by Clostridium botulinum [11]. Environmental spores of C. botulinum are of major concern
for the food industry due to the risk of food-borne botulism [12] and can also pose direct
risks to humans through exposure and colonization of the gut, causing toxicoinfectious
botulism in infants [13] or in at-risk adults [14,15].

Viruses 2023, 15, 2431. https://doi.org/10.3390/v15122431 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15122431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-9795-661X
https://orcid.org/0000-0002-3673-6082
https://orcid.org/0000-0002-8176-797X
https://orcid.org/0000-0003-0699-1290
https://doi.org/10.3390/v15122431
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15122431?type=check_update&version=2


Viruses 2023, 15, 2431 2 of 12

Mobile genetic elements can contribute to the regulation of sporulation. In some of the
B. subtilis and C. difficile strains, gene encoding the late-stage mother-cell sigma-factor SigK
(σK) is disrupted by an intervening prophage-like element, termed the skin element. This
element is timely excised during sporulation, resulting in a functional sigK to let sporulation
proceed [16–18]. Other sporulation-related genes interrupted by intervening prophage-like
elements include spsM of B. subtilis, required for the maturation of the spore surface layers
and interrupted by the SPβ prophage [19]; spoVFB of Bacillus weihenstephanensis coding for
the β-subunit of dipicolinic acid synthase and interrupted by the vfbin element [20]; and gerE
of Bacillus cereus coding for a transcription factor that works with SigK to control the late
stages of the mother cell of gene expression [21]. These reports underline a prevalence for
mobile genetic elements (prophage) inserted in sporulation-associated genes and suggest
direct or indirect modulation of the sporulation cascade, perhaps providing an ecological
benefit to the host bacteria. Such bacteria-phage interactions relate to active lysogeny,
where the prophage disrupts the target gene expression and its regulation and therefore
acts as a regulatory switch (phage-RS) [22].

The yabG is regulated by SigK [23] and codes for a cysteine protease that regulates
the assembly of the spore coat by processing several coat proteins in B. subtilis [24,25].
YabG also processes two proteins required for spore germination in C. difficile, CspBA
and Pre-pro-SleC, as well as a coat protein required for efficient host colonization [26,27].
Interestingly, yabG is the only member of the SigK regulon that is conserved across spore
formers and part of a genomic signature for sporulation [28]. Of note, SigK is known as
a late sporulation factor but has also shown an early role in sporulation across several
clostridial species [5]. In our previous work [29], we sequenced the genome of a C. botulinum
strain (V73) isolated from household dust and related to a case of infant botulism. We
identified a prophage-like sequence disrupting yabG (hereinafter referred to as the yin
element, for the yabG-intervening element). To test the hypothesis that the yin element has
a role in the control of sporulation in C. botulinum, we first compared the phenotypes of V73
and its counterpart devoid of the yin element (ST7B). We showed that the yin element was
temporally excised from the chromosome and triggered an earlier entry into sporulation in
V73 compared with ST7B. This work describes, for the first time, a regulatory prophage-
like insertion element within yabG and further illustrates the diversity encountered in
the regulation of the sporulation program in endospore formers while raising questions
on the ecological benefit of such an intervening element for persistence and survival of
the bacteria.

2. Materials and Methods
2.1. Bacterial Growth and DNA Isolation

C. botulinum isolates V73 and ST7B are associated with an infant botulism case and
share a recent common ancestor [29,30]. Both strains were cultured anaerobically at 37 ◦C
overnight in trypticase–peptone–glucose–yeast-extract (TPGY) broth, and genomic DNA
was extracted using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA),
as per the manufacturer’s instructions. The DNA concentration was determined using the
Qubit fluorometric assay (Thermo Scientific, Waltham, MA, USA).

