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Abstract: The impact of SARS-CoV-2 infection remains substantial on a global scale, despite widespread
vaccination efforts, early therapeutic interventions, and an enhanced understanding of the disease’s
underlying mechanisms. At the same time, a significant number of patients continue to develop
severe COVID-19, necessitating admission to intensive care units (ICUs). This study aimed to provide
evidence concerning the most influential predictors of mortality among critically ill patients with
severe COVID-19, employing machine learning (ML) techniques. To accomplish this, we conducted a
retrospective multicenter investigation involving 684 patients with severe COVID-19, spanning from
1 June 2020 to 31 March 2023, wherein we scrutinized sociodemographic, clinical, and analytical data.
These data were extracted from electronic health records. Out of the six supervised ML methods
scrutinized, the extreme gradient boosting (XGB) method exhibited the highest balanced accuracy
at 96.61%. The variables that exerted the greatest influence on mortality prediction encompassed
ferritin, fibrinogen, D-dimer, platelet count, C-reactive protein (CRP), prothrombin time (PT), invasive
mechanical ventilation (IMV), PaFi (PaO2/FiO2), lactate dehydrogenase (LDH), lymphocyte levels,
activated partial thromboplastin time (aPTT), body mass index (BMI), creatinine, and age. These
findings underscore XGB as a robust candidate for accurately classifying patients with COVID-19.

Keywords: COVID-19; coagulation disorder; cytokine release syndrome; machine learning;
SARS-CoV-2; XGB

1. Introduction

Following the devastating epidemics of severe acute respiratory syndrome (SARS)
in 2002 and Middle East respiratory syndrome (MERS) in 2012, both of which caused
lethal diseases associated with coronaviruses, a novel coronavirus, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) made its appearance in late December 2019. The
disease was named coronavirus disease 2019 (COVID-19) and first emerged in Wuhan,
China, where genetic sequencing of the virus was conducted, revealing it to be a novel
beta-coronavirus [1,2].

On 11 March 2020, the World Health Organization (WHO) declared a pandemic due
to the spread of this new disease, the severity of which compromised healthcare services
worldwide.

COVID-19 is an extremely contagious disease with significant risks of morbidity and
mortality. It can manifest as bilateral pneumonia, severe respiratory failure requiring
mechanical ventilation, and/or multiorgan damage that can tragically lead to fatalities [3].
Currently, according to WHO data, COVID-19 has caused approximately 7 million deaths
worldwide.

SARS-CoV-2 displays a wide organotropism, as evidenced by autopsy results (e.g.,
kidney, heart, intestines, liver, and brain); however, it exhibits a particular preference for
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infecting the respiratory system [4,5]. Structures facilitating virus entry include angiotensin-
converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), found in
the respiratory tract, cornea, and gastrointestinal cells [6].

Most infected individuals will have mild respiratory symptoms like cough, with
or without sputum, in addition to fever, fatigue, and muscle pain. However, a small
percentage of them will progress to develop a hyperinflammatory state with pulmonary
edema and cellular infiltration, leading to acute respiratory distress syndrome (ARDS) [7].
The hyperinflammatory state can impact various body systems due to an unregulated
innate immune response from the host, resulting in elevated levels of proinflammatory
cytokines such as IL-1, IL-6, tumor necrosis factor-alpha (TNF-α), and other acute-phase
markers like C-reactive protein (CRP), D-dimer, or ferritin [8]. This “cytokine storm” plays
a pivotal role in the development of severe COVID-19, including pulmonary damage
and microvascular thrombosis [9]. Additionally, it is responsible for the emergence of
complications at the renal level, coagulation disorders, ARDS, or shock, which can lead to
mortality rates exceeding 30% [10]. Ongoing studies are investigating various aspects of
the immune response to the virus [11].

Roughly 10% of severe patients need medical care in intensive care units (ICUs) [12].
In COVID-19, risk factors associated with the progression and severity of the infection have
been identified, such as advanced age and various comorbidities, as well as alterations in
various laboratory parameters. Among the latter, elevated values in lactate dehydrogenase
(LDH); CRP; procalcitonin; ferritin; and proinflammatory cytokines such IL-6, IL-2, IL-1β,
TNF-α, and granulocyte colony-stimulating factor (G-CSF) stand out [13,14]. Increased
IL-6 levels and hyperferritinemia are regarded as markers of systemic inflammation and
an unfavorable prognosis in COVID-19 [15]. IL-6 plays a crucial role in the development
of SARS-CoV-2, functioning not only as a proinflammatory cytokine, but also influencing
the initiation of coagulation, promoting platelet and leukocyte adhesion. Additionally,
persistently elevated IL-6 levels are responsible for the pulmonary fibrotic complications
seen in affected patients [16]. The neutrophil-to-lymphocyte ratio is often elevated in
patients with severe COVID-19 [17].

Besides inflammation, coagulation issues significantly impact infection prognosis.
Hypercoagulability raises the risk of thrombotic and hemorrhagic events, whereas the
procoagulant state depletes platelets and coagulation factors, resulting in hemorrhagic
conditions.

Several studies have found that increasing prophylactic doses of low molecular weight
heparin (LMWH) does not appear to confer a benefit, but rather poses an elevated risk
of bleeding in patients with severe COVID-19 [18]. Furthermore, the therapeutic use of
enoxaparin improves gas exchange and reduces the need for mechanical ventilation (MV)
in these cases, unlike prophylactic anticoagulation.

In another open-label, adaptive, multi-platform, randomized clinical trial that included
1098 patients with severe COVID-19, therapeutic anticoagulation with heparin did not
result in a higher probability of survival upon hospital discharge or a greater number of
days without cardiovascular or respiratory support compared to standard pharmacological
thromboprophylaxis [19]. On the contrary, in non-critical COVID-19 patients, an initial
strategy of therapeutic-dose heparin anticoagulation increases the probability of survival
upon hospital discharge with reduced use of organ support [20].

