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Abstract: Huge phages have genomes larger than 200 kilobases, which are particularly interesting for
their genetic inventory and evolution. We screened 165 wastewater metagenomes for the presence of
viral sequences. After identifying over 600 potential huge phage genomes, we reduced the dataset
using manual curation by excluding viral contigs that did not contain viral protein-coding genes or
consisted of concatemers of several small phage genomes. This dataset showed seven fully annotated
huge phage genomes. The phages grouped into distinct phylogenetic clades, likely forming new
genera and families. A phylogenomic analysis between our huge phages and phages with smaller
genomes, i.e., less than 200 kb, supported the hypothesis that huge phages have undergone convergent
evolution. The genomes contained typical phage protein-coding genes, sequential gene cassettes
for metabolic pathways, and complete inventories of tRNA genes covering all standard and rare
amino acids. Our study showed a pipeline for huge phage analyses that may lead to new enzymes
for therapeutic or biotechnological applications.

Keywords: huge phage; wastewater; metagenome; viral metagenomics; virus genome annotation;
virus phylogeny

1. Introduction

Bacteria-infecting viruses, or phages, are extremely diverse and present in all ecosys-
tems studied to date. Furthermore, they hold significant ecological importance, as they can
lyse their hosts, facilitate horizontal gene transfer, and modify host metabolism, thereby
exerting a pivotal role in shaping microbial community structures. [1–4]. Metagenomics
studies the genetic reservoir in diverse environmental samples [5–8] and helps to identify
the (microbial) genomes in such samples [9]. In addition to small phages, phages with
DNA genomes larger than 200 kb in genome size have recently received more attention [10]
since Bacillus megatherium phage G was described in 1973 as the first large prokaryotic
virus with a head-to-tail length of 600 nm and a diameter of about 200 nanometres [11].
This ‘prototype’ huge phage has a genome size of just under 500 kilobases [12]. Such huge
phages are known by different names, such as ‘jumbophages’ [13] or also ‘megaphages’
for phages with a genome size of more than 500 kb [14]. Recently, however, it has been
proposed to refer to such phages simply as ‘huge phages’ [10]. Huge phages show high
diversity, infect hosts of different bacterial phyla, and differ from smaller phages in genome
organisation and gene expression patterns [13]. Huge phages have been isolated or iden-
tified from various environmental systems, but most of them have been identified from
an aquatic environment, presumably because they can infect their hosts more effectively
there as they can diffuse more easily [13,15]. Other environments for large phages include
soil, sediments, plants, and animal guts [10,13]. Recently, Prevotella-infecting phages have
been identified in the human gut [14], suggesting that these phages are widespread. Large
phages have interesting morphological and genomic features. They have both contractile
and non-contractile tails, suggesting different evolution in different phage groups [16].
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Their heads and tails include structural variations such as fibres attached to the heads, as
shown for the Tenacibaculum maritimum phages PTm1 and PTm5 [17], and variations in
the tail fibre morphology [18–20]. Huge phages have some unique genomic and biological
properties. For example, all huge phages have DNA polymerases belonging to different
DNA polymerase types, indicating that their replication is independent of the host [16].
Other features include the presence of genes for tRNA modification, genes for proteins
that influence or take over host translation, such as initiation factors, or unique CRISPR
systems [10,21]. Furthermore, huge phages can synthesise their own NAD+, which is
required as a source for DNA replication and the regulatory enzymes of the phages [22].
Huge phages are also known to have several tRNA genes, allowing them to evade host
defence mechanisms [10,13]. They are also interesting from evolutionary and ecological
perspectives. For example, it has been proposed that these phages have evolved from
smaller phages and have developed a k-strategy rather than an r-strategy for reproduc-
tion [23]. In addition, it has been suggested that these huge phages are ancient, having
evolved together with free-living cells and their symbionts from a common primordial
ancestor and having developed their replication strategies [10]. It should be noted that
huge phages must have more genetic information than their smaller counterparts simply by
virtue of their larger genomes [13]. For example, phage enzymes have become the targets
of therapeutic or biotechnological applications [24–26], so it seems worthwhile to study the
genetic and, thus, functional potential of these huge phages.

