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Abstract: Seneca Valley Virus (SVV), a member of the Picornaviridae family, is an emerging porcine
virus that can cause vesicular disease in pigs. However, the immune evasion mechanism of SVV
remains unclear, as does its interaction with other pathways. STING (Stimulator of interferon genes)
is typically recognized as a critical factor in innate immune responses to DNA virus infection, but
its role during SVV infection remains poorly understood. In the present study, we observed that
STING was degraded in SVV-infected PK-15 cells, and SVV replication in the cells was affected when
STING was knockdown or overexpressed. The STING degradation observed was blocked when the
SVV-induced autophagy was inhibited by using autophagy inhibitors (Chloroquine, Bafilomycin
A1) or knockdown of autophagy related gene 5 (ATG5), suggesting that SVV-induced autophagy
is responsible for STING degradation. Furthermore, the STING degradation was inhibited when
reticulophagy regulator 1 (FAM134B), a reticulophagy related receptor, was knocked down, indicating
that SVV infection induces STING degradation via reticulophagy. Further study showed that in
eukaryotic translation initiation factor 2 alpha kinase 3 (PERK)/activating transcription factor 6
(ATF6) deficient cells, SVV infection failed to induce reticulophagy-medaited STING degradation,
indicating that SVV infection caused STING degradation via PERK/ATF6-mediated reticulophagy.
Notably, blocking reticulophagy effectively hindered SVV replication. Overall, our study suggested
that SVV infection resulted in STING degradation via PERK and ATF6-mediated reticulophagy, which
may be an immune escape strategy of SVV. This finding improves the understanding of the intricate
interplay between viruses and their hosts and provides a novel strategy for the development of novel
antiviral drugs.
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1. Introduction

Seneca Valley Virus (SVV) is a prototypic member of the Senecavirus genus within the
Picornaviridae family and is a non-enveloped, positive-stranded RNA virus with a genome
length of approximately 7.3 kb [1]. As an emerging porcine virus, SVV is able to cause
vesicular disease in pigs, which is clinically indistinguishable from foot-and-mouth disease
(FMD) and other swine vesicular diseases [2]. SVV infection has caused some economic
consequences to the global swine industry, but there is no vaccine available for disease
control [3]. Consequently, a better understanding of host—virus interaction contributes to
identifying potential targets for the development of efficient antiviral drugs and vaccines.

STING (Stimulator of interferon genes), also known as MITA (Mediator of IRF3 activa-
tion) or MYPS (plasma membrane tetraspanner), is an evolutionarily conserved transmem-
brane protein that localizes to the ER (endoplasmic reticulum) membrane in immune and
non-immune cells and has been identified as a key signaling molecule in innate immune
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responses [4,5]. STING is primarily activated by CDNs (cyclic dinucleotides) induced by
invading pathogens (such as bacteria and viruses) [6-8]. After binding to CDNs, STING
activates and interacts with TBK1 (TANK-binding kinase 1), which leads to relocation
to the perinuclear regions of cells. Then, activated TBK1 phosphorylates the transcrip-
tion factors IRF3 (interferon regulatory factor 3) and NF-«B (nuclear factor-kB), which
translocates into the nucleus to innate immune gene transcription [9]. Thus, STING, as
a key molecule associated with innate immune responses, is essential for controlling the
activation of antiviral responses. Many DNA viruses and bacteria have been reported to
activate STING-dependent innate immune responses, including HBV (Hepatitis B Virus),
HSV (Herpes Simplex Virus), Mycobacterium tuberculosis, and Brucella abortus [10-13].
Moreover, a growing body of evidence suggests that STING is activated by the infection
of various RNA viruses, such as SeV (Sendai virus), VSV (Vesicular Stomatitis Virus),
NDV (Newcastle Disease Virus), JEV (Japanese Encephalitis Virus), and SARS-CoV-2 (Se-
vere acute respiratory syndrome coronavirus 2) [14-16]. These observations suggest that
STING-mediated antiviral responses restrict both DNA and RNA viruses. However, the
virus has also evolved numerous strategies to suppress STING-induced innate immune
signaling pathways. DNA virus infection induces interaction between MYSM1 (Myb-like,
SWIRM, and MPN domains 1) and STING to suppress innate immune responses [17].
HPV18 (Human Papillomavirus Type 18) E7 combines with STING in a site-critical form for
NF-«B activation to antagonize STING-triggered innate immune response activation [18].
However, little has been done to understand the mechanism by which SVV antagonizes
STING-dependent antiviral responses.

Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway
in which intracellular contents such as proteins, organelles, and lipids are degraded to
maintain cellular homeostasis [19]. Depending on the mechanisms for delivering cargo to
lysosomes, autophagy is classified into three types: microautophagy, chaperone-mediated
autophagy, and macroautophagy [20]. Macroautophagy is the best-characterized form of
autophagy (hereafter referred to as autophagy), which involves the initiation of autophagy,
the elongation and closure of the autophagic membrane, the maturation and fusion of au-
tophagosomes with lysosomes, and the degradation and recycling of autophagosomes [21].
Selective autophagy, a major form of autophagy, targets the degradation of specific sub-
strates, especially dysfunctional or superfluous organelles. Regarding different organelles,
multiple types of organelle-specific autophagy have been reported, such as mitophagy (mi-
tochondrion), ribophagy (ribosome), pexophagy (peroxisome), reticulophagy (endoplasmic
reticulum, ER), lysophagy (lysosome), and nucleophagy (nuclear) [22]. The innate immune
system activates autophagy to clear invading pathogens by the degradation and disposal of
cytoplasmic components [23,24]. However, viruses have also evolved strategies to counter-
act the host’s antiviral response by exploiting the process of autophagy degradation. PEDV
(Porcine epidemic diarrhea virus) induces autophagy to degrade the host antiviral pro-
tein HNRNPA1 (Heterogeneous nuclear ribonucleoprotein A1) through its N protein [25].
ASFV (African Swine Fever Virus) activates mitophagy to degrade TOMM?70 (mitochon-
drial membrane 70) via SQSTM1 (Sequestosome 1)-related autophagosomes, resulting in
inhibiting TOMM?70-mediated innate immune response [26]. A previous study from our
group also confirmed that FMDV (foot-and-mouth disease virus) utilizes autophagy to
degrade STING [27].These studies further demonstrate that viruses use autophagy to de-
grade antiviral proteins through different strategies. To date, a few studies have shown that
SVV-induced autophagy promotes the replication of SVV [28-30]. However, it is unclear
whether the underlying mechanism of this process is related to STING.

Numerous studies revealed that both DNA viruses and RNA viruses are capable of
activating autophagy via UPR (unfolded protein response) to promote viral replication [31-33].
For example, PRRSV (Porcine reproductive and respiratory syndrome virus) stimulated
autophagy through the ER stress-dependent calcium pathway to promote its replication [34].
A previous study reported that SVV infection activated autophagy via EIF2AK3/PERK
(eukaryotic translation initiation factor 2 alpha kinase 3) and ATF6 (activating transcription
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factor 6) of UPR [29]. However, the relationship between this process and the viral evasion
from the host’s antiviral responses, particularly the STING-mediated antiviral responses, is
still not fully understood.

In the present study, we demonstrated that SVV infection induces the degradation
of STING through reticulophagy via the PERK/ATF6 of UPR, which would improve the
understanding of SVV pathogenesis and host cellular antiviral mechanisms.

2. Materials and Methods
2.1. Cells and Viruses

Porcine kidney cells (PK-15 cells; ATCC, CCL-33), porcine Instituto Biologico-Rim
Suino-2 cells (IBRS-2; ATCC, CL-101), and Lenti-X™ 293T cells (Clontech, Mountain View,
CA, USA, 632180) were cultured in Duldecco’s modified Eagle’s medium (DMEM; Gibco,
Carlsbad, CA, USA, C14190500BT) supplemented with 10% FBS (Gibco, Carlsbad, CA, USA,
10099-141), 100 U/mL penicillin, and 50 pg/mL streptomycin (Gibco, Carlsbad, CA, USA,
15140-122) at 37 °C under 5% CO; in a humidified incubator. The SVV strain (CH-FJ-2017)
was isolated and stored in our laboratory [35]. SVV was propagated and virus titers were
determined using Karber’s method and expressed as 50% tissue culture infective dose
(TCIDsp) in IBRS-2 cells.

2.2. Antibodies and Reagents

The main antibodies used in this study were as follows: anti-STING antibody (Cell
Signaling Technology, Boston, MA, USA, 50494S), anti-LC3B antibody (Cell Signaling
Technology, Boston, MA, USA, 2775s), anti-f-tubulin antibody (Proteintech, Chicago,
IL, USA, 66240-1-Ig), anti-PERK antibody (Proteintech, Chicago, IL, USA, 24390-1-AP),
anti-FAM134B antibody (Proteintech, Chicago, IL, USA 21537-1-AP), anti-ATF6 antibody
(Abcam, Cambridge, UK, ab122897), anti-ATGb5 antibody (Novus Biological, Centennial,
CO, USA, NB110-53818), anti-VP1 antibody (our laboratory), anti-3D antibody (our lab-
oratory), anti-rabbit antibody (Bio-Rad, Berkeley, CA, USA, 170-6515), and anti-mouse
antibody (Bio-Rad, Berkeley, CA, USA, 170-6516). The main reagents used in this study
were as follows: MG132 (Merck & Co., Darmstadt, Germany, 474787), Z-VAD-FMK
(Merck & Co., Darmstadt, Germany, 627610), CQ (Sigma, Darmstadt, Germany, 509272),
Baf-Al (LC Laboratories, Woburn, MA, USA, B-1080), and 4u8C (Selleck, Houston, TX,
USA, 14003-96-4).

2.3. Pharmaceutical Treatment and Virus Infection

Pharmaceutical treatment and virus infection were carried out as in previous stud-
ies [27,36]. Briefly, PK-15 cells were incubated for 24 h prior to infection with medium
containing the following inhibitors, respectively: 50 uM Z-VAD-FMK, 20 uM MG132,
50 uM CQ, 50 uM Baf-A1, and 100 uM 4u8C. Doses were calculated by the formula “Con-
centration (start) x Volume (start) = Concentration (final) x Volume (final)”. PK-15 cells
were then inoculated by SVV (MOI = 1) and incubated at 37 °C for 1 h. Unbound viruses
were removed by washing with pre-warmed PBS. The cells were cultured in DMEM
medium supplemented with 2% FBS and the same concentration of these inhibitors as
mentioned above in a humidified incubator (37 °C, 5% CO,).

