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Abstract: Antibody-based passive immunotherapy has been used effectively in the treatment and
prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne
viruses (arboviruses) represent a global public health problem due to their rapid spread, urging
measures and the treatment of infected individuals to combat them. Preparedness in advances
in developing antivirals and relevant epidemiological studies protect us from damage and losses.
Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in
combating infectious diseases and various other illnesses. Recent advances in mAb discovery
techniques have allowed the development and approval of a wide number of therapeutic mAbs. This
review focuses on the technological approaches available to select neutralizing mAbs for emerging
arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs.
The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue,
Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective
effect demonstrated in animal model studies.

Keywords: arbovirus; monoclonal antibody; flavivirus; alphavirus; neutralizing antibody; antibody
discovery

1. Introduction

The passive immunotherapy approach based on the introduction of antibodies was
developed by Emil von Behring and Shibasaburo Kitasato in the late nineteenth century
using serum to protect people against infectious diseases such as diphtheria and tetanus [1].
This approach was effective for several infectious diseases, but its use was reduced by
antimicrobial drug approvals, and it was restricted to treating venom intoxication and
some viral infections [2]. The technological revolution in discovery strategies to obtain
monoclonal antibodies (mAbs), followed by microbial resistance to certain drugs, opened
the opportunity to develop passive immunotherapy for a wide variety of infectious diseases
without drug approval for prophylaxis and therapeutics [2], although few mAbs targeting
infectious diseases have been approved to date [3]. Until now, there have been mAbs
targeting only 3 viruses, respiratory syncytial virus (RSV), human immunodeficiency virus
(HIV-1) and Ebola virus (EBOV), considering only viral infections [3]. The development of
mAb therapy was initially directed at cancer and immunological diseases such as autoim-
mune disorders because of the high incidence of these conditions and the unavailability of
effective drugs for treatment [2].

Recently, the pandemic of severe acute respiratory syndrome coronavirus 2 infections
and COVID-19 disease changed this scenario because of the rapid spread of this infection
and the urgent need to accelerate the development of drugs and vaccines to deal with
the pandemic. The efforts from the scientific community were intensive and vaccines and
antiviral drugs, including neutralizing mAbs, received emergency use authorization from
the US Food and Drug Administration (FDA) in record time [3].
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Infectious diseases caused by arthropod-borne viruses (arboviruses) are a challenging
public health problem in tropical and subtropical developing countries that need a dynamic
state of emergency because of potential outbreaks [4]. This is considered a global medical
concern since emerging diseases do not impact only the population of these countries as
a result of the intensive circulation of people because of globalization and tourism [5].
Furthermore, the spread of (re)emerging diseases is rapid when this happens, and thus,
it is important to have a continuous effort and support for studies on the development of
drugs and vaccines to control outbreaks.

In recent centuries, both hemispheres reported several cases of human emerging dis-
eases caused by arboviruses, such as yellow fever virus (YFV), dengue virus (DENV), West
Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV) [5]. Highly effective
vaccines for some arboviruses have been approved such as YFV [6], Japanese encephalitis
virus (JEV) [7], tick-borne encephalitis virus (TBEV) [8] and tetravalent DENV [9], and
others are under development [4]. However, antivirals or other therapeutics are not avail-
able for clinical use, and the development of specific therapeutics such as mAbs is under
way. Passive immunotherapy using neutralizing mAbs in animal model-based studies
protects against infection by genera Flavivirus [10] and Alphavirus [11] using specific mAbs.
It was observed that mAbs with poor neutralizing activity can also provide protection in
animals [11]. The biggest challenge is to demonstrate protection and efficacy in human
therapy.

This review focuses on the mAb-based therapeutics for infectious diseases caused by
arboviruses, specifically Aedes-borne RNA arboviruses DENV, ZIKV and CHIKV, and also
WNV, which is a Culex-borne RNA arbovirus. mAbs for TBEV will also be presented. The
mAb discovery technologies and improved strategies for mAb development are highlighted.
First, we present an overview of mAb isolation technologies, and then neutralizing mAbs
that have been developed to arboviruses. Finally, next-generation approaches to obtain
mAbs with high efficacy and potency will be shown.

