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Abstract: Mitochondria have been identified as the “powerhouse” of the cell, generating the cellular
energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the
mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune
response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in
homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own
replication in the absence of a bonafide replication machinery. Replication being an energy intensive
process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron
transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive
therapeutic target by limiting energy for viral replication. In this review we focus on the physiology
of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses
induce on the electron transport chain.

Keywords: oxidative phosphorylation; reactive oxygen species; NADH dehydrogenase; succinate
dehydrogensase; cytochrome bc1 complex; cytochrome c oxidase; ATP synthase

1. Introduction

Mitochondria have traditionally been viewed as the energy hubs of the cell. The
term “powerhouse” was coined almost seven decades ago [1]. Over the last few years this
notion has expanded with mitochondria shown to play a moonlighting role in cellular
pathophysiology since this organelle is not only vital in cellular metabolism but also in
stress response, signaling, immune response, as well as apoptosis. The key ATP generating
process in the mitochondria is oxidative phosphorylation (OxPhos), defined as the process
wherein energy is generated from nutrients via reduction of oxygen (Figure 1). Viruses,
being obligate intracellular pathogens, have to depend on host cells for energy required for
replication. OxPhos is therefore one of the main cellular pathways regulated during viral
infections. The effector site of OxPhos in the mitochondria is the electron transport chain
(ETC), composed of a series of protein complexes embedded in the inner mitochondrial
membrane (IMM) containing subunits encoded both on the nuclear and the mitochondrial
genomes. Although mitochondria are known to play a vital role in the innate immune
response to viral infections, in this review we will focus exclusively on the ETC and how
viruses affect the functioning of the OxPhos system.
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Figure 1. Mitochondrial Oxidative Phosphorylation: Glucose, the primary energy substrate is
metabolized via glycolysis into pyruvate. From the cytosol, pyruvate enters the mitochondria via the
transporters and is decarboxylated by Pyruvate dehydrogenase (PDH) to form Acetyl Coenzyme A
(Acetyl CoA) that is used in the Tricarboxylic Acid Cycle (TCA). Reducing equivalents generated
in the form of NADH and FADH2 are funneled into Complex I (I) or Complex II (II) embedded
in the inner mitochondrial membrane (IMM) respectively. Ubiquinone (blue circles) transfers the
electrons from I and II to Complex III (III). Cytochrome c (red circle) transfers the electrons from
III to Complex IV (IV) where it is used to reduce molecular oxygen to H2O. As the electrons pass
through the complexes, protons (H+) are pumped into the intermembrane space (IMS) creating a
gradient across the IMM. The energy from this gradient is used by complex V (V) also known as
ATP synthase to generate ATP from ADP. Some electrons escape and react with molecular oxygen to
form superoxide (O2

•−) at I and III. Superoxide is generated on the matrix side at I and both on the
matrix and IMS side at III. Superoxide dismutase (SOD) 1 and 2 localized to the IMS and the matrix
respectively scavenge the superoxide to generate H2O2. Glutathione peroxidases further breakdown
the peroxide to H2O.

2. Physiology of OxPhos

OxPhos is a key physiological program regulated in cells under viral infections. Four
protein complexes make up the ETC, providing the potential energy that drives OxPhos
through a fifth complex, ATP synthase. In addition, accessory proteins that interact with
these complexes have the capacity to regulate OxPhos. Reducing equivalents (NADH and
FADH2) generated during glycolysis and the Krebs cycle pass sequentially through the
ETC. Coenzyme Q (CoQ) shuttles electrons between Complex I/II and III. Cytochrome c
transfers the electrons between Complex III and IV. Complex IV, known as Cytochrome c
oxidase (COX), is the terminal enzyme in the ETC responsible for reduction of molecular
oxygen to water using the electrons provided by cytochrome c. As the electrons pass
through the complexes, a proton gradient is generated across the IMM and, as noted, is
used by Complex V (ATP synthase) to generate ATP.
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The primary energy substrate utilized by most cells is glucose, which can be metabo-
lized by two crucial pathways. The first of these pathways is glycolysis, which is a series
of reactions that occur in the cytoplasm. The main end product of glycolysis is pyruvate,
which is shuttled into the mitochondria by the enzyme complex pyruvate dehydrogenase.
This complex sits in the inner mitochondria membrane and converts pyruvate to acetyl
CoA. The acetyl CoA enters the other major glucose metabolic pathway—the tricarboxylic
acid (TCA) cycle, also known as the Krebs cycle. The major role of this cycle is to gener-
ate the high energy compounds NADH and FADH2 used by the ETC to generate ATP;
it also produces metabolic intermediates. The cycle consists of a series of reactions that
are catalyzed by a number of dehydrogenase enzymes found in the mitochondria matrix
(with the notable exception of succinate dehydrogenase found in the inner mitochondria
membrane). The major dehydrogenase enzymes that generate NADH are glyceraldehyde-
3-phospate dehydrogenase in glycolysis and isocitrate dehydrogenase, alpha ketoglutarate
dehydrogenase, and malate dehydrogenase in the TCA cycle. The NADH and FADH2
reducing equivalents generated by the TCA cycle enter the ETC at Complex I and Complex
II, respectively. Breakdown of one glucose molecule from the TCA cycle can generate more
reducing equivalents as compared to glycolysis: the TCA cycle can generate 6 NADH
molecules per glucose molecule whereas glycolysis can only generate 4 NADH. The net
energy from glycolysis is reduced further because the first step of glycolysis consumes
2 molecules of ATP. The TCA cycle can provide further reducing equivalents in the form of
2 FADH2 molecules and one GTP molecule per glucose molecule.