2.4. Construction of Plasmids

STING cDNA (accession no. 3. NM_198282.4) was inserted into Plvx-puro lentiviral
vectors to construct plasmid expressing 3 x Flag -tagged STING proteins. The primers for
PCR are listed in the following:

STING Forward: 5'-CTAGCTCGAGATGCCCCACTCCAGCCTGCAT-3'

STING Reverse: 5-CTAGGGATCCCTTGTACAGCTCGTCCATGCC-3'

For the construction of lentiviral shRNA vectors, shRNA was designed using BLOCK-
iT™ RNAI Designer (Invitrogen, Carlsbad, CA, USA). The primers were synthesized and
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cloned into pLKO.1 vectors by digestion and ligation; ShARNA sequences are shown in the
following:

STING: 5'-GCTCGGATCCAAGCTTATAAT-3

ATG5: 5'-GCACACCACTGAAATGGCATT-3

FAM134B: 5-GCGAAAGCTGGGAAGTTATCA-3’

PERK: 5-GCAGATCACTAGTGATTATCA-3

ATF6: 5'-GCTGTCCAATACACAGAAACC-3’

For the construction of lentiviral CRISPR-Cas9 vectors, sgRNA was designed using
sgRNA Designer from Feng Zhang’s lab (Cambridge, MA, USA). The primers were syn-
thesized and cloned into Lenti CRISPR v2 vectors by ligation; the sgRNA sequence is
as follows:

STING: 5'-CCCCCAAAGGGCCACCAAGC-3'

2.5. Lentivirus Packing and Infection

The pLKO.1 plasmid, psPAX2 packaging plasmid, and pMD2.G envelope plasmid
were mixed with the transfection reagent (Thermo Fisher Scientific, Carlsbad, CA, USA,
L3000015) and added to 4 x 10° Lenti-X™ 293 T cells. The cell culture was subjected to
multiple freeze-thaw cycles, followed by filtration to obtain the supernatant containing the
lentivirus. The supernatant was then stored at —80 °C as aliquots. PK-15 cells were infected
with lentivirus supernatant containing 8 mg/mL polybrene for a 24-h period. Following
this, fresh medium was added to the cells. After 24 h of infection, resistant cells were
selected using either hygromycin (Invitrogen, Carlsbad, CA, USA, 10687010) or puromycin
(Invitrogen, Carlsbad, CA, USA, A1113803).

2.6. Western Blot

Cells were incubated on ice with RIPA Lysis Buffer (Beyotime, Shanghai, China,
P0013B) containing PMSF (Beyotime, Shanghai, China, ST506) for 5 min. The samples were
denatured in Laemmli 2 x concentration sample buffer (Sigma, Darmstadt, Germany, S3401)
at 95 °C for 10 min. Then, the samples were separated on 10% acrylamide gel and the
protein bands in the gel were transferred to the PVDF (polyvinylidene fluoride) membrane
(Millipore, Darmstadt, Germany, ISEQ00010). The membranes were blocked in TBST
(Solarbio, Beijing, China, T1085) containing (5%) skimmed milk powder (BD, Becton Drive
Franklin Lakes, NJ, USA, 232100) at RT (room temperature) for 2 h and were then incubated
with primary antibody dilution at 4 °C overnight. The membranes were washed three
times with TBST for 10 min each time. Then, they were incubated with the corresponding
species of secondary antibody dilution at RT for 2 h. After washing, membranes were
visualized by enhanced chemiluminescence (Affinity, Liyang, China, 170-5061). Bands
were detected using BLT GV6000 Plus or Bio-Rad ChemiDoc MP in automatic or manual
exposure models. The results were exhibited as the density ratio between proteins and the
load control (p-tubulin) by Image J software (NIH, 1.46r).

2.7. Quantitative Reverse Transcription Polymerase Chain Reaction

Cells were seeded in 35-mm dishes, and total RNA was isolated using a Gene JET™
RNA Purification Kit (Thermo Fisher Scientific, Carlsbad, CA, USA, K0731) according to
the manufacturer’s instruction. For cDNA synthesis, total RNA was reverse-transcribed
using ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO, OSAKA, Japan,
FSQ-301). For the quantification of gene expression, SYBR green-based RT-qPCR was
performed using SYBRTM Green Master Mix (Thermo, Carlsbad, CA, USA, A25741), and
the thermal cycling conditions were set as per the manufacturer’s instructions. The primers
used in qPCR are shown below:

GAPDH Forward: 5'-GTCGGTTGTGGATCTGACCT-3’

GAPDH Reverse: 5'-AGCTTGACGAAGTGGTCGTT-3’