2.2. Genome Sequencing and Bioinformatic Analysis

The genome of C. botulinum V73 was sequenced using the PacBio sequencer (Pacific
Biosciences, Menlo Park, CA, USA). PacBio library preparation, genome assembly, and
polishing were carried out as previously described [29]. The complete and closed genome of
V73 was obtained using both PacBio sequencing reads (this work) and Illumina paired-end
reads (SRR11288493) [29]. Genome assembly of C. botulinum V73 was analyzed using the
Microbial Genomes Atlas (MiGA) web interface [31]. Prophages were identified using
the Phaster online analysis tool [32]. The genome of V73 was annotated using various
tools, including PATRIC [33], RASTtk [34], and Prokka [35]. Gene annotation of the yin
element was also conducted using the Phyre2 web portal [36]. Protein-structure prediction
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and models of the complexes between recombination directionality factors (RDFs) and
their associated recombinases were generated using AlphaFold [37]. AlphaFold2 was
used for structural modeling of individual proteins and complexes [37]. We first obtained
models for SpoIVCA, SprA (B. subtilis), and CD1231 (C. difficile) recombinases and their
cognate directionality factors SkrB, SprB, and CD1234 and for the yin-encoded recombinase
(HEQ52_18460). The models were obtained by uploading the sequences to the open
access AlphaFold2 Colab notebook (https://colab.research.google.com/github/deepmind/
alphafold/blob/main/notebooks/AlphaFold.ipynb, accessed on 16 August 2022) [38]. We
also generated models for putative complexes between the recombinases and their known
or predicted directionality factors (as above). The interaction was predicted to involve the
C-terminal end of the recombinases (Figure S1). We then generated models between the yin
recombinase (HEQ52_18460) and the predicted yin-encoded proteins with 250 amino acid
residues or fewer. Only one of the selected yin-encoded proteins, HEQ52_18460 (Table S1),
was predicted to form a complex with the HEQ52_18485 recombinase. The interaction
was predicted to form at the C-terminal region of the recombinase [39]. Five models
were generated for each protein or protein complex. The confidence of the modeling was
assessed by the pLDDT metric and the predicted alignment error (PAE), i.e., uncertainty
about the interface. Values of pLDDT > 90 were expected to be highly accurate. Structural
representations were generated using PyMOL Molecular Graphics System (Schrödinger,
Inc., New York, NY, USA).

2.3. Growth Curves

The growth of C. botulinum ST7B and V73 was monitored using the Hidex Sense multi-
well plate reader (Hidex Oy, Turku, Finland). Briefly, following two consecutive overnight
sub-cultures in TPGY medium at 37 ◦C in anaerobic conditions, cultures of the two isolates
were diluted 1:100 in 5 mL of TPGY broth. Then, 200 µL of the resulting suspension were
added per well of a 96-well plate. The plate was then placed into the Hidex Sense plate
reader and incubated at 37 ◦C anaerobically. Optical density at 600 nm was recorded every
15 min for 24 h. The results were based on three biological replicate series consisting of four
technical replicates of each isolate.

2.4. Toxin Quantification

C. botulinum V73 and ST7B cultures were grown at 37 ◦C anaerobically in TPGY
medium. Each strain was inoculated 1:100 into 5 mL of fresh TPGY medium. Samples were
collected for up to 24 h and stored at −80 ◦C. Botulinum neurotoxin (BoNT) type A1 was
quantified using a sandwich-ELISA, as previously described [40,41], in triplicate.

2.5. Spore Count Assay and Spore Heat Resistance

C. botulinum V73 and ST7B cultures were grown anaerobically at 37 ◦C. Total viable
cell and heat-resistant spore counts were measured at 48, 72, and 168 h after inoculation, as
previously described [42]. Spore heat resistance of C. botulinum V73 and ST7B was studied
as described in [43], by heating for variable times at 98 ◦C and counting the survivors.

2.6. Phase-Contrast Microscopy

Phase-contrast microscopy was used to monitor C. botulinum V73 and ST7B cultures
at 5, 24, 48, 72, 96, 120, and 240 h after inoculation. Sample preparation, microscopic
observation, and cell counts were performed as previously described [43].