2. Technologies for mAb Discovery
2.1. Hybridoma Technology

The first technology of mAb production was hybridoma culture developed by Köhler
and Milstein in 1975 [12]. Hybridoma technology involves fusing antibody-producing B
cells from an immunized animal, mainly mice, with murine myeloma cells resulting in
hybrid cells that can produce unlimited quantities of a specific antibody (Figure 1A). The
first therapeutic mAb, Orthoclone OKT3, was approved in 1986 [13]. However, clinical
trials with hybridoma-derived mAbs were largely unsuccessful because murine mAbs were
recognized as heterologous proteins and were highly immunogenic, generating human
anti-mouse antibodies (HAMA) that affected the safety and therapeutic efficacy of the
antibody [14,15].

The mAbs obtained from hybridoma culture retain the natural gene pairing of variable
and constant regions, ensuring their proper functioning. Besides, this technology relies on
B cells that were matured in secondary lymphatic organs in response to an antigen [16].

Human hybridoma produces human mAbs by the fusion of human B cells and fully
human myeloma [17]. However, the application for therapeutic purposes has been limited
because of several technical disadvantages. For example, high-efficacy human fusion
partners are unavailable, the number of B cells is limited, fusion efficiency is low and
production cost is high [17]. Heteromyeloma cells have been used to generate mAbs against
viral diseases such as those caused by HIV, CHKV and DENV [16].
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2.2. Immortalization of Human B Cells

The generation of a stable human B-cell line for mAb isolation and human B-cell
repertoire study was challenging because of the limitation of maintaining B cells in vitro [18].
The immortalization of B cells by Epstein-Barr virus (EBV) transformation was developed
to reach this objective [19] and involved four steps: B-cell isolation, EBV infection, B-cell
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cloning and screening strategies. However, the technique had low efficiency in relation to
EBV infection, and B-cell cloning [20] limited the generation of large numbers of B cells.
Improved methods increased the efficacy of the B-cell immortalization, and antibodies
against SARS-CoV were identified [21]. B cells were also immortalized by transducing
memory B cells with transcriptional factors, and a stable cell line was identified [22].

The immortalization of B cells has been combined with other techniques to obtain
mAbs. One example is the generation of the human hybridoma-producing mAb for DENV
by the fusion of EBV-transformed B cells with myeloma cells [23].

2.3. Antibody Humanization

Non-human mAbs administered in therapy may function as antigens and thereby elicit
antibodies against them. To overcome this problem by reducing heterologous domains
or residues in non-human mAbs, antibody humanization techniques were developed,
replacing them with human domains or residues to minimize immunogenicity. The first
technique was to obtain chimeric mAbs: antibody variable domains (light chain and heavy
chain) from heterologous origin were combined with human constant domains [24]. The
rational choice of constant domains is crucial to obtain chimeric mAbs. Although the
variable domains are responsible for antigen binding, the constant regions may also play a
role in this function [25]. Avidity is the strength of multiple interactions between antibod-
ies and antigens to form a stable complex and is another important factor that interferes
with binding properties. Chimeric mAbs can alter avidity through constant domain ex-
changes [26], and decreased binding could happen according to allosteric effects [27]. The
isotype selection could also have an impact on chimeric mAb specificity [28]. Furthermore,
these mAbs trigger immunogenicity responses generating human anti-chimeric antibodies
(HACA) [29].

Techniques to obtain humanized antibodies were then developed to lower immuno-
genicity response. One promising technique is based on the transplantation of the highly
specific sequence of antibodies called complementarity-determining regions (CDRs) of
non-human origin on human framework sequences using molecular biology approaches,
and it was designated CDR grafting [30] (Figure 1B). The first methodology cloned het-
erologous CDRs into human frameworks; however, this led to reduced affinity because
of alterations in critical residues present in heterologous frameworks related to binding,
and grafting did not preserve these features [31,32]. These residues in the frameworks
that affect the conformation of CDR loops and contribute to the characteristics of mAbs
are called Vernier zones [33]. The back mutation approach to revert these framework
residues of humanized mAbs was used in the development of Zenapax® (daclizumab),
the FDA-approved mAb in 1997 for therapeutic use in patients with kidney transplanta-
tion [34]. All CDR grafting methodologies rely on the homology between the non-human
mAb and human antibodies to decide the suitable human framework for humanization.
Most humanized antibodies display reduced affinity toward antigens [35], and about 9% of
them elicit human anti-humanized antibodies (HAHA) [29].