In patients with non-severe COVID-19 receiving therapeutic-dose heparin, but who
eventually develop a severe clinical condition, the continuation of the therapeutic dose com-
pared to dose reduction does not confer any clinical benefit and appears to be harmful [21].
Therefore, the use of prophylactic or therapeutic anticoagulant doses should be individual-
ized based on the patient’s clinical condition and their risk of thromboembolic events.

For a thorough evaluation and continuous monitoring of the coagulation profile in
COVID-19 patients, it is imperative to assess an array of laboratory parameters, including
prothrombin time (PT) and its activity (PT-act), activated partial thromboplastin time (aPTT),
platelet count, antithrombin (AT), D-dimer, and fibrin/fibrinogen degradation products
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(FDP). Additionally, the PaFi index, representing the ratio between arterial oxygen pressure
and the fraction of inspired oxygen (PaO2/FiO2), plays a crucial role in this comprehensive
assessment [22].

Although only a few drugs benefit severe COVID patients, early diagnosis and initial
therapy, along with nutritional and organ support, can lead to favorable results.

Currently, widespread vaccination of the population is the most effective public health
measure in the fight against SARS-CoV-2.

Our study’s objective is to utilize machine learning (ML) models to classify severe
COVID-19 patients at a higher risk of mortality. ML, as part of artificial intelligence (AI),
employs statistical and mathematical algorithms that enable the extraction of patterns
from variable data, assisting in making complex decisions [23]. These models are designed
to make accurate predictions using data from a multitude of variables, unlike classical
statistical models created for making inferences about relationships between variables.

AI tools have been implemented in the fight against COVID-19 in various areas,
including drug and vaccine discovery or repurposing [24,25].

To the best of our knowledge, this is the inaugural multicenter study that both develops
and validates six ML models for forecasting factors linked to an elevated risk of mortality
in critically ill patients with SARS-CoV-2 infection throughout the six pandemic waves
within the Spanish population.

2. Materials and Methods
2.1. Data Source

Patient information was sourced from several internal outlets within the hospitals:
(1) the electronic medical record (EMR) system, equipped with modules for recording
clinical analysis outcomes and electronic prescription of medications; and (2) the ICU
electronic prescription program. With this data, a personalized data collection questionnaire
(DCQ) was tailored for each patient.

2.2. Study Design and Population

This is an observational, longitudinal, retrospective, multicenter study conducted
in two high-complexity Spanish hospitals. The General University Hospital of Valencia
(GUHV) is a public healthcare facility boasting a capacity of more than 500 inpatient beds.
In the year 2021, it efficiently managed 129,856 hospital emergencies. Meanwhile, the Virgen
de las Nieves University Hospital of Granada (VNUH) is another public hospital with a
substantial capacity, offering over 800 inpatient beds. In the same year, it provided care
for 234,259 emergencies. Both institutions are classified as tertiary hospitals and are well
equipped with more than 40 ICU beds for patient care. A total of 684 patients hospitalized
with severe COVID-19 were included in the study (52.2% male). SARS-CoV-2 infection
was confirmed through reverse transcription polymerase chain reaction (RT-PCR) testing
of a nasopharyngeal swab between 1 April 2020, and 31 March 2023. Severe COVID-19
was defined as cases where patients received respiratory and/or cardiovascular organ
support (high-flow nasal cannula oxygen, invasive or non-invasive mechanical ventilation,
extracorporeal life support, vasopressors, or inotropes) in an ICU.

The inclusion criteria were: patients > 18 years old admitted to the GUHV and the
UHVN with severe COVID-19 pneumonia, comorbidities, and requiring ICU admission.

The exclusion criteria were: patients ≤ 18 years old, patients with missing data for
more than one clinical/analytical variable during this study period.

The participants provided informed consent before participating in the study, and it
was approved by the Ethics Committee of GUHV and VNUH.

2.3. Study Data

The DCQ included information on demographic, clinical, and laboratory variables, as
well as the date of hospital admission. Data on specific pharmacological treatments that
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could influence the final outcome were also included. For all patients, laboratory parameter
data were collected at the time of ICU admission.

The questionnaire was divided into five sections:
(1) Patient characteristics: this section included sociodemographic variables such as

age and gender, as well as height and weight, which were used to calculate the body mass
index (BMI) in kg/m2. This allowed for stratification between patients with normal weight
(BMI = 18.5–24.9) and those with excess weight (BMI ≥ 25). The latter was further classified
as: (a) overweight (BMI = 25–29.9); (b) grade I or moderate obesity (BMI = 30–34.9); (c) grade
II or severe obesity (BMI = 35–39.9); and (d) grade III or morbid obesity (BMI ≥ 40).

Among the clinical variables, the presence of relevant comorbidities was included (hy-
pertension, diabetes mellitus (DM), dyslipidemia, chronic obstructive pulmonary disease
(COPD), asthma, obstructive sleep apnea (OSA), use of oxygen therapy (differentiating
between invasive and non-invasive), ischemic heart disease, chronic kidney disease (CKD),
dementia, smoking, active neoplasia, autoimmune disease, and coagulopathy). Hyper-
tension is defined as a sustained elevation of blood pressure, with office systolic blood
pressure values ≥ 140 and/or diastolic blood pressure values ≥ 90 mmHg [26].

If the patient had any other serious underlying pathology, it was specified in an
open-text section.

The following symptoms were taken into account at the time of admission: fever,
cough, dyspnea, nausea and vomiting, diarrhea, and neurological symptoms.