Other sources that can be utilized by the mitochondria include glutamine and fatty
acids. Glutamine, the most abundant amino acid in the blood, enters the cell via transporters
on the plasma membrane (SLC38A1, SLC38A2, and SLC1A5). SLC1A5 imports glutamine
into the mitochondria, where it is shuttled into the TCA cycle via conversion to alpha
ketoglutarate by glutamate dehydrogenase (reviewed in [2]). Fatty acids, on the other hand,
are converted into fatty-acyl CoA, which allows them to be broken down in consecutive
steps that occur in the mitochondrial matrix to generate several molecules of NADH,
FADH2, and acetyl CoA depending on the length of the fatty acid. This process is termed
beta oxidation. Cardiac myocytes rely primarily on beta oxidation to generate energy.
There are other pathways that can provide energy such as the one carbon metabolism
(for breakdown of amino acids) and the pentose phosphate pathway that branches off
from glycolysis that are beyond the scope of this review. However, all these pathways
for breakdown of substrates including glucose, glutamine, or fatty acids and amino acids,
ultimately converge upon OxPhos in order to generate ATP required for cellular functioning.
Hence, many viruses directly or indirectly target this process to hijack the host cell’s energy
metabolism for enhancing their own survival and propagation. Viruses are capable of
modulating other steps including substate import, breakdown, and modification for entry
into mitochondria (for example, conversion of fatty acids to fatty acyl CoA to enter beta
oxidation). However, these are beyond the scope of this review but well summarized
elsewhere [3].

One other key function of the ETC is the generation of reactive oxygen species (ROS).
Some of the electrons passing through the ETC escape and react with molecular oxygen to
form superoxide. Complex I of the ETC generates ROS in the mitochondrial matrix and
Complex III generates it in both the matrix and IMS. In an intact physiological system, most
of the superoxide generated is reduced by the action of ROS scavengers such as superoxide
dismutases and glutathione peroxidases. However, when the ETC is dysfunctional, ROS
production exceeds the scavenging capacity, resulting in increased ROS with attendant
cellular damage. Total ROS levels, therefore, are the difference between production and
scavenging capacity of a cell. Viral infections and ROS have also been discussed here.

3. Complex I of the ETC (NADH Dehydrogenase)

Complex I (CI) is made up of 45 subunits with 38 subunits encoded on the nuclear
genome and seven on the mitochondrial genome [4]. This complex is identified by its
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L-shaped structure, with one arm embedded in the IMM and the other protruding into
the mitochondrial matrix. Of the 45 subunits, 14 form the core structure (equivalent
to the entire complex I in many bacteria) and are equally split between the two arms
of the complex. The remaining 31 proteins are considered accessory subunits. While
transferring the electrons from NADH to ubiquinone, CI can pump 4 protons across the
inner mitochondrial membrane. Enhanced activity of this complex will result in enhanced
mitochondrial respiration whereas inhibition would result in excessive ROS production.

4. Complex II (Succinate Dehydrogenase, SDH)

This enzyme is a part of both the TCA cycle and the ETC. The SDH complex is made
up of four nuclear encoded subunits and is the only one that has no representation on the
mitochondrial genome. Subunit A and B are the catalytic subunits, whereas C and D are
the membrane anchors. This complex is responsible for the oxidation reaction converting
succinate to fumarate. The electrons generated are fed into the ETC. Alternatively, they can
be used to reduce the ubiquinone pool and contributes towards antioxidant function [5].

5. Complex III (Cytochrome bc1 Complex, CIII)

This complex is made up of 11 subunits with 10 encoded in the nucleus and one in
the mitochondria [6]. CIII oxidizes ubiquinol with electrons transferred to cytochrome
c. Mitochondrial complex III generates superoxide during the ubiquinone Q-cycle [7,8].
During this process, two electrons from CI and CII are transferred to ubiquinone, resulting
in its reduction to ubiquinol (QH2). CIII then moves these two electrons to the single
electron carrier cytochrome c. This results in the unstable radical ubisemiquinone (Q•−),
which can donate its unpaired electron to oxygen to generate superoxide within the Q-cycle.
Also, 2 protons are pumped across the inner mitochondrial membrane to contribute to the
electrochemical gradient. In addition to electron transfer, CIII also helps reoxidation of
CoQ, and also generates ROS [9].