However, the analysis of huge phages was limited for a long time due to missing
analytical tools. For example, the isolation of these phages is limited because they may have
difficulty diffusing in the medium and, therefore, do not form plaques [27] or are removed
via filtration during the methodological process [13]. The analysis has recently advanced
due to the possibility of using large metagenomes containing significant (unknown) genetic
information and offering the unique potential to identify novel viruses, including huge
phages. However, their assembly from raw sequencing reads and the analysis can be
challenging [10,28], requiring improved bioinformatics pipelines. Based on advancements
in this field, huge phages have been identified from large metagenomes and isolated from
different environments [10,14,29–31] in the past few years.

This work focused on identifying huge phages from 165 wastewater metagenomes
available in public databases [5]. Wastewater represents a fingerprint of human and
environmental microbiota and thus may contain a significant number of highly diverse
huge phages [32]. Here, we describe in detail seven huge phages filtered from an initial
dataset of more than 1.5 million putative viral sequences, demonstrating that efforts in
improving bioinformatical pipelines are still required to identify phage genomes of interest
from larger metagenomic datasets.

2. Materials and Methods
2.1. Metagenome Dataset

A total of 6000 curated metagenomes were collected from the TerrestrialMetagenomeDB [5]
within the Collaborative Multi-domain Exploration of Terrestrial metagenomes (CLUE-
TERRA) consortium (https://www.ufz.de/index.php?en=47300, accessed on 23 May 2023)
as described elsewhere [33]. From these, metagenomes with the keywords ‘activated sludge’
and ‘wastewater’ were selected, resulting in 165 metagenomes that were further analysed
in this study. Of these metagenomes, 66 were from Asia, 4 were from Asia, 47 were from
Europe, 34 were from North America, and 14 were from South America. An overview of
the metagenome libraries is provided in Table S1. The metagenome libraries consisted of
short read sequences with an average library fragment length of 150 to 602 bases (median
302 bases) (Table S1).

2.2. Virus Sequence Identification

We used the Multi-Domain Genome Recovery v1.0.1 pipeline to identify viral contigs
from the 165 metagenome libraries [34]. Briefly, VirSorter 2 v2.2.4 [35], VirFinder v1.1 [36],
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and VIBRANT v1.2.1 [37] were used with default settings to identify viral contigs from
assemblies that were generated with Spades 3.15.2 [38]. Repeated sequences (from contigs
identified by two or three tools) were removed, and putative viral contigs were then
dereplicated to a 95% average nucleotide identity over at least 70% of the shortest sequence.
The completeness and quality of the contigs were then checked using CheckV 1.0.1 [39].

As this study aimed to identify huge phage genomes, we continued our analyses with
complete and high-quality viral genomes of more than 200 kb in length.

2.3. Genome Manual Curation

Contigs were first checked for circularisation. This was carried out by reference
mapping sequencing reads from the respective library to the contig of interest using the
Geneious reference mapping tool. The mapped reads were then de novo assembled using
the ‘circularise’ option implemented in the Geneious Prime® 2023.0.4 de novo assembler
(https://www.geneious.com, accessed on 15 June 2023). All circularised contigs were
considered complete. All contigs of interest were checked for erroneous concatenation.
These contigs consist of at least two sequences from different viruses or the same virus due
to, e.g., assembled terminal repeat regions. VIBRANT’s machine learning-based neural
network helped us to identify such contigs initially. In addition, repeat regions >3 kb were
identified using Vmatch (http://www.vmatch.de/, accessed on 17 June 2023), Geneious
Repeat Finder, and dot blot analysis. Reference mappings were used to fill gaps and extend
ends where necessary. Single and small stretches of Ns and ambiguities were identified via
contig self-alignment and manually curated using reference mappings.