(2) Pharmacological treatment: previous and/or during hospitalization, the following
treatments were taken into account: angiotensin-converting enzyme inhibitors (ACEIs)/
angiotensin receptor blockers (ARBs); use of antivirals: oral lopinavir/ritonavir, oral
darunavir/cobicistat, or intravenous remdesivir (200 mg on day 1, followed by 100 mg/day
for up to 10 days); use of oral hydroxychloroquine; use of subcutaneous interferon beta-1b;
use of subcutaneous anakinra, preferably in patients with poor clinical progress (PaO2/FiO2
< 300, SpO2 < 92% in room air, tachypnea, or elevated ferritin levels); dosage of 200 mg/24 h
(day 1) and 100 mg/24 h (days 2–5); use of tocilizumab and/or baricitinib or other im-
munosuppressants such as cyclosporine and corticosteroids; use of N-acetylcysteine; use of
antibiotics (e.g., azithromycin); as well as the use of prophylactic or therapeutic doses of
anticoagulants.

(3) Analytical data: the closest analysis following hospital admission was taken into
account, as well as the first analysis since admission to the ICU. The latest analyses during
the hospital stay were recorded. The laboratory parameters collected included hemoglobin,
platelets, lymphocytes, albumin, creatine kinase (CK), LDH, CRP, procalcitonin, ferritin,
glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), cre-
atinine, fibrinogen, D-dimer, PT, and aPTT. Additionally, the PaFi index was considered
as a gasometric parameter, as it provides information on gas exchange and the possible
presence of acute lung injury or even acute respiratory distress syndrome (ARDS).

(4) Procedures performed during hospitalization: the following procedures were
included: conventional oxygen therapy, non-invasive ventilation (NIV), invasive mechan-
ical ventilation (IMV), prone positioning ventilation, hemodialysis/hemofiltration, and
extracorporeal membrane oxygenation (ECMO).

(5) Patient final outcome: the clinical complications during ICU admission were
collected, including acute kidney and/or liver injury with functional failure, acute lung
injury with respiratory failure, ARDS, sepsis, and septic shock. Improvement in the
patient’s symptoms was assessed considering laboratory tests (including gasometry) and
radiological evaluations at 7 and 21 days from admission, depending on the duration of
their stay. The number of days of hospitalization until discharge was recorded, either due
to clinical improvement or unfortunate outcome.

The final outcome measures taken into account were overall mortality, as well as
mortality at 7 and 21 days from admission.
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2.4. Method
2.4.1. Model Development

In this study, the method based on the extreme gradient boost (XGB) was applied
as a reference method. In addition, a comparison was made with other ML systems. It
is a flexible, efficient, and portable supervised learning algorithm. The main advantages
are its high execution speed, its scalability, it allows parallel computing, and it usually
outperforms other algorithms in accuracy in solving many data science problems [27–29].
For these reasons, XGB was used in the present study to classify patients with severe
COVID-19 and predict variables associated with increased mortality.

Given a dataset S = xj, yj, the XGB model was designed using the following:

ŷj =
P

∑
p=1

tp
(
xj
)

(1)

where xj represents the input vector with m time variables, ŷj shows the predicted output,
yj represents the output, tp shows a tree with leaf weight wp and structure up, j = 1; 2; . . .; n,
and P corresponds to the number of trees.

The regularized objective function for the proposed method is presented in Equa-
tion (2). A second-order Taylor expansion is implemented to approximate the XGB objective
function in order to improve the prediction accuracy [30].

R = ∑
j

r
(
ŷj, yj

)
+ ∑

p
Ψ
(
tp
)

(2)

Ψ
(
tp
)
= λ fp +

1
2

γ
∥∥ωp

∥∥2 (3)

In Equation (3), fp shows the number of leaves on the tree. The R () function penalizes
the complexity of the method. The learning rate is shown by λ, and wp is the vector of leaf
scores. To control the complexity weight of the system, a parameter γ is employed. The
objective is to optimize Equation (2) [28].

In this work, other ML algorithms have been implemented to test the performance
of the proposed method. All of them are widely used in the scientific community. The
five that gave the best results in the comparison were selected. The following methods
are of note: decision tree (DT) [31], Gaussian Naïve Bayes (GNB) [32], Bayesian linear
discriminant analysis (BLDA) [33], k-nearest neighbors (KNN) [34], and support vector
machine (SVM) [35]. The MatLab Statistical and Machine Learning Toolbox (MatLab
2022a; The MathWorks, Natick, MA, USA) was used to design the models. The database is
separated into two blocks; 70% of them are used for training and the other 30% for testing,
and patients were not shared. For the validation of the results, a 5-fold cross-validation
was performed to avoid overfitting. To reach the optimal point of operation of the ML
algorithms, the different hyperparameters of each method are usually adjusted in the
training phase. In this study, Bayesian techniques have been used for these hyperparameter
values. Bayesian optimization belongs to a class of sequential model-based optimization
algorithms that allow us to use the results of our previous iteration to improve our testing
method of the next experiment. This, in turn, limits the number of times a model needs to
be tested for validation, since only those hyperparameters that are expected to generate
a higher validation score are passed for evaluation. With this optimization method, the
result of the developed methods is improved. The most prominent hyperparameters of
the implemented systems are as follows. To optimize the performance of the XGB system,
the hyperparameters eta = 0.15, minimum chil weight = 1, gamma = 0.25, alpha = 0.5,
maximum depth = 8, lambda = 0.25, col sample by tree = 0.6, and maximum delta step
= 4 have been adjusted. For the SVM method, a Gaussian kernel function is chosen with
the following parameters: C = 1.0, sigma = 0.5, numerical tolerance = 0.001, and iteration
limit = 200. For the DT system, the base parameter estimator is adjusted: tree, maximum
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number of divisions = 16, learning rate = 0.1, and number of learners = 60. As for the BLDA
algorithm, the Bayesian kernel has been selected. Finally, for the KNN method, the distance
metric is Euclidean and it uses 30 neighbors.

In all simulations, 100 iterations were performed to obtain the mean and standard
deviation values in a uniformly random manner. In this way, the impact of noise is reduced,
the appropriate values are calculated, and statistically valid results are obtained [36]. The
phases applied in this study are described in Figure 1. As can be seen, the subjects to be
studied were first chosen. Once the database was implemented, training and validation of
the ML methods were carried out.