STING Forward: 5'- CTCCCAGCAGATAGGACTGC-3

STING Reverse: 5'-CCTTGTCTCGGATGGAGAAG-3
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SVV VP1 Forward: 5-CACCGACAACGCCGAGAC-3’
SVV VP1 Reverse: 5'-GAGATCGGTCAAACAGGAATTTGAC-3/

2.8. Statistical Analysis

All experiments were repeated at least three times independently. The significance
analysis was constructed with ¢-test or one-way ANOVA test using Graphpad Prism software,
version 8.0; p-values were interpreted as follows: * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Results
3.1. SVV Infection Reduced STING Protein Level and STING Inhibited SVV Replication

To explore the effect of SVV infection on ER-anchored STING, we first detected the
level of STING in SV V-infected PK-15 cells. The results by Western blot showed a significant
reduction in the level of STING protein at 26 hpi (**** p < 0.0001), compared with control
cells (Figure 1A,B). To investigate the role of STING in SVV infection, we constructed
STING knockdown (KD) PK-15 cells (Figure 1C), and then the cells were infected with SVV
(MOI = 1). We analyzed the effect of STING knockdown on SVV replication by Western
blot, RT-qPCR, and TCID5p. Compared to wild-type cells, the expression of SVV structural
protein VP1 was found to increase in STING-KD cells (Figure 1D,E). Additionally, the
results from copy numbers and viral titers indicated that SVV replication was enhanced in
STING-KD cells (Figure 1EG).

To further verify the role of STING in SVV infection, we also overexpressed STING
with 3 x Flag (STING-OE) in PK-15 cells (Figure 2A), and then the cells were infected
with SVV (MOI = 1). We analyzed the effect of STING overexpression on SVV replication
using Western blot, RT-qPCR, and TCIDsy. As shown in Figure 2B,C, the level of VP1 in
STING-OE cells was significantly lower than the level in wild-type cells. Moreover, the
results of copy numbers and viral titers showed that SVV replication was inhibited in the
STING-OE cells (Figure 2D,E). These results suggested that STING has an inhibitory impact
on SVV infection in the cells.

3.2. SVV Infection Leads to the Degradation of STING via Autophagy

To investigate the reason for the reduction of STING, we first detected the mRNA
level of STING in SVV-infected PK-15 cells at 26 hpi. As shown in Figure 3A, there was no
difference in the mRNA level of STING between SV V-infected and uninfected cells. Thus,
the reduction of STING was not attributed to SVV-mediated transcriptional inhibition. To
further identify the pathway responsible for STING degradation, we pre-treated cells with
caspase inhibitor Z-VAD-FMK, proteasome inhibitor MG132, and autophagy inhibitor CQ
(chloroquine), respectively. Subsequently, the level of STING in these cells was detected
using Western blot. As shown in Figure 3B,C, compared to control cells, treatment with
Z-VAD-FMK and MG132 failed to block SVV-induced STING degradation; in contrast, CQ
successfully prevented STING reduction in PK-15 cells infected with SVV. Furthermore,
treatment with Baf-Al (bafilomycin Al), another inhibitor of autophagy, also inhibited
the degradation of STING in SVV-infected PK-15 cells (Figure 3D,E). Importantly, the
inhibition of autophagy by Baf-Al blocked the expression of the SVV structural VP1 protein
(Figure 3D,F).
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Figure 1. SVV infection reduced STING protein level, and SVV replication increased in STING-KD
PK-15 cells. (A) PK-15 cells were infected or uninfected with SVV (MOI =1) for 6 h, 16 h, 26 h, and
36 h. The levels of 3-tubulin, STING (Stimulator of interferon genes), VP1, and 3D protein were
detected by Western blot. (B) Intensity of STING and B-tubulin bands in (A) were analyzed by Image
J, and the intensity ratio of STING/ 3-tubulin was shown (mean + SD; n = 3; ns, no significance,
**** p < 0.0001). (C) The cell lysates of wild-type and STING-KD PK-15 cells were collected. The
levels of 3-tubulin and STING protein were detected by Western blot. (D) Wild-type and STING-KD
PK-15 cells were infected or uninfected with SVV (MOI = 1) for 26 h. The levels of B-tubulin
and VP1 protein were detected by Western blot. (E) Intensity of VP1 and 3-tubulin bands in
(D) were analyzed by Image J, and the intensity ratio of VP1/p-tubulin was shown (mean + SD; n = 3;
*** p <0.001). (F) Wild-type and STING-KD PK-15 cells were infected with SVV (MOI = 1, 26 hpi).
The copy numbers of SVV in these cells were detected by qPCR (mean =+ SD; n = 3; ** p < 0.001).
(G) Wild-type and STING-KD PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The virus titers
of SVV in these cells were detected by TCIDsg (mean + SD; n = 3; *** p < 0.001).
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Figure 2. SVV replication was inhibited in STING-3 xFlag OE PK-15 cells. (A) The cell lysates of
wild-type and STING-3 xFlag OE PK-15 cells were collected. The levels of 3-tubulin and STING
protein were detected by Western blot. (B) Wild-type and STING-3 x Flag OE PK-15 cells were infected
or uninfected with SVV (MOI = 1) for 26 h. The levels of -tubulin and VP1 protein were detected
by Western blot. (C) Intensity of VP1 and p-tubulin bands in (B) were analyzed by Image J, and the
intensity ratio of VP1/p-tubulin was shown (mean =+ SD; n = 3; **** p < 0.0001). (D) Wild-type and
STING-3 x Flag OE PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The copy numbers of SVV
in these cells were detected by qPCR (mean + SD; n = 3; **** p < 0.0001). (E) Wild-type and STING-3
x Flag OE PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The virus titers of SVV in these cells
were detected by TCIDsp (mean + SD; n = 3; **** p < 0.0001).