2.4. Annotation of Structure, Functional Potential, and Lifestyle

Genes and coding sequences (CDS) in the curated phage genomes were predicted
using a combination of Prodigal [40] and PHANOTATE [41] implemented in the VIBRANT
and Pharokka [42] pipelines. Functional annotation of translated CDS was performed
through the search against the PHROG [43], CARD [44], and VFDB [45] databases using
MMseqs2 [46] and against the KEGG (release 105.0) [47], PFam (v32) [48], and VOGs (release
94) [49] databases. The annotation was improved by BLASTp [50,51] alignments against
the NCBI non-redundant database [52] and HHPred searches [53] against the Conserved
Domain Database [54], COG database [55], and UniProt-swiss-viral [56] database. Genomes
were scanned for tRNAs and tmRNAs using tRNA-scan SE2 [57,58] and Aragorn [59].
CRISPR loci were identified with CRISPRCasFinder [60,61]. Genome orientation was
checked via the orientation (positive or negative strand) of the terminase large subunit.
If necessary, genomes were reoriented to begin with the large terminase subunit gene in
positive orientation using the Pharokka re-orientation mode. The lifestyles of identified
phages were predicted using PhaTYP [62].

2.5. Genome Comparison and Phylogenetic Analysis

The average nucleotide identity (ANI) of the seven phage genomes to the known
phage genomes was determined using the OrthoANIu tool [63]. For this purpose, a total of
21,217 complete bacterial virus genomes available from Genbank on 18 July 2023 and from
a recent study [10] were used.

The major capsid protein (MCP) is one of the most conserved proteins encoded by
bacteriophages and has been widely used for phylogenetic analyses [64]. The MCP gene
nucleotide sequences were translated into amino acid (aa) sequences, and related sequences
available in GenBank were identified using PSI-BLAST [51] against both the viral non-
redundant and the viral RefSeq databases [52]. A maximum of 10 hits were allowed, and the
corresponding genome sequences were downloaded. Several huge phage genomes have
recently been described [10]. The MCP genes of these genomes were validated and corrected
via a comparison with known homologous genes and included in the analysis. Amino
acid alignments were performed using MAFFT v7.490 (scoring matrix: BLOSUM62, gap
open penalty: 1.53, offset value: 0.123) [65]. The alignment was trimmed using trimAL [66]

https://www.geneious.com
http://www.vmatch.de/
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with gappyout settings. The maximum likelihood phylogenetic tree was constructed with
IQ-TREE 1.6.12 [67] using automatic model selection [68] and ultrafast bootstrap [69] option
with 1000 bootstrap replicates. The resulting consensus tree was rooted in Herpes simplex
virus 1 MCP that was used as an outgroup and visualised in iTOL [70].

A set of phage genomes was used for genome-based phylogeny using VICTOR
(https://victor.dsmz.de, accessed on 28 June 2023) [71]. The set included genomes re-
lated to our genomes based on the ANI and the MCP phylogeny and one representative
genome from each of the 20 proposed clades from a recent study [10]. All pairwise com-
parisons of nucleotide sequences were performed using the Genome-BLAST Distance
Phylogeny (GBDP) method [72] with settings recommended for prokaryotic viruses [71].
The resulting intergenomic distances were used to infer a balanced minimum evolution tree
with branch support via FASTME, including SPR post-processing [73] for the formula D0.
Branch support was inferred from 100 pseudo-bootstrap replicates. Trees were midpoint-
rooted [74] and visualised using ggtree [75]. Taxon boundaries at the species, genus, and
family levels were estimated using the OPTSIL program [76], the recommended clustering
thresholds [71], and an F-value (fraction of links required for cluster fusion) of 0.5 [77].

For confirmation, genome sequences of the same dataset were used to generate a
‘proteome-wide’ tree with the ViPTree server [78]. The dendrogram was based on genome-
wide sequence similarities computed using tBLASTx [50].

Default settings were used for all tools.