6. Complex IV (Cytochrome c Oxidase, COX)

COX is the terminal enzyme in the ETC and is made up of 13 stoichiometric subunits
with 10 encoded in the nucleus and three in the mitochondria. More than 90% of the
oxygen consumed is reduced to water by COX. Being the rate-limiting enzyme makes
COX a vital regulator of the OxPhos system [10]. This complex is unique in that the
regulation can occur via multiple complex mechanisms such as allosteric regulation [11],
organ specific isoforms [12], and post-translational modifications [13]. This enzyme also
plays a vital role in cellular inflammatory pathways [14]. Specific knockdown of subunit
4 isoform 1 (COX4I1) in macrophages has been shown to induce ROS as well as activate
pro-inflammatory cytokines [15].

7. Complex V (ATP Synthase, CV)

Complex V (ATP Synthase) transforms energy from the proton gradient created by the
flow of electrons through the ETC to generate ATP. The nuclear mitochondrial distribution
of the subunits that make up this complex is 14:2. The activity of this complex is driven
by the proton gradient across the inner mitochondrial membrane to generate energy. The
enzyme has two functional domains—one named F1, a soluble portion situated in the
mitochondrial matrix, and the other Fo, in the inner mitochondrial membrane. There are
11 genes that form these two domains of which two are encoded by the mitochondrial
genome. From these 11 genes, the F1 subunit is comprised of 5 genes and the remaining
ones form the Fo subunit. An average of 30.63 ATP molecules are formed per glucose
molecule via oxidative phosphorylation; by contrast, only 1.45 ATP/glucose molecule
is formed by substrate level phosphorylation during glycolysis. An important quantity
regarding CV function is its efficiency, the P/O ratio, which is defined as the molecules of
ATP generated per molecule of oxygen consumed; the maximum P/O ration for 1 molecule
of glucose is 2.79 [16].
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8. Supercomplexes

Formation of higher order structures, called supercomplexes (SCs), are composed of
complex I, III and IV of the ETC and have been identified from yeast to man [17,18]. They
are thought to enhance efficiency of OxPhos [19] although contrary evidence has been
presented [20]. SCs have defined stoichiometries, for example CI forms a supercomplex
with CIII2 and CIV (SC I + III2 + IV, known as the respirasome), as well as with CIII2
alone (SC I + III2). CIII2 forms a supercomplex with CIV (SC III2 + IV), and CV forms
dimers (CV2) [21]. Almost all of Complex I is exclusively detected as a part of various SC
assemblies [22] whereas complex III can be found as homodimer and complex IV either as
a homodimer or monomer. Besides the respirasome, other assemblies include CI + CIII2
and CIII2 + CIV. CI, which is present as a part of CI + CIII2, is much lower than the
respirasome [22]. These configurations are important in lower organisms such as yeast,
which lack a traditional complex I enzyme. Various subunits from each complex interact
with each other to stabilize the supercomplexes. For example- in a CI + CIII2 assembly,
there are 2 main interactions—one in the NDUFA11 and the UQCRB, UQCRQ, and UQCRH
subunits of CIII, and a second one in the matrix between NDUFB4, NDUFB9, and the CIII
subunit UQCRC [23]. On the other hand, the contacts formed between CI and CIII within
the respirasome involve so-called supernumerary subunits. These supernumerary subunits
are not found in bacteria and are considered to be eukaryotic origin [24].

There are several hypotheses that aim to explain the presence and role of supercom-
plexes. One of the most prevalent theories is that of they may be useful for substrate
channeling. That is, the formation of complexes of enzymes that act sequentially in a
pathway so that a specific substrate can be transferred from one enzymatic activity to the
next without allowing free diffusion of the substrate into the bulk solution. In order for
substrate channeling to occur, a dedicated pool of bound electron carriers (ubiquinone and
cytochrome c) must be present. However, structural analyses reveled that the distance be-
tween the two cytochrome c binding sites on CIII and CIV in the supercomplex is too large
(>6 nm), thereby precluding the substrate channeling hypothesis [25,26]. Other theories
include the efficiency of electron transport rather than strict channeling. In this model,
the supercomplex simply provides enhances electrostatic interactions where cytochrome c
can “roll” between complex III and IV and also mix with the free pool. Other presumed
functions include enhanced stability to help the assembly of complexes, in particular for
the largest of the ETC complexes—complex I. This is called the cooperative assembly
model [27]. The plasticity model [28] suggests that supercomplexes formation helps to
adapt to changing metabolic requirements, and that supercomplexes prevent electron es-
cape to reduce ROS [21]. Structurally, some supercomplexes are known to affect membrane
curvature and shape. Complex V homodimers have been identified in yeast and appear
important for IMM bending and cristae formation [29]. Though it was recently shown to
participate in supercomplex formation [30] in a ciliate protist (Tetrahymena) and to affect
membrane curvature, it is yet to be identified in mammalian supercomplexes.