2.4. In Vitro Display Technology

In vitro display technology is the selection of DNA-binding proteins or antibodies
based on the directed evolution approach [36]. In the field of antibody discovery, it
mimics the in vivo process of antibody generation and has four main characteristics: (1) the
generation of the genotypic diversity by library construction, (2) the linkage between
the genotype and the phenotype, (3) the recovery of the DNA sequence encoding the
selected antibody and finally (4) the antibody amplification. The isolated clones can be
expressed to be characterized and the best candidates are selected [14] (Figure 1C). Further
characterizations can be performed by IgG production in mammalian cells. Antibody
libraries can be derived from either non-immunized (naïve and synthetic) or immunized
donors. Naïve libraries should have high diversity, but the selected clones may not have
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high affinity. On the other hand, libraries from immunized donors have a lower diversity
with higher affinity candidates [37,38].

The main advantage of this technology is the capability to select antibodies against a
wide range of targets and epitopes since the selection from a naïve or synthetic antibody
repertoire does not rely on an in vivo immune response. Thus, the isolation of antibodies
targeting even self-antigens and toxic, unstable, and non-immunogenic antigens is possible
using the library from non-immunized donors [14].

Phage, yeast and mammalian cell surface displays are examples of in vitro display
technologies to select antibody fragments such as the single-chain variable fragment (scFv),
antigen-binding fragment (Fab) and single-domain antibody (sdAb) [37–39].

Phage display was the first technology developed to select exogenous peptides on
the filamentous M13 bacteriophage (phage) surface with specific binding properties by
Smith et al. in 1985 [40]. Antibody phage display was developed by McCafferty and
colleagues five years later [41]. It is widely used in the discovery of therapeutic mAbs
because of several advantages: low cost of the E. coli expression system [42], finding
antibodies with desired properties using large naïve libraries [37], versatile selection process
with the possibility of using diverse conditions [14], affinity maturation approach possible
to improve binding properties [42], possibility to humanize antibody by guided selection
technique [14], and a high level of customization and also full control of the experiment at
each stage by direct and rational approach [42].

2.5. B-Cell Sorting Technology

After the revolutionary hybridoma technology and in vitro display technologies, single
B-cell sorting was developed for mAb discovery. Antibody-secreting cells (ASC) and B cells
have a very short lifespan ex vivo, and therefore, there is a need for the immortalization of
these cells, i.e., by hybridoma technology that allows B-cell antibody screening through
analyzing hybrid cells. Novel advances allowing cell culture of ASC and B cells were
developed enabling the screening of a large number of mAbs [43–45]. Thus, to recover
broadly neutralizing mAbs, an efficient screening approach of a larger number of mAbs is
important, given that a minority of B cells have these features.

A well-known method to isolate single B cells is fluorescence-activated cell sorting
(FACS). Surface markers, such as membrane-bound antibodies (B-cell receptor, BCR) in B
cells are a suitable candidate to isolate cells with specific antibodies for a given antigen. The
antigen of interest must be attached to a fluorophore and used as bait to sort the single B
cells bearing antibodies. Cells can be sorted into wells for further culture for mAb screening
and accessing genetic material [43,45] (Figure 1D) or even prolong their lifespan through
EBV immortalization [46,47]. Alternatively, cells can be sorted into wells with reagents for
high-throughput sequencing [48,49].

After the B-cell sorting step, the antibody screening step starts and demands high-
throughput systems in function of a high number of candidates and multiple steps. Single-
cell reverse transcription PCR (RT-PCR) is performed to identify the sequences of the heavy
chain and light chain genes encoded by each antibody. The antibody genes are then cloned
into an expression vector and transfected to the eukaryotic cell line to obtain mAb for
testing binding and analyzing functional features [50,51]. The full process is long and
work-intensive, yielding few promising and specific candidates.

While FACS is one of the most commonly used methods for mAb discovery from
single B cells, there are limitations. Plasma cells, a differentiated stage of B cells that are
highly specialized in secreting antibodies, do not possess a BCR. However, using FACS
for B cells has significant advantages, such as a relatively low cost, simplicity, and a high
throughput platform [51].

Modern technology for single B-cell investigation uses microfluidic platforms. Berke-
ley Lights BeaconTM is an example of a highly efficient and automated microfluidic system
that enables rapid interrogation of B cells in a high-throughput manner [52]. In this tech-
nology, B cells are sorted into individual channels using OptoElectro Positioning (OEP),
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each having a very small volume (usually ranging from 740 pL to 1.7 nL), with culture
chips customized for specific needs [51,53,54]. The culture supernatant is further analyzed,
and several parameters are assessed related to mAb and cell clone screening, such as IgG
productivity, cell expansion rate, and surface markers [51,53,54]. It represents an example
of an open system, where information about ASC can be readily accessed in real-time.