3. Results
3.1. Genome Identification and Major Features

We identified a total of 2,578,604 (per library, min: 141; max: 52,046; median: 10,828)
dereplicated putative viral contigs from the 165 wastewater metagenomic libraries, of which
12,337 contigs were predicted to be provirus sequences. We applied CheckV to estimate
genome completeness and quality and identified 684 complete and 1099 > 90% complete
(i.e., CheckV high-quality category) contigs, while the remaining contigs had less than
90% or unknown completeness (Figure S1). We then filtered the contigs by size, selecting
only those larger than 200 kb and with CheckV qualities of ‘Complete’, ‘High-quality’,
and ‘Medium-quality’. This selection reduced the dataset to 7 complete, 154 high-quality,
and 36 medium-quality contigs. The contig sizes ranged from 201 kb to 1684 kb (median:
295 kb) (Figure S2).

The contigs were then screened for viral hallmark genes, and only contigs containing at
least terminase or structural protein genes (e.g., capsid, portal, tail, baseplate) were retained
for further analysis. The contigs were also screened for ribosomal genes (i.e., coding
for 16S and 23S ribosomal subunits), and contigs containing such genes were excluded.
These screens were especially true for the very large contigs. Afterwards, the contigs
were checked for long repeats > 3 kb to exclude concatenated contigs (either via self-
concatenation or the concatenation of several different shorter contigs). The final dataset
that was used for further analyses, such as annotation and phylogeny, was thus reduced to
seven contigs (three with complete CheckV quality scores, two with high-quality scores, and
two with medium-quality scores). These seven contigs were identified from four sequencing
libraries: 1-SewaA from an activated sludge wastewater sample from Japan (sample ID:
EADRX012718); 2-SewaB and 3-SewaC from activated sludge from a domestic wastewater
treatment plant in Singapore (sample ID: EASRX1759564); 4-SewaD, 5-SewaE, and 7-SewaG
from a Japanese activated sludge sample of municipal wastewater treatment plant (sample
ID: EASRX2157902); and 6-SewaF from another Japanese municipal wastewater treatment
plant (sample ID: EASRX2157911) (Table S1).

An attempt was made to circularise all contigs to check if they were complete, and this
was successful for four of the seven contigs. Therefore, whether the other three contigs are
complete or have a linear structure with no clear terminal repeats is unclear. The genome
sizes ranged from 204,222 bp to 303,942 bp, with 276 to 544 predicted coding sequences.
Between 5 and 47 tRNA genes were found in the genomes (Table 1).

https://victor.dsmz.de


Viruses 2023, 15, 2330 5 of 15

Table 1. Genome feature of huge phage genomes.

Contig Name Sample ID Contig Length Topology No. of ORFs No. of ORFs with
Annotation 1

No. of
tRNAs GC Density Lifestyle

1-SewaA EADRX012718 288,455 circular 414 108 47 41.9% virulent
2-SewaB EASRX1759564 256,464 circular 544 74 12 36.4% virulent
3-SewaC EASRX1759564 222,908 linear 276 44 5 38.7% virulent
4-SewaD 204,222 circular 323 69 23 36.3% virulent
5-SewaE 303,942 circular 533 128 28 41.5% virulent
6-SewaF 205,999 linear 371 57 38 33.6% virulent
7-SewaG 228,454 linear 402 46 17 30.9% prophage

Abbreviations: ORF: open reading frame; tRNA: transfer RNA; GC: guanine–cytosine. 1 ORFs with
assigned function.

3.2. Phylogeny and Taxonomy

The seven phage sequences’ average nucleotide identity (ANI) was compared with
21,217 complete bacterial virus genomes available from Genbank on 18 July 2023 and
a previous study [10]. The ANI between the phage sequences from this study and the
database sequences was generally relatively low. Most sequences had a query coverage of
less than 1 kb to already known sequences. Matches to the NCBI sequences were found
for only two of the seven genomes. Most hits were against sequences from the previous
study about huge phage genomes mentioned above [10]. The ANI of the known sequences
ranged from 56.6% with a 0.27% query coverage (5-SewaE) to 65.3% ANI with a 6.8% query
coverage (6-SewaF). No ANI to any database sequence was found for 3-SewaC. A summary
of the ANI comparisons can be found in Table S4. These low similarities to already known
phage sequences were supported by genome-wide tblastx analyses (Figure S4) [79].