2.7. Spore Germination Assay

Spores of C. botulinum ST7B and V73 were prepared as previously described [43]. The
spores were then heat-activated at 80 ◦C for 15 min and OD-adjusted to ~0.5 in Tris-HCl
(20 mM, pH 7.4) buffer with 50 mM of NaHCO3, 50 mM of sodium L-lactate, and either
L-alanine (50 mM) or L-cysteine (50 mM). The microtiter plate containing the samples was
then placed into the Hidex Sense multi-well plate reader and incubated anaerobically at
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37 ◦C under double orbital shaking. Optical density at 600 nm was recorded every 5 min
for 24 h. Three technical replicates per strain per condition were included.

2.8. Transmission Electron Microscopy (TEM) Analysis

C. botulinum V73 and ST7B spore samples were purified and prepared for thin section-
ing TEM analysis [43]. The grids were visualized using a JEM-1400 transmission electron
microscope (JEOL Ltd., Tokyo, Japan) at the Electron Microscopy Unit (EMBI, Institute of
Biotechnology, University of Helsinki).

2.9. Detection and Quantification of the Different Forms of yin

From an overnight culture, C. botulinum ST7B and V73 were inoculated at a 1:100
dilution in TPGY medium and grown anaerobically at 37 ◦C. After 5, 24, 48, 72, 96, and
120 h of growth, genomic DNA from 1 mL of culture was extracted as described above.
Segments of the yin element (amplicon spanning across yabG and the yin element), the intact
yabG coding sequence (internal amplicon), and the circular yin element were amplified by
PCR using HotStarTaq Master Mix Kit (Qiagen GmbH, Hilden, Germany) (Table S1) and
visualized by agarose gel electrophoresis to detect the different yin element conformations
over culture time. Finally, some of these amplicons were sent for Sanger sequencing
(Macrogen Europe B.V., Amsterdam, The Netherlands). Using quantitative PCR and
Maxima SYBR Green qPCR Master Mix (Thermo Scientific, Waltham, MA, USA), we
further quantified the different yin element conformations at all time points. We amplified
and quantified one fragment of yabG spanning across the whole yin element (intact yabG
and excised yin) and one fragment spanning across one of the att sites (chromosomally
integrated yin). As a reference, we amplified one segment of yabG that is not altered by the
excision of the yin element.

2.10. Genome Sequence Accession Numbers

The closed genome of C. botulinum V73 was deposited in NCBI under the accession
numbers CP050820 (chromosome) and CP050821 (plasmid).

3. Results and Discussion
3.1. Identification of a Prophage-like Intervening Element in yabG

We recently showed that C. botulinum ST7B (genome accession numbers: CP050251,
CP050252) and V73 are genetically related and essentially differ by the presence of one
prophage based on read mapping using Illumina next-generation sequencing. Beside the
presence of the yin element in C. botulinum V73, there were five SNPs/InDels different
between the ST7B and V73 genomes: two located in intergenic regions and three within two
genes (encoding a MurR/RpiR family transcriptional regulator or a histidine kinase) [29].
These SNPs/InDels are unlikely to impact the sporulation phenotype of C. botulinum ST7B
and V73 [29]. To confirm the previously published Illumina next-generation sequencing
results, we closed and annotated the genome of C. botulinum V73. The genome assembly
confirmed the presence of a prophage located within yabG (Figure 1). yabG encodes a
sporulation-specific protease shown to regulate the assembly of the spore coat in both
B. subtilis and C. difficile [23–25,27].