Viruses 2023, 15, 2184 6 of 20 
 

 

adjusted. For the SVM method, a Gaussian kernel function is chosen with the following 
parameters: C = 1.0, sigma = 0.5, numerical tolerance = 0.001, and iteration limit = 200. For 
the DT system, the base parameter estimator is adjusted: tree, maximum number of divi-
sions = 16, learning rate = 0.1, and number of learners = 60. As for the BLDA algorithm, 
the Bayesian kernel has been selected. Finally, for the KNN method, the distance metric is 
Euclidean and it uses 30 neighbors. 

In all simulations, 100 iterations were performed to obtain the mean and standard 
deviation values in a uniformly random manner. In this way, the impact of noise is re-
duced, the appropriate values are calculated, and statistically valid results are obtained 
[36]. The phases applied in this study are described in Figure 1. As can be seen, the subjects 
to be studied were first chosen. Once the database was implemented, training and valida-
tion of the ML methods were carried out. 

 
Figure 1. The figure shows the scheme followed in the learning and testing process of this work. 

2.4.2. Performance Evaluation 
In this work, the different methods were compared with the following metrics: spec-

ificity, precision (also known as positive predictive value), recall (also known as sensitiv-
ity), balanced accuracy, degenerate Youden index (DYI), F1 score, Ma hew’s correlation 
coefficient (MCC), Cohen’s Kappa index (CKI), receiver operating characteristic (ROC), 
and area under the curve (AUC) [35]. The F1 score is described as:  

𝐹  𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

MCC was also used to test the performance of the ML methods, defined as: 

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5)

where TP shows the number of true positives, FP represents the number of false positives, 
TN is the number of true negatives, and FN corresponds to the number of false negatives. 
CKI was used to estimate the overall performance of the system [37]. 

  

Figure 1. The figure shows the scheme followed in the learning and testing process of this work.

2.4.2. Performance Evaluation

In this work, the different methods were compared with the following metrics: speci-
ficity, precision (also known as positive predictive value), recall (also known as sensitivity),
balanced accuracy, degenerate Youden index (DYI), F1 score, Matthew’s correlation coeffi-
cient (MCC), Cohen’s Kappa index (CKI), receiver operating characteristic (ROC), and area
under the curve (AUC) [35]. The F1 score is described as:

F1 score = 2
Precision·Recall

Precision + Recall
(4)

MCC was also used to test the performance of the ML methods, defined as:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

where TP shows the number of true positives, FP represents the number of false positives,
TN is the number of true negatives, and FN corresponds to the number of false negatives.
CKI was used to estimate the overall performance of the system [37].

3. Results

This section describes the results obtained after applying the different ML methods
on the data from the records of the different patients with severe COVID-19 to define
the factors with the greatest influence on in-hospital mortality. The performance of the
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proposed method, XGB, has been compared with different ML classification methods
accepted in the scientific community.

Table 1 displays the results obtained through various classification methods, including
DT, GNB, BLDA, KNN, SVM, and our proposed system for classifying mortality in severe
COVID-19 patients. Notably, GNB- and BLDA-based methods exhibit a comparatively
lower balanced accuracy, failing to reach the 85% threshold. In contrast, DT and SVM
methods demonstrate enhanced classification capabilities, approaching a balanced accuracy
of 90%, surpassing the performance of GNB and BLDA.

Table 1. Summary of the mean values and standard deviation of balanced accuracy, recall, precision,
F1 score, AUC, MCC, DYI, and Kappa index of the machine learning models and the proposed
method implemented in this study.

Methods Balanced Accuracy Recall Precision F1 Score

DT 88.78 ± 0.67 88.89 ± 0.71 88.15 ± 0.67 88.52 ± 0.79
GNB 78.61 ± 0.86 78.71 ± 0.80 78.05 ± 0.82 78.38 ± 0.96

BLDA 84.84 ± 0.84 84.94 ± 0.79 84.23 ± 0.86 84.58 ± 0.82
KNN 91.05 ± 0.70 91.16 ± 0.63 90.40 ± 0.66 90.78 ± 0.62
SVM 89.52 ± 0.75 89.63 ± 0.75 88.88 ± 0.80 89.25 ± 0.75
XGB 96.61 ± 0.49 96.74 ± 0.40 96.92 ± 0.48 96.31 ± 0.50

Methods AUC MCC DYI Kappa

DT 0.88 ± 0.080 78.78 ± 0.62 88.78 ± 0.78 79.04 ± 0.76
GNB 0.78 ± 0.083 69.75 ± 0.88 78.61 ± 0.94 69.98 ± 0.90

BLDA 0.84 ± 0.074 75.27 ± 0.76 84.84 ± 0.76 75.54 ± 0.80
KNN 0.90 ± 0.067 80.79 ± 0.64 91.05 ± 0.66 81.06 ± 0.62
SVM 0.89 ± 0.087 79.43 ± 0.80 89.52 ± 0.87 79.69 ± 0.76
XGB 0.96 ± 0.048 86.50 ± 0.42 96.61 ± 0.48 86.80 ± 0.49

Abbreviations: AUC: area under curve; BLDA: Bayesian linear discriminant analysis; DT: decision tree; DYI:
degenerated Younden index; GNB: Gaussian naïve Bayes; KNN: K-nearest neighbors; MCC: Matthew’s correlation
coefficient; SVM: support vector machine; XGB: extreme gradient boost.

Conversely, the KNN-based method and our proposed XGB system achieve balanced
accuracy scores exceeding 90%, representing a significant improvement over prior methods,
resulting in enhanced predictive capabilities. Notably, XGB attains a score exceeding 96%.

KNN and SVM shine as the algorithms that closely match XGB in terms of precision
and recall values, outperforming DT and, notably, surpassing GNB and BLDA in terms
of results. Moreover, this pattern is reflected in Table 1 when considering the F1 score
parameter, where XGB attains elevated values, serving as a clear indicator of enhanced
classification performance.