To further confirm the role of autophagy induction in degrading STING, the autophagy
related gene 5 (ATG5) knockdown (KD) PK-15 cells were constructed (Figure 4A), which
is the key component in the formation of autophagosomes [20], and then the cells were
infected with SVV. Compared to wild-type cells, SVV infection was unable to induce
autophagy in ATG5-KD cells (Figure 4B,C). Importantly, the knockdown of ATG5 was able
to prevent STING degradation in SVV-infected ATG5-KD cells (Figure 4B,D). To further
investigate the connection between autophagy and SVV replication, we examined the
effect of ATG5 knockdown on SVV replication by Western blot, RT-qPCR, and TCIDs. As
shown in Figure 4B,E, the protein level of SVV VP1 was significantly lower in ATG5-KD
cells compared to wild-type cells. We also measured SVV copy numbers and viral titers
using RT-qPCR and TCIDs, and the results indicated that SVV replication was inhibited
in ATG5-KD cells compared to wild-type cells (Figure 4F,G). These results indicated that
the induction of autophagy through ATGS is responsible for STING degradation and SVV
replication. Taken together, these results suggest that SVV-induced degradation of STING
is associated with the activation of autophagy.
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Figure 3. SVV-induced autophagy degraded STING. (A) PK-15 cells were infected or uninfected
with SVV (MOI = 1) for 26 h. The relative expression of STING mRNA levels was measured by
qPCR (mean =+ SD; n = 3; ns, no significance). (B) PK-15 cells were infected or uninfected with SVV
(MOI = 1) in the presence or absence of Z-VAD-FMK, MG-132, or chloroquine (CQ) for 26 h. The
levels of B-tubulin, STING, and VP1 protein were detected by Western blot. (C) Intensity of STING
and p-tubulin bands in (B) were analyzed by Image J, and the intensity ratio of STING/ 3-tubulin
was shown (mean =+ SD; n = 3; ns, no significance, **** p < 0.0001). (D) PK-15 cells were infected
or uninfected with SVV (MOI = 1) in the presence or absence of bafilomycin A1l (Baf-A1) for 26 h.
The levels of B-tubulin, STING, microtubule associated protein 1 light chain 3 beta (LC3), and VP1
protein were detected by Western blot. (E) Intensity of STING and (-tubulin bands in (D) were
analyzed by Image J, and the intensity ratio of STING/ 3-tubulin was shown (mean + SD; n = 3; ns,
no significance, *** p < 0.0001). (F) Intensity of VP1 and -tubulin bands in (D) were analyzed by
Image J, and the intensity ratio of VP1/B-tubulin was shown (mean + SD; n = 3; *** p < 0.001).