The yin element was indeed predicted to be a putatively functional prophage and is
genetically related to the class Caudoviricetes associated with Clostridium hosts (NC_029001,
NC_007917, NC_028996, NC_028991, and NC_029004) or Brevibacillus hosts (NC_029029).
Some of the predicted genes present in insertional conjugative elements (ICE) or prophage-
mediated DNA rearrangement elements of endospore formers [17–19] can also be found
in the yin element, as further detailed in Table S2. Within the yin element, the first open
reading frame (HEQ52_18485) located downstream of the 5′-end of yabG encodes a putative
recombinase (integrase) with significant Pfam-A matches to the resolvase (PF00239, E-
value = 1.0 × 10−38), recombinase (PF07508, E-value = 5.8 × 10−22), and recombinase
zinc-beta-ribbon-domain protein families (PF13408, E-value = 4.9 × 10−13) (Pfam 35.0
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database [44]). The recombinase HEQ52_18485 shares 27% amino acid identity (100 out
of 372 residues) with the SpoIVCA recombinase present in skin of B. subtilis [16] and 25%
amino acid identity (87/352) with the resolvase CD630_12340 associated with sporulation
and excision of skin in C. difficile [17]. Both spoIVCA in B. subtilis and HEQ52_18485 of
C. botulinum V73 are located downstream of the 5′-end region of their respective disrupted
gene (sigK and yabG) and in a similar orientation.
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In addition to the recombinase, intervening elements typically require a recombination
directionality factor (RDF) [18]. Using AlphaFold, we identified a putative RDF encoded
within the yin element (Figure S1). When compared with the skin element of C. difficile, the
putative RDF HEQ52_18460 differed from CD1234 in size (72 amino acids vs. 53 amino
acids) and pI (5.5 vs. 4.9). Yet, based on AlphaFold protein-structure prediction and
models of the complexes between the recombinase and the RDF of different intervening
elements, i.e., SpoIVCA and Skr, CD1231 and CD1234, or SprA and SprB, the RDFs were all
different, but models predicted that they interact with the same region of their associated
recombinase (Figure S1). We also possibly identified a putative SigK-dependent promoter
upstream of HEQ52_18460 (Figure S2), suggesting its regulation by the late-sporulation
sigma-factor SigK. This is in line with the expression of yabG being under the control
of SigK [23]. Excision of the yin element would reconstitute yabG under SigK control.
The RDF candidate (HEQ52_18460) identified in the yin element remains to be further
studied experimentally. To the best of our knowledge, the yin element is unique: None of
the 26 isogenic C. botulinum isolates collected over time from the single infant botulism
case [29], nor any available C. botulinum or other bacterial genomes deposited in NCBI,
harbored the yin element (as of November 2023). Moreover, no other insertion elements
were found to disrupt yabG in the genomes of spore-forming bacteria in public databases.

3.2. Phenotypic Impact of the yin Element on Sporulation and Toxin Production

The yin element is located within a sporulation gene in C. botulinum V73. Based on
previously described prophage elements regulating gene expression, we considered the
possibility that the yin element could play a similar regulatory role on yabG expression
through timed self-excision. We investigated the impact of the yin element on the phenotype
of C. botulinum V73 against its yin-devoid counterpart C. botulinum ST7B. C. botulinum V73
and ST7B cultures showed similar growth until entry into the stationary phase (Figure 2),
suggesting that the yin element does not impact the overall physiology of the vegetative
cells or cultures.
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However, the growth curves of V73 and ST7B showed distinct profiles in the stationary
phase, where a prominent drop in the optical density of the V73 culture likely reflected a
higher number of cells entering sporulation compared with that of ST7B (Figure 2).