To evaluate the performance of the proposed XGB system in classifying mortality
among patients with severe COVID-19, we computed several widely-used parameters from
the literature, including AUC, MCC, DYI, and the kappa index. Among these, the MCC
stands out as one of the most reliable statistical indices available, as it yields a high score
only when predictions have been accurate across all four categories of the confusion matrix.

The results across these four categories—true positives, false negatives, true negatives,
and false positives—are directly influenced by the size of the positive and negative elements
within the dataset. As shown in Table 1, the XGB method achieved an MCC value of 86.50%,
surpassing the values obtained by KNN (80.79%) and SVM (79.43%). Notably, the other
methods displayed inferior performance in this parameter.

Similarly, when examining the kappa index, XGB reached a value close to 87%, repre-
senting a substantial improvement over KNN and SVM by 6.61% and 8.19%, respectively.
This pattern persists when considering the AUC and DYI parameters, with XGB consis-
tently achieving higher values. These results underscore the superior ability of the XGB
method in effectively classifying mortality among patients with severe COVID-19. Figure 2
presents a comprehensive overview of the performance comparison between the XGB
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method and alternative classifiers across various key metrics, including balanced accuracy,
recall, precision, F1 score, CKI, MCC, AUC, and DYI.
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Figure 2. Graphical representation of balanced accuracy (BA), recall, precision, and F1 score values
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coefficient; SVM: support vector machine; XGB: extreme gradient boost.

Furthermore, the ROC curve serves as a critical tool for assessing and contrasting the
classification efficacy of the proposed system against alternative ML methods. This curve
is constructed by plotting the sensitivity against specificity across a range of threshold
values [36]. Figure 3 visually conveys the outcomes attained by various classification
systems in line with the primary goal of patient categorization in this study.

Specifically, the XGB method showcases a substantial area under the ROC curve,
emblematic of its enhanced capacity to effectively classify the two distinct classes. This is
further corroborated by the numerical values provided in Table 1.
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To enhance clarity, we have organized all metrics for each dataset, both training and
validation, and visualized them as a radar plot (Figure 4). In an ideal scenario, where the
model excels across all metrics, the plot would form a circle encompassing the entire grid.
In our study, the training sets consistently demonstrate higher scores across all metrics,
whereas the validation sets generally exhibit lower scores.

The shape of these radar plots also offers insights into the model quality. A larger circle
area within the validation set signifies a superior predictive method. The proposed XGB
system, as depicted in Figure 4, serves as a compelling example of a well-balanced model.
Notably, both the training and validation sets yield similar radar plots, underscoring the
absence of overfitting or underfitting, thereby enhancing the model’s generalizability. This
means that the system performs effectively in delivering accurate outputs when presented
with new inputs.

In contrast, the GNB method consistently ranks as the poorest performer across all
metrics. Considering these results, we can confidently assert that the proposed XGB system
adeptly classifies patients in alignment with the study’s objectives, offering high accuracy
and automation—valuable tools for clinical practice.

With the proposed XGB method, the predictor factors or variables associated with a
worse outcome in critically ill COVID-19 patients in terms of mortality were: age; high
BMI; elevated ferritin, LDH, CRP, and creatinine levels; lymphopenia; low PaFi values;
use of IMV; and abnormal values in hemostasis and coagulation, namely elevated PT and
aPTT, elevated D-dimer and fibrinogen, and low platelet levels. Figure 5 displays a bar
chart illustrating the weights of predictor variables that significantly enhance classification
accuracy across various ML methods.

The baseline clinical data of the 684 patients included in the study are shown in Table 2.
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With the proposed XGB method, the predictor factors or variables associated with a 
worse outcome in critically ill COVID-19 patients in terms of mortality were: age; high 
BMI; elevated ferritin, LDH, CRP, and creatinine levels; lymphopenia; low PaFi values; 
use of IMV; and abnormal values in hemostasis and coagulation, namely elevated PT and 
aPTT, elevated D-dimer and fibrinogen, and low platelet levels. Figure 5 displays a bar 
chart illustrating the weights of predictor variables that significantly enhance classifica-
tion accuracy across various ML methods. 
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Figure 4. Radar plot of the training phase (top) and test (bottom) for prediction of mortality in
patients with severe COVID-19. AUC: area under curve; BA: balanced accuracy; BLDA: Bayesian
linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB: Gaussian
naïve Bayes; KNN: K-nearest neighbors; MCC: Matthew’s correlation coefficient; SVM: support
vector machine; XGB: extreme gradient boost.

Figure 6 provides a graphical representation of the number of selected patients admit-
ted to the hospital with severe COVID-19 throughout the six pandemic waves and until the
end of the study.
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Figure 5. Graphical representation of the predictive variables with the most significant impact on
classifying severe COVID-19 patients in terms of mortality. Abbreviations: CRP: C-reactive protein;
PT: prothrombin time; IMV: invasive mechanical ventilation; PaFi: ratio between arterial oxygen
pressure and the fraction of inspired oxygen (PaO2/FiO2); LDH: lactate dehydrogenase; aPTT:
activated partial thromboplastin time; BMI: body mass index.

Table 2. Basal clinical data of patients. Data are n (%) or median (IQR) unless otherwise stated.

Variable Cohort

Number of patients 684

Age (years) (IQR) 63 (55–74)

Male, n (yes%) 357 (52.2)

Hospital admission (days) (IQR) 15.0 (9.0–30.2)

Exitus, n (yes%) 231 (33.8)

7-day mortality, n (yes%) 65 (9.5)

21-day mortality, n (yes%) 102 (14.9)

IMV, n (yes%) 153 (22.4)

Hypertension, n (yes%) 361 (52.8)

Diabetes, n (yes%) 183 (26.8)

Dyslipemia, n (yes%) 256 (37.4)

Smoker/ex-smoker, n (yes%) 156 (22.8)

Asthma, n (yes%) 64 (9.4)

COPD, n (yes%) 72 (10.5)

OSA, n (yes%) 85 (12.4)

BMI, n (yes%)

- Overweight (BMI= 25–29.9 kg/m2), n (yes%)
- Grade I or moderate obesity (BMI = 30–34.9 kg/m2), n (yes%)
- Grade II or severe obesity (BMI = 35–39.9 kg/m2), n (yes%)
- Grade III or morbid obesity (BMI ≥ 40 kg/m2), n (yes%)

423 (61.8)

176 (41.6)

85 (20.1)

63 (14.9)

17 (4.0)

Ischemic heart disease, n (yes%) 61 (8.9)
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Table 2. Cont.