There are known assembly factors that help to connect these complexes. These include
cardiolipin, PHB1 (prohibitin), PHB2, and SCAF1 (supercomplex assembly factor 1) [30].
Of these, SCAF1 (also known as COX7A2L) is the only dedicated assembly factor for
supercomplexes and is required for biogenesis and assembly of CIII2 + IV but does not
affect the assembly of the respirasome [31]. A recent study also showed that, besides
SCAF1 containing complexes (S-MRC, SCAF1 containing mitochondrial respiratory chain
complex) a second type is also present, called C-MRC (COX7A2 containing mitochondrial
respiratory chain complex) is also present. The SCAF1-dependent S-MRC includes the
SCAF1-containing respirasome, which accounts for approximately half of total CIII and
CIV levels. The remaining CIII and CIV are equally distributed between the CIII2 + CIV
supercomplex and free complexes. The C-MRC organization displays a relatively low
amount of the COX7A2-containing respirasome, no CIII2 + CIV supercomplex, and abun-
dant free CIII (~60% of total CIII) and CIV (~80% of total CIV). The exclusive presence of
one configuration or the other in knockout cells of the corresponding isoform led to some
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changes in mitochondrial bioenergetics. However, no differences in respiratory parameters
were observed where the two MRC organizations co-exist [27]. There are several more
details that have been identified regarding super complex components, assembly, and
possible functions that are well reviewed elsewhere [32].

9. Viruses and Oxidative Phosphorylation

Viruses, being intracellular pathogens, depend on host cellular machinery and energy
to facilitate their entry, replication, and exit. In the recent past, significant advances
have been made towards understanding the role of cellular mitochondrial function and
immune responses [33–35]. Studies have also been focused on the crosstalk between
mitochondrial dynamics, including fusion-fission and mitophagy (reviewed in [36,37]).
Although mitochondrial OxPhos regulates all these functional pathways, very few studies
have evaluated the effect and the underlying mechanism of how viruses hijack the host
mitochondrial OxPhos system. Here we will review the studies characterizing the effects of
viruses on the ETC, specifically the mitochondrial complexes, ATP levels, and ROS. We will
also discuss the details regarding the pathways that appear to regulate the ETC complexes
in virally infected cells.

For the purpose of this review, we will use the Baltimore classification of viruses
wherein the groups are classified on the basis of the viral genome [38]. Most of the work
evaluating the role of mitochondrial OxPhos in viral infections has been done on viruses in
group IV (+ sense single stranded RNA).

(+) ssRNA: This group of viruses harbors a single stranded RNA genome that pro-
duces functional mRNAs. An RNA-dependent RNA polymerase transcribes the genome to
generate a polyprotein. Viral or host cellular proteases cleave the polyprotein into individ-
ual proteins. This group has eight families with either enveloped or non-enveloped capsids.

Flaviviruses: The viruses that have been studied in some detail for their role in regu-
lating OxPhos are Hepatitis C virus (HCV), Zika virus (ZV), and West-Nile virus (WNV).

Hepatitis C virus: One of the earliest pieces of evidence of mitochondrial dysfunction
in patients with HCV infection was the identification of antimitochondrial antibodies in
serum [39]. Similarly, a defect in OxPhos along with increased oxidative stress markers
were observed in liver biopsies from patients with chronic HCV infections [40]. In a trans-
genic mouse model for HCV genotype 1b strain N, defective activity of CI was observed
along with an increase in ROS levels. The Core protein of HCV localizes to the mitochon-
drial outer membrane to cause enhanced Ca2+ flux into the mitochondria, resulting in
CI dysfunction and increased ROS [41]. Similarly, using cell lines with inducible HCV
replicons expressing the entire HCV polyprotein, enhanced calcium toxicity in the mito-
chondria was shown to cause an inhibition of CI activity and an increase in ROS [42], which
were found to be reversible upon amantadine treatment [43]. It was also hypothesized
on the basis of a case report that CIII dependent mitochondrial dysfunction underlies the
myopathy phenotype in HCV [44]. HCV non-structural protein NS5A also localizes to
the mitochondrial fraction and induces ROS via dysregulation of Ca2+ signaling [45,46].
Transcriptomic analysis of Huh-7.5 cells transfected with the full-length HCV genome
displayed a reduction in expression of CI (ND1, ND3, ND4) and CIV (MT-CO2) subunits en-
coded on the mitochondrial genome [47]. Interactome analysis has identified HCV core, p7,
and NS4B proteins to interact with the mitochondrial proteome in host cells [48]. MNRR1
(CHCHD2), a bi-organellar regulator of mitochondrial function that interacts with CIV and
is required for its optimal function, was also identified as one of the top candidate host gene
required for HCV replication [48]. MNRR1 was first identified as an HCV Non-structural
protein 2 transregulated protein [49]. Although HCV inhibits mitochondria, the induction
and requirement of MNRR1 could be hypothesized to be related to its anti-apoptotic or
transcriptional regulatory function [50,51].