3.3. SVV-Induced Reticulophagy Degrades STING via PERK and ATF6

Reticulophagy (also known as ER-phagy) is a selective form of autophagy that protects
cells from damage caused by excessive ER stress. Considering that STING is located in
the ER membrane and SVV infection activates autophagy via ER stress [29], we speculate
that the SVV infection induced by the degradation of STING might be due to selective
organelle-specific reticulophagy. To further verify which type of autophagy (pan-autophagy
or reticulophagy) is activated by SVV infection, we knocked down the ER-resident recep-
tor FAM134B/RETREGI1 (reticulophagy regulator 1) (Figure 5A), which interacts with
the autophagy modifier MAP1LC3B/LC3 (microtubule associated protein 1 light chain
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PK-15 cells, SV V-triggered autophagy and STING degradation were blocked (Figure 5B-D).
Additionally, we analyzed the effect of FAM134B knockdown on SVV replication by Western
blot, RT-qPCR, and TCIDsy. SVV VP1 expression (Figure 5B,E), copy numbers (Figure 5F),
and virus titers (Figure 5G) were inhibited compared to wild-type cells. These data suggested
that SVV infection induces reticulophagy to degrade STING.
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Figure 4. SVV-induced autophagy degraded STING via ATG5. (A) The cell lysates of wild-type
and autophagy related gene 5 (ATG5)-KD PK-15 cells were collected. The levels of 3-tubulin and
ATGS protein were detected by Western blot. (B) Wild-type and ATG5-KD PK-15 cells were infected
or uninfected with SVV (MOI = 1) for 26 h. The levels of -tubulin, STING, LC3, and VP1 protein
were detected by Western blot. (C) Intensity of LC3-I and LC3-II bands in (B) were analyzed by
Image J, and the intensity ratio of LC3-II/LC3-I was shown (mean =+ SD; n = 3; ns, no significance,
% p < 0.0001). (D) Intensity of STING and p-tubulin bands in (B) were analyzed by Image J, and the
intensity ratio of STING/ B-tubulin was shown (mean =+ SD; n = 3; ns, no significance, *** p < 0.001).
(E) Intensity of VP1 and B-tubulin bands in (B) were analyzed by Image ], and the intensity ratio of
VP1/B-tubulin was shown (mean =+ SD; n = 3; **** p < 0.0001). (F) Wild-type and ATG5-KD PK-15
cells were infected with SVV (MOI = 1, 26 hpi). The copy numbers of SVV in these cells were detected
by qPCR (mean =+ SD; n = 3; **** p < 0.0001). (G) Wild-type and ATG5-KD PK-15 cells were infected
with SVV (MOI = 1, 26 hpi). The virus titers of SVV in these cells were detected by TCIDs (mean =+ SD;
n =3; **** p <0.0001).
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Figure 5. SVV degraded STING via reticulophagy. (A) The cell lysates of wild-type and reticulophagy
regulator 1 (FAM134B)-KD PK-15 cells were collected. The levels of 3-tubulin and FAM134B pro-
tein were detected by Western blot. (B) Wild-type and FAM134B-KD PK-15 cells were infected or
uninfected with SVV (MOI = 1) for 26 h. The levels of 3-tubulin, STING, LC3, and VP1 protein
were detected by Western blot. (C) Intensity of LC3-I and LC3-II bands in (B) were analyzed by
Image J, and the intensity ratio of LC3-1I/LC3-I was shown (mean =+ SD; n = 3; ns, no significance,
% p < 0.0001). (D) Intensity of STING and p-tubulin bands in (B) were analyzed by Image J, and the
intensity ratio of STING/ 3-tubulin was shown (mean = SD; n = 3; ns, no significance, **** p < 0.0001).
(E) Intensity of VP1 and B-tubulin bands in (B) were analyzed by Image J, and the intensity ratio
of VP1/B-tubulin was shown (mean =+ SD; n = 3; **** p < 0.0001). (F) Wild-type and FAM134B-KD
PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The copy numbers of SVV in these cells were
detected by qPCR (mean =+ SD; n = 3; *** p < 0.0001). (G) Wild-type and FAM134B-KD PK-15 cells
were infected with SVV (MOI = 1, 26 hpi). The virus titers of SVV in these cells were detected by
TCIDs (mean =+ SD; n = 3; **** p < 0.0001).

Previous studies have shown that SVV induced autophagy via PERK and ATF6 of the
UPR [29], and our previous results suggested that SVV-induced reticulophagy is responsible
for STING degradation. Thus, we hypothesized that the degradation of STING might be
induced by SVV-triggered reticulophagy via UPR. The UPR is initiated by three major
sensors (PERK, ERN1/IRE1ax (endoplasmic reticulum to nucleus signaling 1), and ATF®6).
We wondered whether the three sensors are all required for reticulophagy-mediated STING
degradation. We first constructed PERK knockdown (KD) cells (Figure 6A). In PERK-KD
cells, the SVV-induced autophagy and STING degradation were inhibited (Figure 6B-D).
Furthermore, we also analyzed the effect of PERK knockdown on SVV replication by
Western blot, RT-qPCR, and TCIDsy. As shown in Figure 6B,E-G, SVV VP1 expression,
copy numbers, and virus titers were inhibited compared with wild-type cells. These results
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suggested that PERK plays a significant role in SVV-induced reticulophagy-mediated
STING degradation.
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Figure 6. SVV induced reticulophagy via PERK to degrade STING. (A) The cell lysates of wild-type
and eukaryotic translation initiation factor 2 alpha kinase 3 (PERK)-KD PK-15 cells were collected.
The levels of 3-tubulin and PERK protein were detected by Western blot. (B) Wild-type and PERK-KD
PK-15 cells were infected or uninfected with SVV (MOI = 1) for 26 h. The levels of 3-tubulin, STING,
LC3, and VP1 protein were detected by Western blot. (C) Intensity of LC3-I and LC3-II bands in
(B) were analyzed by Image J, and the intensity ratio of LC3-II/LC3-I was shown (mean + SD;
n = 3; ns, no significance, *** p < 0.0001). (D) Intensity of STING and p-tubulin bands in (B) were
analyzed by Image J, and the intensity ratio of STING/ B-tubulin was shown (mean + SD; n = 3;
ns, no significance, *** p < 0.0001). (E) Intensity of VP1 and -tubulin bands in (B) were analyzed
by Image J, and the intensity ratio of VP1/p-tubulin was shown (mean + SD; n = 3; **** p < 0.0001).
(F) Wild-type and PERK-KD PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The copy numbers
of SVV in these cells were detected by qPCR (mean + SD; n = 3; **** p < 0.0001). (G) Wild-type and
PERK-KD PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The virus titers of SVV in these cells
were detected by TCID5y (mean £ SD; n = 3; *** p < 0.001).