Variable Cohort

Chronic kidney disease, n (yes%) 35 (5.1)

Autoimmune disease, n (yes%) 69 (10.1)

Coagulation disorder, n (yes%) 179 (26.2)

Active cancer, n (yes%) 17 (2.5)

Dementia, n (yes%) 65 (9.5)

Fever, n (yes%) 412 (60.2)

Cough, n (yes%) 485 (70.9)

Dyspnoea, n (yes%) 502 (73.4)

Nausea and vomiting, n (yes%) 78 (11.4)

Diarrhea, n (yes%) 127 (18.6)

Neurological symptoms, n (yes%) 56 (8.2)

Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, n
(yes%) 325 (47.5)

Antibiotics, n (yes%)

- Azithromycin, n (yes%)
607 (88.7)

569 (83.2)

Antivirals drugs, n (yes%)

- Lopinavir/ritonavir, n (yes%)
- Darunavir/cobicistat, n (yes%)
- Remdesivir, n (yes%)

421 (61.5)

182 (26.6)

145 (21.2)

71 (10.4)

Immunosuppressants and/or immunomodulators, n (yes%)

- Corticosteroids, n (yes%)
- Anakinra, n (yes%)
- Tocilizumab, n (yes%)
- Baricitinib, n (yes%)
- Interferon-beta, n (yes%)
- Cyclosporine, n (yes%)

625 (91.4)

594 (86.8)

326 (47.6)

235 (34.3)

128 (18.7)

84 (12.3)

34 (4.9)

Hydroxychloroquine, n (yes%) 409 (59.8)

N-acetylcysteine, n (yes%) 276 (40.3)

Anticoagulants, n (yes%)

- Prophylactic heparin, n (yes%)
- Therapeutic heparin, n (yes%)

581 (84.9)

474 (69.3)

78 (11.4)

Albumin (g/dL) (IQR) 4.3 (2.8–5.9)

Haemoglobin (g/dL) (IQR) 13.2 (12.4–15.6)

CRP (mg/L) (IQR) 16.5 (12.1–27.6)

LDH (U/L) (IQR) 715.0
(572.0–1034.0)

Procalcitonin (ng/mL) (IQR) 3.7 (0.5–9.8)

Ferritin (µg/L) (IQR) 1195.0
(526.0–1421.0)

Creatinina (mg/dL) (IQR) 1.8 (1.3–2.8)

GPT (U/L) (IQR) 41.0 (27.8–63.8)

GOT (U/L) (IQR) 47.0 (32.6–65.4)
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Table 2. Cont.

Variable Cohort

CK (U/L) (IQR) 228.0
(156.0–281.0)

FiO2 (%) (IQR) 36.4 (27.3–48.4)

PaFi (IQR) 197.0
(141.0–249.0)

Lymphocytes (109/L) (IQR) 0.6 (0.5–1.3)

Platelets (109/L) (IQR)
153.0

(162.0–315.0)

Fibrinogen (mg/dL) (IQR) 387.0
(304.0–403.0)

D-dimer (ng/mL) (IQR) 1981.0
(1643.0–3256.0)

PT (sec) (IQR) 13.9 (13.2–15.5)

aPTT (sec) (IQR) 34.8 (28.7–37.8)
Abbreviations: IQR: interquartile range, IMV: invasive mechanical ventilation, COPD: chronic obstructive pul-
monary disease, OSA: obstructive sleep apnea, BMI: body mass index, CRP: C-reactive protein, LDH: lactate
dehydrogenase, GPT: glutamate-pyruvate transaminase, GOT: glutamate-oxaloacetate transaminase, CK: creatine
kinase, FiO2: inspired oxygen fraction, PaFi: ratio between arterial oxygen pressure and inspired oxygen fraction
(PaO2/FiO2), PT: prothrombin time, aPTT: activated partial thromboplastin time.
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4. Discussion

To our knowledge, this is the first study to develop, compare, and evaluate six su-
pervised ML methods for predicting mortality in severe COVID-19 patients at a Spanish
tertiary hospital. We collected data on 66 demographic, clinical, and laboratory variables.
After analyzing these algorithms, XGB achieved the highest balanced accuracy at 96.61%.

SARS-CoV-2 invading airway cells leads to cell damage and triggers a local immune
response, causing the release of proinflammatory substances such as IFNγ, IL-1β, IL-6, and
TNF-α [38]. IL-1β exerts its influence on endothelial and vascular smooth muscle cells,
thereby stimulating the production of IL-6 [39]. IL-6 plays a crucial role in the shift from
mild inflammation to severe hyperinflammatory conditions, including cytokine release
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syndrome (CRS), acute respiratory distress syndrome (ARDS), and lung damage, which
can lead to high mortality in critically ill COVID-19 patients [40]. ARDS is the leading
cause of death among these patients, often associated with mortality rates exceeding
70% [7,41]. ARDS results from an imbalanced immune response, excessive inflammation,
and the activation of blood clotting, with CRS at the center of this complex interaction [42].
Current treatment strategies mainly focus on regulating the immune response and achieving
antiviral, antithrombotic, or anticoagulant effects [7]. Drugs with substantial evidence for
managing CRS include IL-1 inhibitors (e.g., anakinra), IL-6 inhibitors (e.g., tocilizumab),
janus kinase inhibitors (JAKi, e.g., baricitinib), and corticosteroids.