Zika virus: Zika virus rose to prominence in the recent past due to its association
with microcephaly [52]. The presence of viral nucleic acids in fetal brains and placentas
led to the causal association of microcephaly with viral infection [53]. Although there
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is a lack of evidence suggesting a direct effect of Zika viral proteins regulating the ETC,
studies have shown Complexes II, IV, and V to be affected. Zika viral proteins such as
NS4A and 4B do localize to the mitochondria to modulate mitochondrial dynamics and
apoptosis [54,55].MNRR1 is also upregulated in ZIKV infected cells and may promote viral
replication [56]. Zika viral infection of neurons generated the metabolite itaconate from
the TCA cycle that inhibits CII activity, resulting in mitochondrial dysfunction [57]. The
effect on oxygen consumption rate (OCR), a function of CIV, displayed a strain-specific
effect. Using MRC-5 cells, only the MR766 strain was shown to inhibit OCR. Other strains,
such as H/PF/2013, M-F37L, DN-1, and DN-2, were comparable to the uninfected cells
for their effect on OCR [58]. Finally, Zika viral (and also other flaviviral) capsid proteins
induce DAPIT [59], an assembly subunit of CV [60].

West Nile virus: This virus infects keratinocytes and dendritic cells in skin as well as
cells in the central nervous system [61,62]. Using neuroblastoma cells A172, significant
downregulation was observed for nuclear encoded genes for CII (SDHB), CIV (COX5B and
6B), and CV (ATP5G1, 5C1, 5J, 5B, 5A1, 5O, 5F1), suggestive of an inhibitory effect on ETC
and mitochondrial function [63]. In virally infected Vero cells, oxidative phosphorylation
was inhibited with a shift towards glycolysis [64]. The modulation of other mitochondrial
pathways by West Nile virus has been reviewed previously [65,66].

Coronaviruses:
SARS-CoV-2: The recent COVID pandemic overburdened the economic and health

care sectors across the globe. Research was focused towards identifying therapeutic targets
and a vaccine. The initial studies performed in multiple cell and tissue types identified
an inhibitory effect of viral infection on nuclear encoded CI subunits including NDUFS2,
NDUFS6, NDUFB7 [67]. CoV-2 was also shown to inhibit both nuclear as well as mito-
chondrially encoded mitochondrial genes. The gene profile was evaluated across disease
progression. At the initial stage, minimal effects on gene expression were observed in
lungs. Downregulation of mitochondrial genes was observed when viral titers peaked.
The downregulated genes involved those encoding the structural and assembly subunits
of the OxPhos complexes. Upon clearing of the virus, the inhibitory effect on mitochon-
drial genes was reversed in the lung, but not other organs such as the heart, liver, and
kidneys [68]. Downregulation of CI was proposed to be responsible for the hypoxemic
phenotype associated with the disease [69]. Cytokine storm underlies the pathogenicity
of COVID. Monocytes infected with CoV-2 displayed downregulation of subunits from
complexes I, II, III, and V, resulting in dysfunctional mitochondria and enhanced ROS that
contributed to the cytokine production [70]. OCR was significantly reduced in peripheral
blood mononuclear cells from COVID patients [71]. Additionally, multiple viral proteins
such as ORF-3C localize to the mitochondria and induce organellar dysfunction [72]. More-
over, NSP10 interacts with ND4L and COXII to modulate complex activity [73]. Enzyme
remodeling by subunit switch has also been observed specifically in SARS-CoV-2 infected
cells. The C15orf48 subunit is induced upon infection and replaces its paralog, NDUFA4,
in CIV [14]. Finally, levels of OxPhos regulators such as MNRR1 were also shown to be
lower in SARS-CoV-2 patient hearts and may potentially contribute towards the cardiac
complications of the disease [74].

Others: The three other viruses in the + ssRNA group include Rubella virus, Coxsackie
B3, and Hepatitis E virus. Rubella virus causing German measles, in contrast to the others
in the group, actually induced mitochondrial OxPhos by enhancing activities of CI, II, III,
and IV in A549 cells 24 h post infection using isolated mitochondria [75]. Subunits SDHA,
SDHB (CI), UQCRC2 (CIII), and COX4I1 (CIV) were also induced upon acute infection. The
induction of OxPhos was found to be strain specific with Wb-12 strain showing maximal
induction and 07-00426 showing minimal increase [76]. The induction of OxPhos in rubella
virus infected cells has been attributed to the energy requirement of viral replication owing
to the observation that the mitochondria in the infected cells are in close proximity to the
viral replication complex [77]. Host cellular p32 protein facilitates the interaction of viral
capsid with the mitochondria [78].
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Coxsackie virus B3 (CVB3) mediated effects on OxPhos depend on the immune re-
sponsiveness of the host. Studies using C57/BL6 mice (that efficiently eliminates the virus)
and A.SW/SnJ (unable to eliminate the virus) show a completely variable response. Hearts
from C57/BL6 show an increase in CI and CIII activities whereas A.SW/SnJ hearts show
a significant reduction [79] suggesting that mitochondrial function has a potential role to
play in the viral replication cycle as well as in the host cellular response to infection.

Hepatitis E virus (HEV) is the causal agent of acute viral hepatitis. Recently, cell culture
models have identified CIII function to be required for the replication of HEV [80] making
it an attractive drug target. OxPhos dysfunction was also evident in primary human brain
microvascular endothelial cells wherein the infected cells displayed a significant reduction
in the protein levels of ATP5A1, a catalytic subunit of CV, resulting in bioenergetic deficit
and apoptosis [81].