Proteomic (tbastx-based) and genome-wide sequence similarity-based phylogenies
confirmed the above results and placed the seven phage genomes in distinct clades with
similarities to huge phages identified in the metagenomic studies [80,81]. Only 7-SewaG
shared a most recent common ancestor with the already established Prevotella Lak phage
clade (Figure 1 and Figure S5). The OPTSIL software [76] implemented in VICTOR deter-
mines the boundaries of species, genera, and (sub-)families. Based on these boundaries,
1-SewaA, 4-SewaD, 6-SewaF, and 7-SewaG would be members of the same virus family,
with 4-SewaD, 6-SewaF, and 7-SewaG being the only known members of different genera,
whereas 1-SewaA would form one genus together with an uncultured Caudoviricetes phage
(GenBAnk Acc. No. LR797474). To test this hypothesis, we calculated the intergenomic
similarity of these two phages using VIRIDIC with a 70% genus threshold [82]. The two
genomes were 20% identical, suggesting that the two phages are more distantly related
than what was suggested by the VICTOR analyses. As the only known members, the
phages 2-SewaB, 3-SewaC, and 5-SewaE would form new families based on the VICTOR
calculation (Figure 1).

The major capsid protein (MCP) is a viral protein that is widely used for phyloge-
netic analyses. We performed a blastp search (including iterative psi blast searches) with
the seven MCP amino acid sequences against the NCBI non-redundant and viral RefSeq
databases to identify related MCP sequences. We identified 99 related MCP sequences from
the NCBI database with an e-value of less than 0.01 and included them in the phylogenetic
analysis and available MCP sequences from each of the 13 recently proposed representative
huge phage clusters [10]. All of these were from unclassified members of Caudoviricetes. The
herpes simplex virus 1 MCP served as an outgroup. The MCPs of 1-SewaA and 7-SewaG
clustered in a clade with uncultured Caudoviricetes phages assembled from freshwater
metagenomes [80]. The MCPs of 2-SewaB and 3-SewaC had high degrees of divergence
from known phages and shared the most common recent ancestors, with a distantly related
phage identified from a human metagenome [81] (2-SewaB) and the giant Bacillus phage
0305phi8-36 [83] (3-SewaC). The MCP of 4-SewaD clustered in a distinct clade with an un-
cultured freshwater metagenome-assembled phage [80], and the MCP of 5-SewaE clustered
in a related but distinct clade with a recently described giant phage, which was placed in
one of twenty newly established huge phage clades called Biggiphage [10] (Figure 2).
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3.3. Functional Annotation

Using two different phage annotation tools, we could predict 2861 coding sequences
(CDS) for all seven phages (276 to 544), of which 81.37% remained hypothetical. Between
11.4% and 26.1% of the CDS could be assigned a function (Table 1, Figure S3).

Most of the proteins (11.4%) with predicted functions include proteins involved in
nucleic acid metabolism, such as replication enzymes (polymerases, primases, ligases,
and helicases) and enzymes that may be involved in nucleic acid modification and other
biochemical processes that are important for phage replication and their interaction with
host cells (nucleases, proteases, reductases, and transferases). Structural proteins include
phage-typical proteins such as capsid, portal, tail, and baseplate proteins.

The individual phage genomes encode between 1 and 13 predicted Auxilliary Metabolic
Genes (AMGs), which can be involved in 23 different signalling pathways. Genes involved
in nicotinate and nicotinamide metabolism were very prominent. For example, 5-SewaE
encodes four different genes whose gene products are directly involved in converting
nicotinamide to NAD+. Another example of such a gene cassette of successive enzymes
is found in 3-SewaC. This phage genome contains genes for four enzymes that catalyse
dTDP-L-rhamnose production from D-glucose-1P via three intermediates. These enzymes
are involved in synthesising polyketide sugars, which are part of the biosynthetic pathways
of vancomycin antibiotics, such as streptamycin, or glycosidase inhibitors, such as acarbose
or validamycin. Other AMGs encode for enzymes involved in amino acid and nucleotide
biosynthesis, such as folate and sulphur relay systems, as well as sugar and vitamin biosyn-
thesis. Another AMG identified in 1-SewaA is the heptosyltransferase I, which attaches
heptose sugar units to the lipid A molecule in lipopolysaccharide biosynthesis. Lipid A is
the hydrophobic component of LPS, which is closely associated with the outer membrane
of Gram-negative bacteria [84]. The addition of heptose sugar units by heptosyltransferase
I is critical for forming the characteristic LPS structure, and it plays a role in immune
recognition and the bacterium’s interaction with its environment [85,86]. This interaction is
another example of how the phages described here can interfere with different metabolic
processes in their hosts. A summary of the identified AMGs is presented in Table S2.