To determine whether other UPR sensors are necessary for the induction of reticu-
lophagy and the decline of STING protein induced by SVV, we knocked down the expres-
sion of ATF6 in PK-15 cells (Figure 7A). In ATF6-KD PK-15 cells, SVV-induced reticulophagy
and STING degradation were hindered (Figure 7B-D) compared with wild-type cells. These
results indicated that ATF6 also plays an indispensable role in SVV-triggered reticulophagy
and STING degradation. Additionally, we also compared SVV replication between ATF6-
KD and wild-type cells by Western blot, RT-qPCR, and TCIDsg. As shown in Figure 7B,E-G,
SVV replication was inhibited in ATF6-KD cells. To dissect the impact of IRE1x-XBP1 at the
molecular level, we used IRE1x-specific inhibitor 4u8C to restrict the IRE1a-XBP1 pathway.
As shown in Figure 7H,I, 4u8C had no effect on SVV-induced reticulophagy-mediated
STING degradation in PK-15 cells compared with the control cells. Our findings indicated
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that the PERK and ATF6 sensors of UPR are crucial for reticulophagy-mediated STING
degradation induced by SVV.
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Figure 7. SVV induced reticulophagy via ATF6 to degrade STING. (A) The cell lysates of wild-type
and activating transcription factor 6 (ATF6)-KD PK-15 cells were collected. The levels of 3-tubulin
and ATF6 protein were detected by Western blot. (B) Wild-type and ATF6-KD PK-15 cells were
infected or uninfected with SVV (MOI = 1) for 26 h. The levels of 3-tubulin, STING, LC3, and
VP1 protein were detected by Western blot. (C) Intensity of LC3-I and LC3-II bands in (B) were
analyzed by Image J, and the intensity ratio of LC3-II/LC3-I was shown (mean =+ SD; n = 3; ns, no
significance, **** p < 0.0001). (D) Intensity of STING and f-tubulin bands in (B) were analyzed by
Image ], and the intensity ratio of STING/ 3-tubulin was shown (mean =+ SD; 1 = 3; ns, no significance,
**4* p < 0.0001). (E) Intensity of VP1 and 3-tubulin bands in (B) were analyzed by Image ], and the
intensity ratio of VP1/B-tubulin was shown (mean + SD; n = 3; ** p < 0.01). (F) Wild-type and
ATF6-KD PK-15 cells were infected with SVV (MOI = 1, 26 hpi). The copy numbers of SVV in these
cells were detected by qPCR (mean + SD; n = 3; *** p < 0.0001). (G) Wild-type and ATF6-KD PK-15
cells were infected with SVV (MOI = 1, 26 hpi). The virus titers of SVV in these cells were detected
by TCIDsg (mean =+ SD; n = 3; *** p < 0.001). (H) PK-15 cells were infected or uninfected with SVV
(MOI = 1) in the presence or absence of 4u8C for 26 h. The levels of 3-tubulin, STING, LC3, and
VP1 protein were detected by Western blot. (I) Intensity of STING and -tubulin bands in (H) were
analyzed by Image J, and the intensity ratio of STING/ -tubulin was shown (mean + SD; n = 3;
2% p < 0.0001).

4. Discussion

Innate immune response is the first line of host defense against invading pathogens. It
is widely believed that STING’s antiviral responses to abnormal DNA from pathogens or
cytoplasm induces the type I Interferon (IFN-I) pathway [37-39]. Recently, a growing body
of evidence has proven that STING can also transmit signals from RNA viruses to activate
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IFN-I response [40-42]. During infection with SeV and VSV, the deficiency of STING blocks
the activation of IRE3 and the expression of ISG and IFN-f. Thus, STING-KD cells are more
sensitive to these viruses [43]. Here, our study also observed an increase in SVV replication
in STING-KD PK-15 cells, while SVV replication was inhibited in STING-OE PK-15 cells.
These results suggest that STING has an inhibitory effect on SVV replication. Similar to our
results, the overexpression of STING in TB1 Lu (T. brasiliensis 1 lung) cells significantly
inhibited VSV replication. In contrast, the IFN-3 response triggered by VSV was severely
hindered in STING-KD cells, and VSV replication was increased [44]. In addition to
the interferon pathway, STING can also inhibit RNA virus infection by inhibiting global
translation and by triggering cell apoptosis [45,46]. Regardless of the specific mechanism,
it is universally observed that STING inhibits RNA virus replication. Our research further
supports this point, but the specific mechanism of STING during SVV infection remains to
be confirmed, and will be in our subsequent studies.

Autophagy is a physiological process that maintains host health by degrading cellular
components through autophagosomes. As a defense strategy of the host, autophagy can
be activated by viruses at any step of the viral life cycle. Accumulating evidence indicates
that various viruses have developed their special strategies to hijack autophagy [47-50].
It has been investigated that viruses can manipulate the process of autophagy to degrade
molecules of innate immunity, such as TBK1, cGAS (Cyclic GMP-AMP Synthase), and
MAVS (Mitochondrial Antiviral Signaling Protein), in order to achieve their goal of survival
and propagation [51-53]. Moreover, both DNA and RNA viruses have evolved strategies to
exploit autophagy as a means to evade the antiviral function of STING. For example, ASFV
promoted the autophagic degradation of STING, resulting in negative regulation of the
cGAS-STING-mediated IFN-I pathway [54,55]. In addition to DNA viruses, RNA viruses
also target STING to antagonize its antiviral response. SVCV (Spring Viremia of Carp Virus)
downregulated cellular IFN production by utilizing the autophagolysosomal-dependent
pathway to degrade STING [56]. In this study, we discovered that SVV infection could
degrade STING via autophagy. These data are similar to our previous publication [27],
which demonstrated that STING is degraded by autophagy during infection with FMDYV,
another picornavirus that infects pigs. However, a previous study suggested that SVV
cannot reduce STING protein at 0, 8, and 16 hpi [57], which might be due to different hours
post infection with SVV, as compared to our study (26 hpi). Overall, our study provides
further evidence that reducing STING is a common strategy of DNA and RNA viruses.