(-) ssRNA: The three viruses in this group on which studies have been performed
characterizing OxPhos are Influenza, Rabies, and Respiratory syncytial virus (RSV).

Influenza: This virus is responsible for causing seasonal epidemics as well as pan-
demics (reviewed in [82]. One of the early studies documenting the effect of influenzas
virus on mitochondrial function identified an ~50% reduction in MDCK cellular oxygen
consumption rate in the infected cells compared to the mock control [83]. In contrast, mass
spectrometric analysis of A549 cells infected with swine influenza virus identified NDUFS8
and ATP5B and 5D subunits to be upregulated [84] whereas H1N1 infection did not affect
protein levels of ETC subunits [84]. Recently, H5N1 influenza viral infected cells were
shown to have significantly higher levels of COX subunit 4 isoform 1 (COX4I1). Further,
a CRISPR/Cas9 knockout of COX4I1 resulted in a ~200-fold reduction in viral titers. Ly-
corine, a compound inhibiting viral replication, was shown to function by inhibition of this
isoform of COX [85]. Influenza virus may also indirectly affect the expression of certain
subunits such as COX6C via regulation of microRNAs [86]. The M1 protein from influenza
virus interacts with and inhibits the functioning of CIV [87]. These effects on mitochondrial
function suggest that the virus probably hijacks mitochondrial metabolism depending on
the stage of its replication cycle such that activation is induced via multiple pathways when
energy is required [88].

Rabies: This virus, responsible for causing fatal encephalitis, induces mitochondrial
dysfunction underlying the pathogenic phenotype. Mitochondrial function was evaluated
in baby hamster kidney cells using the challenge virus standard-11 strain. A significant
reduction in intracellular ATP levels was observed in these cells along with increased ROS
levels. Both of these were attributed to high mitochondrial membrane potential resulting
from increased activities of CI and CIV generating ROS and hydrolysis of ATP [89]. The
same group later identified rabies viral phosphoprotein to interact with CI and regulate its
function [90]. Extensive analysis was also performed on postmortem brain tissues from
rabies encephalitis. Increased activities of CI, IV, and V were observed along with an
increase in multiple subunit proteins that constitute individual complexes of the ETC [91].

Respiratory syncytial virus: This virus causes acute lower respiratory tract infections
especially in the young and immunocompromised. RSV infected cells display a perinuclear
clustering of the mitochondria suggestive of cellular stress. A time dependent reduction
in basal oxygen consumption was observed in A549 cells with an increase in glycolysis
and ROS levels [92]. These changes were shown to be CI dependent. Reduced activity of
CI along with increased ROS levels were conducive for RSV replication in these cells and
these effects were induced by the matrix protein of the virus [93]. A downregulation of
mitochondrial biogenesis was also a feature of RSV infected cells [94].

ssRNA-RT: This group includes retroviruses with the most common being Human
Immunodeficiency Virus (HIV). The viruses in this category have a reverse transcriptase
enzyme that generates a cDNA intermediate from the RNA genome. One of the earliest
pieces of evidence of HIV virus affecting mitochondrial function was described almost four
decades ago. HIV positive ACH-2 cells were shown to have mitochondrially localized viral
RNA and proportionally defective mitochondrial morphology [95]. Shortly thereafter, using
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Saccharomyces cerevisiae as a model system, it was shown that the HIV protein Vpr induced
mitochondrial dysfunction by reducing activities of the entire ETC [96]. In strong contrast,
an increase in expression of individual subunits and activity of CIV was observed [97].
HIV-1 infection also inhibits CI activity by a specific downregulation of the NDUFA6
subunit [98]. PBMCs from non-treated HIV-infected patients were found to have reduced
CII, III, and IV activities [99]. We have recently shown in glial cells that the inhibitory effect
of antiretrovirals on SDH is abrogated in the presence of latent or active HIV infection [100].
Effects of viral proteins on the ETC as a result of direct interaction have also been described.
A direct interaction between the p2 peptide of the Gag and Gag-Pol precursors of HIV and
COXI during acute phase of infection results in increased ATP levels [101]. Tat protein of
HIV, however, inhibits COX and induces mitochondrial membrane permeabilization [102].
This property has allowed the use of Tat as a COX inhibitor in experimental settings.
The ATP synthase β-subunit is required for optimal HIV viral transfer from the antigen
presenting cell to the CD4+ T-cells. Although the mechanism of the localization of an inner
mitochondrial protein to the cell surface is unclear, these findings made ATP synthase
an attractive therapeutic target for HIV [103]. Defects in mitochondrial function (CIV)
measured as OCR also depends on the stage of infection. Viral infection proportionally
inhibited OCR rates with minimal effects on glycolysis [104]. These contrasting results on
ETC in HIV infected cells could potentially point towards cell and strain specific effects.
Comprehensive studies towards this avenue are required for a better understanding of how
HIV subverts mitochondrial OxPhos towards its replicative benefit. HIV viral proteins also
regulate multiple physiological processes of the mitochondria (reviewed in [105]).