The seven phage genomes contained between 5 and 47 transfer RNA (tRNA) genes
are shown in Table 1.

The putative CRISPR sequences were identified in two phage genomes (two cassettes
in 5-SewaE and three cassettes in 6-SewaF). Only one of the CRISPR cassettes in 5-SewaE
showed a 93% similarity to the known CAS type I-C system sequences (Supplementary
File, CRISPR sequences).
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Figure 1. Phylogenomic GBDP tree inferred using the formula D0 (nucleotide) and yielding average
support of 64%. The numbers near branches are GBDP pseudo-bootstrap support values from
100 replications. The branch lengths of the resulting VICTOR tree are scaled in terms of the respective
distance formula used. The OPTSIL clustering [76] yielded 81 species clusters and 60 genus clusters.
The number of clusters determined at the family level was fifteen. The geometrical shapes and colours
represent different taxa. Studied phages are shown in red.
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Figure 2. Phylogenetic relationship of identified huge phage major capsid proteins. Maximum
likelihood phylogeny based on the amino acid sequences of the major capsid proteins was performed
in iqtree with the best model option. Confidence tests were performed with 1000 bootstrap replicates.
Virus names are shown, and GenBank accession numbers are given in parentheses. Some clades
were collapsed for clarity (A–G). Coloured backgrounds represent the environment from which the
sequences were identified (see legend).

4. Discussion

Our work aimed to analyse wastewater metagenomes for the presence of huge phages.
We used 165 metagenomes available in public databases. We identified about 2.5 million
potential viral sequences using bioinformatic methods and gradually reduced this dataset
for a deeper analysis. Since we were interested in phages with a genome size of more than
200 kb, we reduced the dataset to 638 viral contigs of interest. For the quality analysis, we
used CheckV, and due to the large number of potentially interesting contigs, we focused on
the categories of ‘complete’, ‘high-quality’, and medium-quality, which reduced the dataset
to 197 contigs. These contigs were subjected to a more detailed analysis by searching for
typical viral protein-coding genes (i.e., hallmark genes). In many of the contigs, none of
these genes were identified, so we excluded them from the analysis. We also searched
for bacterial genes, particularly genes encoding ribosomal subunits. In this way, we had
to exclude other potential viral contigs from further analysis. In particular, these were
very large contigs of more than 1 Mb in size. Our study highlights a major problem in
identifying and analysing huge phages from metagenomes. This problem represents a
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challenge due to the large amount of data, selection criteria, quality control, and difficulties
in identifying appropriate sequences for which appropriate computational pipelines should
be developed.

Another problem was contigs consisting of concatemers of at least two smaller phage
genomes. This problem resulted from the incorrect assembly of sequencing reads because
terminal repeat regions of phage genomes cannot be distinguished as belonging to indi-
vidual phage genomes during the assembly process [10]. In this way, we reduced our
dataset to seven contigs, which we analysed in detail. This process clearly shows that
predicting viruses from metagenomic datasets and calculating the quality of potential
viral contigs should be carried out with caution. CheckV is dependent on the available
datasets on which the estimates are calculated [39], and like any bioinformatics tool, it
has limitations. On the other hand, there is a high probability of more potential contigs of
interest (i.e., viral sequences), specifically in the ‘not determined’ category. We deliberately
chose not to explore these categories in more detail in this work, as the manual curation
and annotation of many large viral genomes were outside the scope of this work. Our
data also demonstrate that the existing computational methods cannot analyse large viral
datasets with 100% confidence. A manual analysis of hundreds of thousands to millions
of potentially viral sequences, such as those typically generated from large metagenomic
datasets [81,87,88], is not feasible. Our study encountered challenges in assembling and
characterising large phage genomes from metagenomic datasets. It is worth noting that
using long-read sequencing technologies could potentially provide more contiguous and
accurate genome reconstructions, helping to overcome some of the limitations associated
with short-read sequencing approaches.