Phase-contrast microscopy of the C. botulinum V73 and ST7B cultures showed that
the V73 culture initiated sporulation earlier and yielded higher free-spore counts than the
ST7B culture (Figures 3, 4 and S3). Accordingly, after 240 h, the V73 culture consisted
mostly of free spores, whereas in the ST7B culture, several cell types were still represented
(Figures 3 and 4). Thus, the distinct growth profiles of ST7B and V73 in stationary phases
were likely due to different numbers of cells undergoing sporulation (Figure 2). In regard
to the earlier entry into sporulation by C. botulinum V73 compared with ST7B, possible
expression control of yabG by SigK and by other regulators remains to be further explored
and understood, especially since SigK also showed an early role in sporulation across
several clostridial species [5].
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The sporulation master regulator Spo0A controls BoNT production in C. botulinum
Group II type E [45]. Due to the apparent link between sporulation and toxinogenesis
in C. botulinum Group II, we examined whether the presence of the yin element, through
impacting sporulation, may also result in distinct levels of BoNT production between ST7B
and V73. Based on ELISA quantification, the V73 culture produced a slightly higher level of
botulinum neurotoxin (BoNT) than ST7B after 24 h (Figure S4). However, the difference was
marginal and may be explained by the faster release of BoNT through efficient sporulation
(Figures 3 and 4) in the V73 cultures compared with ST7B cultures. Hence, the yin element is
not likely to play a direct role in BoNT production or its regulation in the conditions tested.
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3.3. Restoration of Intact yabG by Chromosomal Excision of the yin Element upon Sporulation

C. botulinum V73 and ST7B are phylogenetically related and essentially differ by
the presence of the yin element. Sequence analysis of the yabG region of ST7B led us to
identify a 14-bp repeat sequence flanking an inverted repeat sequence present at both
extremities of the yin element (attR and attL sites), constituting the putative recombination
sites recognized by the predicted site-specific recombinase HEQ52_18485 (Figure 1 and
Table S2). Work performed on the skin element [17] and the presence of putative attachment
sites (att) and site-specific recombinase within the yin element led us to hypothesize that the
yin element of V73 is excised, yielding a restored yabG and a circularized yin element. To
test this possibility, we designed sets of primers that aimed to amplify (i) a chromosomally
integrated yin element, (ii) an intact yabG gene, and (iii) an excised and circularized yin
element (Figure 1) and monitored their accumulation along time during sporulation.

The yin element was found chromosomally integrated at all time points in V73
(Figure 5a). Moreover, amplicons corresponding to intact yabG were also observed at
any time points in V73 (Figure 5a), suggesting that yabG was reconstituted through chromo-
somal excision of the yin element at all time points. In line with detecting the intact yabG,
we also detected circularized yin (Figure 5a, further discussed below). The observations
suggest a heterogeneous population with cells carrying a yin element either integrated in
yabG or excised to produce a circular DNA element. Temporal excision of the skin element
during sporulation was reported in C. difficile [17,18] and made us hypothesize that the
dynamics of the yin element between chromosomal integration and excision into circular
DNA could be temporally regulated. Indeed, the C. botulinum V73 population harbored a
smaller proportion of cells with a restored yabG at 5 and 24 h than at later times, suggesting
that an increasing proportion of bacterial cells harbored an intact yabG upon initiation of
sporulation (Figure 5b). Upon excision of the yin element, spliced yabG was restored as
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an intact yabG gene in V73 (Figure S5). The restored yabG retained the 14-bp repeat (attB)
required for recombination, as in ST7B (Figure S6). The attB is also present and identical to
the sequence of yabG in other C. botulinum strains, such as CDC_297, A634, and CDC_69096,
suggesting that the yin element could integrate into the chromosome at the yabG locus in
other C. botulinum strains.
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Figure 5. Plasticity of the yin element over time. (a) PCR amplification of the yin element integrated
into the chromosome, the intact yabG gene, and the circular yin element in C. botulinum ST7B and
V73 grown in TPGY medium. DNA-free water was used as a negative control. The amplicons (black
bars) are shown near each DNA gel. Legend: Neg., negative control. (b) Quantitative PCR results
to determine the relative proportion of restored yabG gene in C. botulinum ST7B and V73 over time.
yabG primers span across the att recombination sites, whereas the control primers amplify a region
elsewhere in the yabG gene. Error bars represent the standard deviations based on four technical
replicates. Legend: pink curve, strain V73; blue curve, strain ST7B.