dsDNA-RT: These viruses have a DNA genome with an RNA intermediate. Hepatitis
B (HBV) is an important virus in this group, responsible for liver disease that can lead
to cirrhosis and hepatocellular carcinoma. A protein encoded by the HBV genome, ORF
X (HBx), interacts with the OMM and induces apoptosis [106,107]. Using a two-hybrid
assay system it was also shown that HBx interacted with subunit 3 of CIV (COXIII) [108].
This results in an increase in mitochondrial function and cell growth [109]. A significant
downregulation of the ETC complex levels along with activity was observed in hepatoma
cells expressing HBx [110] with a resultant increase in ROS levels. A ~50% reduction in CII
activity was also associated with chronic HBV infection as evaluated using liver biopsy
specimens [111]. HBV, in contrast, induces OxPhos in macrophages and this increase is
required to downregulate the immune response [112]. HBV DNA also can integrate into
the mitochondrial genome coding for the subunits of ETC and may contribute towards
organellar dysfunction in infected cells [113]. Correcting mitochondrial dysfunction is a
potential therapeutic target in chronic HBV [114]. These results indicate that the virus
differentially regulates mitochondrial function in cell types conducive towards its own
replication. In some cells it increases mitochondrial function, whereas in others it decreases
them with enhanced ROS.

dsDNA: Three DNA viruses have been studied for their effects on mitochondrial
OxPhos and are described here.

Human Cytomegalovirus (HCMV): This herpesvirus is highly seroprevalent in the pop-
ulation. A majority of HCMV infections are congenital and result in neurodevelopmental
anomalies [115]. HCMV depends on host cell energy for its replication. HCMV infected cells
induce both OxPhos and glycolysis [116]. Metabolomic analysis also show an increase in
the TCA cycle as well as glycolytic intermediates, supporting the induction of OxPhos and
glycolysis [117]. A viral protein, pUL13, is responsible for the effect on OxPhos since virus
with a deletion of pUL13 fails to induce OxPhos. pUL13 has been shown to interact with the
MICOS complex responsible for maintenance of cristae that harbor the individual OxPhos
complexes [118]. Another viral protein, pUL37x1, induces mitochondrial biogenesis and
contributes towards OxPhos induction [119]. Viral infection also induces factors critical
towards maintenance of the mitochondrial genome as well as those responsible for the
assembly of the individual OxPhos complexes and for mitoribosome biogenesis [120]. Fi-
nally, GRIM-19 (Gene associated with retinoic acid and interferon-β-induced mortality-19)
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is another assembly factor of CI [121]. This protein relocalizes to other cellular niches such
as the nucleus in response to mitochondrial stress to induce apoptosis. In HCMV infected
cells, the β2.7 RNA transcript was shown to interact with GRIM19 to prevent its nuclear
localization and thereby inhibit apoptosis of the infected cells [122].

Epstein-Barr virus (EBV): EBV is also seroprevalent with latent infection. Conditions of
immunosuppression result in infection [123]. During early stages of infection, an induction
of glycolysis takes place [124]. As the infection proceeds, OxPhos induction also occurs
indirectly via activation of one-carbon metabolism [125]. One carbon metabolism is a
series of reactions providing methyl groups for a multitude of cellular pathways including
OxPhos [126]. Additionally, like CI, CII also has SDUFA1-4 that are responsible for the
assembly of the complex [127–129]. However, recent studies have identified SENP2 to
regulate sumoylation and assembly of CII under nutrient stressed condition [130]. This
study identified desumoylation of SDHA subunit of CII under conditions of glutamine
deprivation to result in an inhibitory effect on CII assembly and function. Epstein-Barr
Viral (EBV) protein LMP1 reduces functioning of SENP2 [131]. However, this study did not
evaluate the effect on mitochondrial function.

Human Papilloma virus (HPV): HPV, the causal agent of cervical cancers, also regulates
host cellular OxPhos. The E2 protein plays a key role in viral genome replication [132]. E2
from high-risk HPV-16 and 18 interacts with UQCRC2 and UQCRFS1 (CIII) and COXII
(CIV) to induce ROS generation by the mitochondria [133]. Recently, cells stably expressing
the oncoprotein E7 of HPV-16 was shown to interact with the ATP5B subunit of CV, causing
an increase in mitochondrial function. A mild increase was also observed with E7 of
HPV-8 [134]. The E2 protein also regulates mitochondrial function indirectly via induction
of p32 [135], an RNA-binding protein associated with TFAM [136]. TFAM is required for
mitochondrial transcription and translation (reviewed in [137]).

10. Viruses and Mitochondrial Reactive Oxygen Species

Multiple studies have reported the generation of ROS upon direct or indirect (for
example via gene regulation) interaction of viral proteins with the host cell mitochondria.
Examples are HCV mediated inhibition of CI activity [42], downregulation of assembly fac-
tors for CIII in SARS-CoV-2 infected cells [138], and Rabies viral phosphoprotein interaction
with CI induce ROS production [90]. Others have reported an increase in mitochondrial
ROS via (a) regulation of proteins involved in cristae structure such as prohibitins [139],
(b) dysregulated calcium homeostasis resulting in a mitochondrial overload and ROS
generation as seen with HBsAg, the surface antigen of HBV [140], (c) regulation of the
mitochondrial membrane channels resulting in membrane depolarization and ROS by Tat
protein of HIV [102], and (d) downregulation of the ROS scavenging enzymes such as
SOD2 as seen in SARS-CoV-2 infections [138].