The phylogenetic analyses grouped the seven phage genomes described here into
distinct clades with relatively large distances to their closest known phage relatives, which
are often not further described phages found in metagenome datasets. The large genetic
distances indicate a great potential for discovery among huge phages. Based on the VICTOR
estimates [76], we described phages belonging to previously undescribed genera or families
(Figure 1). These analyses show a relationship between some huge phages and a large
divergence among different huge phage clades. It is also worth noting that at both the
genomic and proteomic levels, some huge phages appear to be related to smaller phages
(with genome sizes well below 200 kb). This suggests that huge phage clades have different
common ancestors, i.e., they have evolved through convergent evolution. In general,
however, these phages are phylogenetically very distant, so this hypothesis will need to be
tested in the future by analysing other as yet unidentified genomes. Phylogenetic analyses
should therefore also consider smaller phages and not necessarily assume a 200 kb cut-off.
A similar approach was proposed in a recent study [16]. In-depth analyses in this direction
could help investigate interesting aspects of phage evolution. For example, it is known that
bacteriophages can transfer genes between different phages [89]. In addition, huge phages
may have enlarged their genomes by adopting genes from smaller phages. One could
speculate that this could have happened through lateral gene transfer, where phages take up
genes from other phages or bacteria or where two or more phages with different genome
sizes are fused to form a phage with a larger genome by infecting a host with several
phages simultaneously. These hypotheses are not well supported since huge phages have
unique features that are not found in smaller phage genomes [13]. However, thousands of
previously unknown phages have also been discovered in various environments, some of
which may have large genomes and novel features [90]. Other possible reasons for such
relationships would be the introduction of foreign DNA to enlarge the genome [91] or
the loss of non-essential or redundant genome sections, reducing the genome size [92].
Therefore, the origin and evolution of huge phages is still an open question that requires
more research.

The majority of the coding sequences identified were annotated as hypothetical pro-
teins. The number of hypothetical proteins is generally approximately half to two-thirds
of the predicted open reading frames in phage genomes [93]. However, 73.9% and 88.6%
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are unusually high. Since most hypothetical proteins are expressed during the early stages
of phage infection [94–96], these results suggest that huge phages encode a large genetic
reservoir to take over the host metabolism and express proteins that are mainly involved in
replication, transcription, and translation. About half of the identified coding sequences
with predicted functions were involved in nucleic acid metabolism, including enzymes
that modify molecules (e.g., amidase, dioxygenase, and transferase), DNA-related enzymes
(e.g., polymerases, ligases, and helicases), or enzymes that regulate metabolism (e.g., lipase,
hydrolysis, and peptidase), supporting this hypothesis. It is conceivable, for example, that
huge phages can act very efficiently to use host resources, energy processes for their own
reproduction or overcome host defence mechanisms. Three helicase genes have been iden-
tified in one of the phage genomes (4-SewaD), and four other genomes have at least two
helicase genes. These helicases are good examples of how huge phages may have adapted
to various changing environments and hosts through different replication strategies and
enzyme diversification.