3.4. Circularization of the yin Element upon Chromosomal Excision

Recombinases mediate the excision and circularization of the skin element in B. subtilis
and C. difficile [16,17,46,47]. To verify whether the yin element became circular upon excision
from the chromosome, we designed primers located at both extremities of the yin element
and in divergent orientation. Therefore, PCR products could only be generated upon
amplification from the predicted circular yin element. Amplicons were obtained at all time
points tested (Figure 5a), indicating that the excised yin element was indeed circular. This
is in line with the aforementioned observations that an intact yabG was reconstituted at all
time points tested. Sequencing of these amplicons revealed the attP with the same 14-bp
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repeat sequence flanked by asymmetric overlapping sequences (Figure S7), confirming that
the recombination events are indeed mediated through att sites.

3.5. Presence of the yin Element Does Not Affect Spore Heat Resistance

Since YabG is involved in the assembly of the spore surface in B. subtilis [24,25] and
spore germination in C. difficile [26,27], we hypothesized that the presence/absence of the
yin element could control the function of YabG and therefore alter the spore properties.
Thermal destruction assays showed that the V73 spores were slightly less heat resistant
than spores of ST7B (most heat-sensitive spore subpopulations, depicted in Figure 6 in the
first 20 min of heating); however, the difference was not statistically significant for the most
heat-resistant spore subpopulations (depicted in Figure 6 after the first 20 min of heating).
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Figure 6. Thermal destruction of C. botulinum ST7B spores (pink dots) and V73 spores (blue dots).
Purified spore suspensions were adjusted at OD600nm 1 and heat-treated at 98 ◦C for different
incubation times. D-values were obtained from the linear regression lines for each dataset. We
observed the presence of two spore subpopulations, as shown with the two distinct destruction
curves fitted on the data of each strain. The heat resistance of V73 spores appeared generally
slightly lower than that of ST7B spores; however, the difference was statistically significant (p < 0.05,
t-test) only for the most heat-sensitive spore subpopulations depicted during the first 20 min of
the experiment.

Overall, the presence of the yin element had therefore no significant impact on the
spore heat-resistance properties of V73 and ST7B. In line with this, transmission electron mi-
croscopy of purified V73 and ST7B spore preparations did not reveal any obvious structural
differences between ST7B and V73 spores (Figure S8). Moreover, the germination patterns
of V73 and ST7B spores were comparable (Figure S9). Further comparative proteomic
analysis and biochemical characterization of the spores may bring further insights into the
role of the yin element and yabG in C. botulinum sporulation.

4. Conclusions

We report the presence of a unique intervening mobile genetic element within yabG.
This yin element is a prophage and has a unique gene content and order. yabG is conserved
among spore-formers and is important for sporulation in at least B. subtilis and C. difficile; the
yin element thus conforms to the general pattern that phage-like elements, such as the skin
element and others, insert in sporulation-associated genes. It shares a number of common
features with other intervening elements described in endospore formers: (i) prophage-like
sequence, (ii) localization within a gene involved in sporulation, (iii) circularization of
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the element upon excision from the chromosome, (iv) temporal control of excision yet
heterogeneous at population level, and (v) sporulation modulation. The yin element is
unique to C. botulinum V73, as opposed to other intervening elements that can be found
in multiple species or strains. Yet, the attB site present within yabG is conserved in other
strains, suggesting that the yin element could be transferred among strains and integrated
into the chromosome of other strains. It is likely that the yin element, like other intervening
elements, originated from a temperate phage and with temporal patterns but may not yield
to lytic production, as proposed in other intervening elements and phage-RS [19,22]. We
detected excised yin elements in our cultures at all time points, suggesting heterogeneity
in the population. We observed an earlier entry into sporulation and a more efficient
production of free spores based on microscopy cell count analysis in C. botulinum V73
cultures than in its yin-devoid counterpart ST7B, indicating that C. botulinum ST7B may be
more adapted to growth-supporting conditions than C. botulinum V73. Yet, it remains to be
understood under which environmental conditions or ecological niches the yin element is
beneficial to the host bacteria.
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