Excessive ROS is deleterious to the host cell and therefore would not be conducive
for viral replication. Therefore, the ROS generated must be within levels that can facilitate
viral replication and prevent host cell death. So why do viruses induce ROS unless it’s
beneficial? The role of ROS as a signaling molecule [141] in the host cells could underlie
the induction observed in virally infected cells.

The two major reactive species generated by the mitochondria are the superoxide
anion (O2

•−)and hydrogen peroxide (H2O2) [142]. Superoxide anion, for example, has
been shown to activate the Raf/MEK/ERK pathway [143]. This pathway is required for
replication of SARS-CoV-2 [144]. H2O2 activates the p38-MAPK pathway to facilitate
replication of HCMV [145]. HCV induced ROS also facilitates viral replication via NFκB-
dependent induction of DR6, which interacts with the viral protein NS5A to induce viral
replication [146]. Similarly, studies have shown increased ROS to stabilize HIF-1 [147,148].
HIF-1 causes enhanced infectivity and replication of HIV in host cells [149,150].

ROS, in addition to regulating cellular signaling pathways, can also modify viral
proteins to enhance its functionality. Oxidation induces dimerization and guanylation
of the NS5A protein of Dengue virus, enhancing RNA-capping and replication [151].
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Methionine oxidation of Kaposi Sarcoma Herpes Viral helicase also enhances its stability
and function [152]. Although ROS are beneficial for some viral infections, high levels of
ROS would be deleterious to the host cell and therefore result in abortive replication of the
virus. Thus, viruses also induce antioxidant genes when the ROS levels in cells reach levels
to activate apoptotic cascades. HPV E7 protein induces the enzyme catalase to degrade
H2O2 [153]. Similarly, HBV induces NRF2 to activate antioxidant genes [154]. NS5A of
HCV induces Glutathione peroxidase 1 (GPX1) and GPX4. Induction of GPX4 counteracts
lipid peroxidation, resulting in enhanced infectivity of the progeny virus [155]. Viruses
such as HCMV [156,157] and Influenza (reviewed in [158]) induce ROS acutely to facilitate
induction of viral promoters and then induces ROS scavengers to reduce ROS. As ROS also
induces apoptosis, viruses counteract the apoptotic pathway by multiple mechanisms such
as transcriptional inhibition of proapoptotic proteins like Bim by EBNA3A and EBNA3C of
EBV [159], or induction of proteins that inhibit multiple targets in the apoptotic cascade
(reviewed in [160]).

11. Summary

In summary, although an exact mechanism is lacking, there appears to be a fine
regulatory system in play to ensure optimal viral replication and evasion of immune
response in the host cell. Viruses either induce or inhibit OxPhos, depending on its life
cycle, either by direct interaction with the OxPhos complexes and their assembly factors or
indirectly by regulating transcription of specific subunits and assembly factors. As ROS
is a product of ETC function, viruses also regulate ROS generated via the ETC to support
their own replication and modulate host signaling pathways. Table 1 summarizes the
effects observed on OxPhos in virally infected cells. Finally, detailed studies characterizing
a common mechanism used by multiple viruses are required. Mechanistic studies on
mitochondrial supercomplexes would help uncover novel molecular mechanisms hijacked
by viruses. This would allow the characterization of potential therapeutic targets for viral
infection that would be of immense benefit during viral pandemics.

Table 1. Effects of different viruses on OxPhos complexes.

Group Virus Complex Effect Reference
(+) ssRNA CVB3 I Induces [161]

CVB3 III Inhibits [161]
HCV I Inhibits [42]
HCV III Inhibits [44]
HEV III Induces [80]

Rubella Virus II, III Induces [75]
Rubella Virus IV Inhibits [75]
SARS-CoV-2 I Inhibits [69]
SARS-CoV-2 III Inhibits [70]

ZIKV II Inhibits [57]
ZIKV V Induces [59]

West Nile Virus II Inhibits [63]
(-) ssRNA H5N1 Virus IV Induces [69]

Influenza Virus II Induces [162]
Influenza Virus III Induces [163]
Influenza Virus V Induces [164]

Rabies Virus I Induces [90]
Rabies Virus IV Induces [89]

RSV I Inhibits [165]
ssRNA-RT HIV I Inhibits [98]

HIV III Inhibits [97]
HIV IV Induces [101]
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Table 1. Cont.

Group Virus Complex Effect Reference
HIV IV Inhibits [102]
HIV V Induces [103]

dsRNA-RT HBV I, III, IV, V Inhibits [110]
HBV II Inhibits [111]

dsDNA HCMV I, II, III, IV, V Induces [116]
EBV II Inhibits [131]
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