Auxiliary metabolic genes (AMGs) have been frequently described in phage genomes and
are particularly interesting because they provide a toolkit for influencing host metabolism [97–99].
Given the genome size of the phages studied, it would not be surprising to identify at
least some AMGs in bigger genomes. Our analyses identified between 1 and 13 different
AMGs per genome (Table S2). Different habitats and hosts may explain these differences
in numbers [100]. Some of the AMGs that were identified are particularly interesting
because they have several sequential genes for one signalling pathway. Phage 3-SewaC,
for example, has four genes that convert D-glucose-1P to dTDP-L-rhamnose, which is
part of a polyketide sugar pathway that can be used for antibiotic production and that
has already been identified in a similar form in the genome of another huge phage [10],
which raises the question of whether some of these signalling pathways are conserved in
huge phage genomes. Another phage (5-SewaE) encodes four enzymes that are capable
of converting nicotinamide to NAD+. This functional potential suggests that this phage
could efficiently influence the host’s energy production or redox regulation to provide
resources for its replication or to modify the cell environment accordingly [101]. This
finding is even more interesting because such signalling pathways are often absent in gut
microbes [102]. Human gut phages (like phages found in wastewater) could complement
signalling pathways and contribute to the gut ecosystem service. Such enzymes are also
of interest for understanding phage–host interactions and biotechnological processes by
identifying enzymes that can be used more efficiently for specific applications.

The presence of tRNA genes in phage genomes can compensate for codon usage
bias, i.e., the use of abundant codons in phage genomes compensates for compositional
differences between the phage and host genomes, and that tRNA gene abundance is linked
to phage virulence [103]. Another interesting explanation for the presence of tRNA genes
in phage genomes is that phage tRNAs can evade host defence mechanisms that aim for
tRNA-depleting strategies [104]. We identified 5 to 47 tRNA genes in the seven phage
genomes (Table S3). The most interesting is the 1-SewaA phage with its 47 tRNA genes,
covering all 20 standard amino acids in varying frequencies. In addition, its genome con-
tains tRNA genes for selenocysteine and formylmethionine (fMet). In addition, two tRNA
genes are coding for formylmethionine, which may indicate that this phage can better
ensure the flexibility, regulation, and evolutionary adaptation of protein biosynthesis and
can use different translation strategies in different environments or under different con-
ditions. Such phages are particularly interesting for phage therapy because the presence
of all of the necessary tRNA genes not only ensures more efficient replication and host
adaptation, but also, thanks to its efficient translation system, can successfully develop
immune escape strategies and thus be used effectively to treat infections. For example,
phages carrying tRNA genes that specifically recognise and require fMet for translation
could be more effective at invading bacterial cells and taking over their protein production,
as fMet plays a particularly important role in bacterial protein synthesis. This knowledge
could eventually be used to design customised phages. Furthermore, three of the phage
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genomes contain tRNA genes for selenocysteine, suggesting that these phages can en-
code proteins containing selenocysteine and have specific translation systems to regulate
selenocysteine incorporation.

Although host analyses were not performed in this study, it is important to consider
the potential ecological significance of the seven huge phages identified. These phages
may interact with bacterial hosts in WWTPs or originate from human-associated sources.
Understanding their potential hosts and roles in these environments could shed light on
their contribution to ecosystem resilience and function. Future research in this direction
could explore these phages’ ecological niches and interactions and reveal their broader
ecological implications.

5. Conclusions

We identified more than 600 putative huge phage genome sequences from wastewater
metagenomes and described the potential pitfalls of genome analysis. We recommend that
the results of computational methods for predicting viral sequences from metagenomes
be critically questioned, as many of these sequences are not clearly viral, and the analysis
pipelines cannot unambiguously separate concatemers. One proposed solution is to use
this knowledge to develop (semi-)automated tools to accurately and rapidly identify
actual viral genomes. We described seven huge phage genomes belonging to previously
undescribed viral genera and families. These phage genomes contained a repertoire of
genes, including cassettes of metabolic genes and complete sets of tRNA genes. This
genetic diversity could open up new avenues for biotechnological and medical research.
For example, the metabolic genes could be used in the biotechnological production of
valuable compounds or drugs, while the tRNA gene sets could serve as the basis for
targeted gene expression and the development of therapies. These findings expand our
understanding of virological resources and could have significant applications in various
fields. Based on a phylogenomic analysis, we also hypothesised that convergent evolution
evolved these huge phages. This hypothesis suggests that although these phages belong
to different genera and families, they may have adapted and evolved their large genome
sizes as an advantageous strategy in their specific ecological niches. Further research and
comparative genomic studies may shed more light on convergent evolution.
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