Another example of an open microfluidic system is based on microengraved poly-
dimethylsiloxane (PDMS) chips. These chips contain nanowells into which cultured B
cells are added and sorted [55]. After sorting, the ASCs with specific antibodies for a
given antigen are analyzed in microarrays, and genetic material can be recovered for fur-
ther analyses [55]. Although this methodology enables high-throughput analyses, it does
not provide the same level of information as the Berkeley Lights BeaconTM, albeit a less
expensive technology, making it more accessible.

Closed microfluidic systems, also known as closed systems, are based on encapsulating
cells in droplets embedded in an oil emulsion. They are referred to as closed systems
due to the need to break the encapsulated droplet to access the information inside the
reaction. The sequencing of individual B cells may be obtained with the cDNA synthesized
inside the droplets [56,57]. Other closed microfluidic methodologies do not sort B cells
prior to microfluidic encapsulation; instead, they rely on B-cell identification with specific
antibodies for antigens of interest within the droplets, and material for sequencing is also
obtained within the droplets [58].

The greatest advantage of microfluidic systems is that they operate with very small vol-
umes, allowing for minimal reagent use, rapid screening of mAbs, and quick achievement
of the molar amount of antibody needed for identifying ligands and other characteris-
tics [51]. Additionally, they can also be used for high-throughput studies [51]. However,
these systems do not currently support functional analyses, such as neutralization assays,
an important characteristic to be assessed for therapeutic mAbs, and therefore, these assays
should be performed after mAb isolation [51].

The primary advantage of B cell-based technologies for clinical purposes is the preser-
vation of the native pairing of the variable domains of the B cell. Antibodies undergo
affinity maturation in vivo, and those with auto-reactivity undergo clonal deletion [59].
This mechanism helps minimize the selection of potential autoreactive and non-specific
mAbs [51]. Native-paired mAbs may also exhibit lower immunogenicity and have greater
developability, a common problem faced by mAbs obtained from libraries that do not retain
native pairing [51].

3. Development of the Therapeutic mAbs Targeting Arboviruses
3.1. Characterization of Arboviruses

Arboviruses are a diverse group of viruses whose vectors are arthropods, including
different families such as Flaviviridae and Togaviridae, among others. These two families
have worldwide medical importance due to representing human viral pathogens causing
several emerging diseases [60].

Flaviviruses are spherical particles containing positive-sense RNA that encodes three
structural proteins, such as pre-membrane (prM), envelope (E) and capsid (C), and seven
nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) [10,61] (Figure 2a).
The E protein forms a dimeric structure anchoring on the M protein, mediates virus entry
and has three domains: DI, DII and DIII [61]. Flavivirus-infected individuals present
neutralizing antibodies to E, prM and NS1 proteins [62,63]. DENV, ZIKV, WNV and TBEV
are examples of flaviviruses, and therapeutic mAbs developed for them will be presented
in the review.

Alphaviruses are positive-sense RNA viruses of the family Togaviridae with an icosahe-
dral nucleocapsid encoding four nonstructural proteins (nsP1, nsP2, nsP3 and nsP4) and
five structural proteins (capsid, E3, E2, 6K/TF and E1) [11] (Figure 2b). Host humoral
antibodies have as target E1 and E2 proteins [11,64]. CHIKV is an alphavirus and mAbs for
it will be considered.
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The vector species, such as mosquitoes or ticks, responsible for flavivirus diseases
primarily define the epidemiology [10]. The clinical manifestation that differentiates the
diseases caused by two types of mosquitoes is that Aedes-borne viruses are characterized
mainly by fever, influenza-like symptoms and/or hemorrhagic illness, whereas Culex-borne
viruses such as WNV are encephalitic infections [5].
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Figure 2. Schematic representation of the polypeptides encoded by flavivirus (a) and alphavirus
(b) genomes adapted from Pierson and Diamond 2020 [61] and Rupp et al. [65], respectively. (a) Fla-
vivirus genome has a single open reading frame (ORF) and encodes three structural proteins, capsid
(C), pre-membrane (pr) and envelope (E), followed by seven nonstructural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B and NS5). 2K: domain between NS4A and NS4B. (b) Alphavirus genome
has two ORFs. The first ORF translates four nonstructural proteins (nsP1, nsP2, nsP3 and nsP4) from
genomic RNA, while the second ORF encodes five structural proteins (capsid, E3, E2, 6K/TF and E1)
through a subgenomic mRNA. 5′ subgenomic UTR: a third UTR between two ORFs.