In our study, 33.8% of the patients died in the hospital, and 22.4% of all patients needed
invasive mechanical ventilation (IMV). The median hospital stay was 15 days (IQR 9–30.2).
Among all the ML classifiers applied, the XGB method was the pattern recognition method
that most accurately discriminated between patients at a higher risk of mortality. This
model was analyzed and compared with different supervised ML methods described in
the literature, such as BLDA, DT, GNB, KNN, or SVM. Current ML classification methods
employed in biomedical applications have consistently demonstrated that supervised
algorithms, be it for regression or classification, typically achieve higher average accuracy
rates compared to their unsupervised counterparts [43]. In our study, GNB and BLDA were
the methods with the worst performance, whereas KNN was the method that came closest
to the accuracy values of XGB. These results align with findings from studies describing
these supervised ML algorithms in predicting COVID-19 mortality [44,45].

Our study uses a radar graph to effectively assess how well ML models perform
during training and testing. The results show that the XGB model excels in handling large
datasets without overfitting, outperforming other methods with higher precision, recall,
and accuracy. This reliability makes XGB a valuable tool in biomedical applications, like
predicting cancer patient stages [46].

In our patient cohort, 52.2% were male, and the median age was 63 (IQR 55–74).
Consistent with the results from previous studies, advanced age was identified as the
primary demographic factor predicting hospital mortality in COVID-19 patients [47–49].
Sánchez-Montañes et al. conducted a study that applied various ML methods, and they
found age to be the most significant predictor of mortality [48]. Similarly, other authors
who utilized different ML models, such as deep learning models [50] or artificial neural net-
works [51] also emphasized age as a predictive factor for the progression to a severe/critical
clinical condition and/or mortality. Furthermore, age stands out as the most significant
demographic risk factor for both mortality and ICU hospitalization duration, in addition to
being a crucial factor in the days of invasive mechanical ventilation (IMV) among critically
ill COVID-19 patients [52].

On the other hand, conditions like diabetes, hypertension, heart issues, as well as
COPD, asthma, CKD, and cancer, among others, have been recognized as risk factors for
disease progression and increased mortality risk in COVID-19 patients using ML tech-
niques [49,53]. In our study, we found that clinical factors related to other health conditions
did not have a very strong impact on predicting mortality. However, high levels of creati-
nine, which indicates kidney problems, stood out as an important predictor of mortality.
Additionally, severe cases of COVID-19 are often associated with the development of acute
kidney injury, which can ultimately lead to the patient’s death [54,55].

Similar to our findings, a recent retrospective study by Datta D et al. confirms, using
ML techniques, that elevated BMI is a significant predictor of mortality in these patients [56].
Furthermore, unlike our study, in this research, both diarrhea and smoking status were
strongly associated predictors of mortality.

Although age is the primary factor associated with mortality, younger individuals
with hypertension, diabetes, and obesity face a similar risk of death as individuals who are
20 years older and do not have any of these three conditions [57].

Many studies in Adamidi et al.’s systematic review share some of the predictors for
disease progression and mortality that we found in our study. Their review consistently
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highlighted age, CRP levels, lymphocyte counts, LDH levels, and findings in chest X-rays
and CT scans as the most commonly reported indicators linked to a poor outcome in
COVID-19 patients [44].

In our investigation, over 20% of the patients exhibited ARDS based on the latest defi-
nition [58]. ARDS is a condition of severe oxygen deficiency caused by lung inflammation,
not by heart-related lung swelling. Several studies have found that ARDS and associated
pneumonia are factors that can lead to mortality in SARS-CoV-2 infected patients [44,49].
For patients like these, using ventilatory support is crucial. Therefore, our study includes
the use of IMV as an important predictive factor.

Similar to our research, other studies that employed ML tools have identified various
serum biomarkers as prognostic indicators of severity and mortality in patients infected
with SARS-CoV-2 [44,47,59–61]. Like in our case, predictors that forecasted a higher risk of
mortality included, among others, CRP, LDH, and ferritin. As it is well understood, CRP
and LDH values tend to rise in the case of severe infection, tissue damage, or injury, as
well as in chronic diseases. A systematic review by Bottino et al. concludes, as does our
study, that age and CRP and LDH levels are among the predictors most associated with
mortality [45].

Elevated levels of proinflammatory cytokines, which are implicated in ARDS, ac-
celerate ferritin synthesis [62]. Consequently, elevated levels of serum ferritin can assist
in predicting the development of ARDS and an increased risk of mortality in COVID-19
patients. The meta-analysis conducted by Henry et al. substantiated that serum ferritin,
in conjunction with other biomarkers like elevated levels of IL-6 and IL-10, as well as
reduced levels of lymphocytes and platelets, were linked to the progression of severe
and fatal illness [63]. Serum ferritin is a biochemical parameter that has proven to be a
powerful predictor of mortality in severe COVID patients, as highlighted by several studies
employing ML tools [64,65]. In fact, in our study, it emerges as the most strongly associated
predictive variable with mortality.

SARS-CoV-2 infection can predominantly affect T lymphocytes, specifically CD4+ and
CD8+ T cells, leading to a reduction in their counts. Lymphopenia is more commonly
observed in severe cases when compared to moderate ones [66]. In a retrospective study by
Wang T et al., as in ours, a low percentage of lymphocytes was a predictive variable for
mortality in hospitalized COVID-19 patients [60]. In the systematic review by Adamidi
ES et al., lymphopenia was also identified as one of the primary predictors of disease
progression and mortality in infected patients [44].