There have been numerous investigations reported on the relationship between SVV
infection and autophagy. SVV infection activates autophagy to promote viral infection in
pig cells [28]. Thus, the inhibition of autophagy by the knockdown of ATG7 (autophagy
related gene 7) inhibits SVV replication [29,57]. Consistent with this, our study also
revealed that inhibiting autophagy by the knockdown of ATG5 and inhibitors (CQ and
Baf-Al) effectively suppresses viral replication, providing further evidence for the role of
autophagy in promoting SVV replication. Similar phenomena have also been found in
other picornaviruses. Inhibition of autophagy (late or early stage) by various inhibitors
all inhibited EV-A71 (Enterovirus 71) replication [58,59]. Similar to EV-71, the inhibition
of autophagy with inhibitors and the knockdown of ATG7 was shown to suppress CVB3
(Coxsackievirus B3) and poliovirus replication [60,61]. FMDYV replication is suppressed
due to the inhibition of autophagy by either 3-MA or by small RNA interference (LC3 or
autophagy related gene 12) [62]. EV-D68 (Enterovirus 68) exploits induced autophagy for its
own benefit, and the viral yield is compromised when autophagy is inhibited by depleting
ATG?7 or treatment with Baf-A1 [63]. It is worth noting that, apart from picornaviruses, such
biological phenomena have also been observed in PRV (Pseudorabies virus) and FeHV-1
(Feline herpesvirus 1) of the Herpesviridae family. It was found that induction of autophagy
with rapamycin could promote FeHV-1 and PRV replication, while inhibition of autophagy
with Baf-Al, CQ, or 3-MA (3-Methyladenine) inhibits viral replication, suggesting that
autophagy promotes PRV and FeHV-1 replication [64,65]. In turn, viral infection can also
regulate autophagy. It has been found that FeHV-1 and PRV infection regulate autophagy
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via PI3K/Akt/mTOR or Wnt/3-catenin, respectively [66,67]. Likewise, SVV can also
activate the AKT-AMPK-MAPK-MTOR-dependent autophagy signaling pathway with its
VP1, VP3, and 3C proteins [30]. Additionally, SVV also activates autophagy to decrease the
expression of antiviral proteins such as cGAS [57]. Our study has found that SVV can also
utilize the autophagy pathway to degrade another antiviral protein, STING. These findings
suggest that autophagy plays a crucial role in the SVV life cycle in the cells.
Reticulophagy is one of the major forms of organelle-specific autophagy, targeting
specific cargoes of ER cisternae filled with faulty proteins and lipids for degradation [68].
Upon stimulation, ER-localized sensors, including PERK, IRElx, and ATF6, can detect
the alterations of the ER environment and subsequently initiate several mechanisms, in-
cluding autophagy [69]. For instance, autophagy is induced by HCV (Hepatitis C virus)
through PERK/ATF6 of the UPR pathway [70]. SADS-CoV (Swine acute diarrhea syndrome
coronavirus) activated autophagy through IRE1x of the UPR pathway [71]. Furthermore,
inhibiting UPR not only hampers autophagy but also impedes viral replication during
SADS-CoV and PEDYV infection [71,72]. Although different viruses may employ different
UPR receptors, virus-induced autophagy via UPR appears to be a common strategy. This
phenomenon has also been confirmed during SVV infection [29], in which SVV activates
autophagy through the PERK/ATF6 pathway. Our study further demonstrates that SVV in-
fection induces STING degradation via PERK/ATF6-mediated reticulophagy. Consistently,
our previous study also determined that the other picornavirus, FMDV, degrades STING
through PERK-mediated reticulophagy [27]. These results indicate a possibility that STING
degradation via virus-induced reticulophagy may serve as an immune escape strategy for
SVV to replicate in the cells. However, further study is required to address this point.

5. Conclusions

In summary, this study demonstrated that SVV infection activates reticulophagy via
PERK and the ATF6 of UPR to degrade STING (Figure 8) and also substantiated the link
between PERK/ATF6-mediated reticulophagy and STING degradation. Furthermore,
the inhibition of reticulophagy reduced SVV replication. Further study is required to
understand the mechanism of the degradation of STING via the autophagy involved in
SVV replication.
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Figure 8. A model of SVV-induced STING degradation via PERK and ATF6-mediated reticulophagy.
Step 1, SVV induces UPR via PERK and ATF6. Step 2, activation of PERK and ATF6 leads to
reticulophagy. Step 3, STING is finally degraded through reticulophagy.
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