3.2. Dengue Virus (DENV)

Dengue infection is one of the most common mosquito-borne diseases in tropical
countries [66]. The dengue virus has four serotypes: DENV1, DENV2 DENV3 and DENV4,
and all of them can cause asymptomatic to severe cases, including hemorrhagic fever [67].
DENV1 is the most prevalent DENV serotype. The infection can elicit long-lasting memory
B cells, but serotype cross-reactive antibodies can bind or cause weak DENV neutralization,
leading to virus entrance into cells via Fc
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R and causing antibody-dependent enhancement
(ADE) [23,68]. Besides, non-specific T memory cells lead to cytokine storm and poor
outcomes in the second infection, a phenomenon known as original antigenic sin [69]. These
two immunological aspects are an impairment in the development of vaccines for DENV.
There are also two mAbs for dengue treatment in clinical trials, both in phase I [70,71].

There is evidence that the E protein mediates virus entry, and it is proposed that DIII
of the E protein is involved in entry into host cells since a virus with mutated DIII was
unable to enter cells [72,73]. Because of the diversity among DENV serotypes, some mAbs
may not be neutralized by others [10].

MAb-based therapies have certain advantages in dengue treatment since most of the
antibodies elicited by the infection are non-neutralizing with the ADE risk that comes with
polyclonal antibodies. Recombinant mAbs are promising drugs as they are not likely to
present adverse events. As the ADE phenomenon is more likely to occur with serotype-
specific antibodies that just cross-react with other serotypes [74], we focused on the DENV
antibodies that cross-neutralize different serotypes (Table 1).
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Table 1. Therapeutic mAbs for dengue disease with neutralizing activity to four serotypes.

mAb Epitope Technology Cross-NEUT Cross-REACT Format ADE Ref

4E11 E protein (DIII) hybridoma ND ND Fab ND [75]
2A10G6 E protein (FL) hybridoma YFV, WNV JEV, TBEV IgG1 ND [76,77]

3G9 E protein (FL) hybridoma (B cells from
secondary infection patient)

JEV, WNV,
ZIKV ND IgG1 Yes [78]

SIgN-3C
Inter-dimer

interface of E
protein

plasmablast sorting ZIKV ZIKV IgG1 Yes [79,80]

d448
Interface of

E and M protein
(DII)

B-cell sorting (immunized
Rhesus

macaque)/chimerization
YFV, WNV No IgG1 ND [81]

FL: fusion loop; ND: not determined; NEUT: neutralization; REACT: reactivity; Ref: references.

MAbs for DENV

The development of mAbs targeting specifically the DENV1 serotype is urgent since
it causes predominantly infection. Mice were immunized with UV-inactivated DENV1
particles and recombinant DENV1 E protein, and hybridomas producing DV1-E1 and
DV1-E2 mAbs were isolated. The epitope was characterized as DIII of the E protein, in the
region between residues Gln347 and Asp360, which plays an important role in DENV1
neutralization, and it is not a conserved region among other serotypes [82].

The 4E11 Fab was obtained by hybridoma technology from mice immunized with
DENV4 and has as a target the DIII of the E protein. It neutralized all four DENV serotypes
with different potency [75]. The IgG2a format of this mAb neutralized DENV with greater
potency than did the Fab, indicating that the in vivo properties of the mAb are desirable
for therapeutic purposes [75].

MAbs were generated by the fusion of the PBMC from DENV2 acute-phase or
DENV-infected convalescent donors with SPYMEG cells and revealed that mAbs derived
from acute-phase patients had cross-reactivity and neutralization capacity with all four
serotypes [83].

In another approach, mAbs to DENV E protein were identified from two patients
during acute-phase secondary infection by single plasmablast sorting [84]. These mAbs dis-
played strong neutralization activity against multiple serotypes in vitro and showed higher
protection of the previous serotype infection because of the antigenic sin phenomenon [84].
Further studies selected the SIgN-3C mAb, which binds to a quaternary epitope in the
inter-dimer interface of the E protein, specifically to the DII fusion loop and DIII [79].
The epitope of this antibody is extensive, giving the antibody the capacity to cover the
inter-dimer region because of the long CDR3 sequence [79]. SIgN-3C has neutralizing
capacity across all four DENV serotypes.

Neutralizing mAbs were also isolated by DENV2 E envelope-specific memory B cells
from individuals recovered from natural infections, and some mAbs presented neutraliza-
tion potency to more than one serotype [45]. Memory B cells represent a very small part of
PBMC, needing to choose the right period for mAb selection.