On the other hand, the intense inflammatory response triggered by COVID-19 results
in significant disturbances in hemostasis and substantial alterations in coagulation param-
eters [67,68]. The coagulation disorder, resulting from the hyperinflammatory state and
altered immune response, has been described as a state of disseminated intravascular coag-
ulation (DIC) and consumption coagulopathy, characterized by a decrease in platelet count,
an increase in FDP such as D-dimer, and low fibrinogen levels [68]. These findings may
elucidate the venous thromboembolic events observed in some of these patients and pro-
vide support for thromboprophylaxis/antithrombotic treatment. Critically ill patients with
COVID-19 often present significant coagulation abnormalities, such as thrombocytopenia
and widespread arterial and venous thrombosis [69].

In our patient group, we found a high percentage of coagulation disorders, affecting
more than 25% of patients. It is well-known that worsening coagulation measurements
during the illness are linked to disease progression and a higher risk of death. Moreover,
there is a strong connection between abnormal coagulation values and the development of
DIC, which is closely tied to the severity and poor outcomes in these patients [22].

In contrast to coagulopathy/DIC associated with bacterial sepsis, COVID-19 exhibits
a lower incidence of PT and aPTT prolongation, as well as reduced antithrombin activity.
Nevertheless, the underlying causes of coagulopathy remain poorly understood. It is
hypothesized that factors such as hypoxia, endothelial damage, dysregulated immune
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responses mediated by inflammatory cytokines, and lymphocyte cell death may contribute
to its onset [70].

Despite this, PT remains a fundamental parameter widely utilized in clinical settings
to assess coagulation function.

In line with the findings from Jin et al.’s meta-analysis, our own research revealed a
strong correlation between mortality and notably elevated D-dimer levels, extended PT,
and decreased platelet counts in comparison to patients who successfully survived [71].
Other studies corroborate that laboratory parameters indicating coagulation abnormalities,
such as elevated D-dimer and FDP levels, prolonged PT, and aPTT, are associated with
mortality in COVID-19 patients [22,72].

Elevated D-dimer levels and low platelet counts appear to be strong prognostic indi-
cators of coagulation abnormalities in patients with severe COVID-19. These laboratory
parameters, along with other coagulation measurements, should be assessed simulta-
neously with fibrinogen determination to rule out DIC and to monitor antithrombotic
treatments in critically ill COVID-19 patients effectively [73]. A low platelet count is linked
to an elevated risk of severe illness and mortality in COVID-19 patients, making it a cru-
cial clinical indicator of deteriorating health during hospitalization [74]. Various studies
confirm that anticoagulant therapy, primarily with LMWH, is associated with a better
prognosis in severe COVID-19 patients with significantly elevated D-dimer levels [75].

Thromboelastography is a diagnostic tool for checking excessive blood clotting in
COVID-19 patients. It also helps determine if more anticoagulation is necessary. Monitoring
coagulation parameters continuously provides a better way to assess how patients are
progressing clinically, rather than relying on a single measurement, because blood clotting
can change rapidly in critically ill COVID-19 patients [68].

Unlike our study, other studies included prothrombin time activity (PT-act) as a
variable, with PT-act < 75% being independently associated with mortality [22].

Numerous research studies have employed a variety of ML techniques, with coagu-
lation parameters playing a pivotal role as mortality predictors in patients infected with
SARS-CoV-2. In the majority of these studies, much like in our own work, the most influen-
tial predictors of mortality are D-dimer and INR [64,76]. The INR (international normalized
ratio) provides a standardized means of interpreting PT results, regardless of the analysis
method employed.

In our study, no pharmacological treatment carried enough significance in predicting
mortality.

The available ML-based studies on mortality prediction in COVID-19 patients are
hindered by the limited sample size, the type of variables used in the prediction, and the
short-term follow-up of the study [77,78].

Comparative studies have revealed that ML methods can be more accurate and ef-
ficient than traditional logistic regression analysis, especially when the sample size is
limited [79].

The XGB method is a binary classification system that is easy to implement and train,
which means that as more data becomes available, this algorithm improves its predictive
performance [45]. In their systematic review, Sánchez-Salmerón et al. emphasize that the
XGB method and deep neural networks are the leading models for accurately predicting
critical outcomes, such as mortality or the need for intensive care or hospitalization [80].

Just like in our research, other studies also chose to use the XGB method, obtaining
similar results in predicting mortality in COVID-19 patients [47,59].

This study’s main limitation is its retrospective design; however, this is partially
mitigated by the use of powerful methodological tools like ML. To further improve the
predictive performance of the model, including data from other sources, such as genomic
profiles and medical imaging, could be beneficial.

A notable strength is the inclusion of a diverse patient population with a relatively
high prevalence of comorbidities, especially coagulation disorders, which are often under-
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represented in clinical trials. This makes our results more applicable to a broader range of
patients.

Additionally, because most patients had a hospital stay of more than one week, our
model can predict mortality more than a week in advance.

5. Conclusions

ML techniques are playing an increasingly crucial role in predicting events of interest,
both in general and, specifically, in predicting the severity and mortality of COVID-19.
Among the six supervised ML methods analyzed and validated, the XGB method achieved
the highest accuracy in predicting hospital mortality in critically ill patients with severe
COVID-19. The factors associated with a higher risk of mortality include advanced age;
elevated body mass index; the use of IMV; analytical variables such as low PaFi ratio;
elevated levels of ferritin, CRP, LDH, and creatinine; lymphopenia; and other parameters
associated with hemostasis and coagulation, including low platelet counts, elevated levels
of fibrinogen and D-dimer, prolonged PT, and aPTT.

In our study, we observed a significant population of patients with coagulation dis-
orders. The presence of a coagulopathy in these patients suggests the need to consider
antithrombotic strategies. Although the optimal antithrombotic strategy has not yet been
established, it appears that LMWH at prophylactic or intermediate doses should be consid-
ered for these patients after their admission to the ICU or when elevated D-dimer values
are observed, reserving therapeutic anticoagulation for cases where clear local or systemic
thrombotic pathology is detected. The XGB method has the potential to assist healthcare
professionals in making early and effective critical clinical decisions for severely ill COVID-
19 patients with a high risk of mortality and in ensuring the efficient allocation of medical
resources.
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