Discovery of mAbs targeting diverse epitopes helps the design of effective therapeutic
drugs. d448 is a broadly DENV-neutralizing mAb, obtained by B-cell sorting of Rhesus
macaques immunized with dengue vaccine, and it binds to DII at the interface of E and M
proteins; Li et al. were the first to report on this epitope [81]. This mAb has cross-reactivity
and cross-neutralization potency with four DENV serotypes [81].

The fusion loop of the E protein is the epitope for weak neutralizing antibodies [78], but
potent antibodies targeting this epitope have been selected. The 3G9 mAb is one example
obtained by a hybridoma generated from a patient in the acute phase of a secondary DENV
infection, and the variable region showed high somatic hypermutation rates [78]. This
mAb neutralized in vitro all four serotypes and also JEV, WNV and ZIKV. Besides, 3G9
displayed in vivo protection and therapeutic potential [78].
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Another mAb targeting the fusion loop is 2A10G6, which binds to a new epitope,
98DRXW101 motif, highly conserved among different flaviviruses [76]. This antibody was
obtained by a hybridoma using B cells of mice immunized with DENV2 [76]. 2A10G6
showed protection against lethal infection caused by DENV1-4 when administered at the
same time as the viral challenge in a suckling model. The effects of 2A10G6 were dose-
dependent and gave full protection against DENV2 and partial protection against DENV1,
3, and 4 [76].

A panel of mAbs targeting a new epitope called envelope dimer epitope (EDE) that
connects two E protein subunits were identified by plasmablast sorting from DENV sec-
ondary infected patients with hemorrhagic fever symptoms. These mAbs are broadly
reactive and capable of neutralizing multiple DENV serotypes [85].

NS1 is another DENV protein used to trigger antibodies and can protect mice against
infection. NS1 has molecular mimicry with proteins of the mammalian host, and a modified
peptide for the NS1 wing domain region not recognized by the host was synthesized for
the immunization of mice [86]. 2E8 and 33D2 mAbs were obtained by hybridoma cells
and recognized all DENV serotypes [86]. These mAbs were humanized by CDR grafting,
and in vivo, the therapeutic potential was evaluated in a mouse model, where both mAbs
caused a decrease in DENV-induced prolonged bleeding time and skin hemorrhage, while
the humanized mAb, h33D2, also decreased viremia [87].

3.3. Zika Virus (ZIKV)

Zika disease caused by ZIKV is transmitted by Aedes spp. mosquitoes [88] and also
sexually [89]. While asymptomatic infections account for around 80% of cases, Zika
symptoms include rash, fever, and headaches, with Guillain-Barré syndrome, which can
be a sequala [90]. Importantly, ZIKV shows tropism to immune-privileged sites [91], such
as the brain [92] and the placenta [93]. This tropism to the placenta and the ZIKV vertical
transmission can lead to abnormalities in brain development [94,95] and even spontaneous
abortion [95]. Microcephaly is a common morphological abnormality, as well as brain
calcification [94,95]. However, even without apparent morphological disorders in brain
development, congenital zika may lead to neurodevelopment impairments in children [96].
Although there is no FDA-approved vaccine for ZIKV, there is currently one mAb for Zika
disease treatment in phase I clinical trial [97].

ZIKV and DENV E proteins show similarity of around 56%, and consequently, anti-
bodies triggered by ZIKV infection are widely cross-reactive with DENV [98]. Similarly to
DENV, the depletion of B cells reactive to the soluble ZIKV E protein does not significantly
affect the neutralization of ZIKV immune sera, suggesting that the quaternary epitopes,
i.e., those present in structural virion arrangement, may be responsible for the neutralizing
response [99].

Plasmablasts from ZIKV-infected patients with previous dengue episodes were shown
to have clonal expansion and high rates of somatic hypermutation due to a secondary
infection, differing from plasmablasts derived from DENV-naïve ZIKV-infected patients.
ZIKV-neutralizing antibody from dengue experienced-donors developed DENV cross-
reactivity response [100]. In another study, higher levels of ZIKV- ZIKV-neutralizing
antibodies after ZIKV exposure were associated with their reactivity to DENV1 DIII of the
E protein [101].

Antibodies against DENV, exhibiting cross-reactivity with ZIKV at suboptimal concen-
trations or with poor neutralization potency led to ADE in vitro models [102] and also in
mouse models [103]. Since ZIKV circulates in DENV endemic areas, the ADE phenomenon
happens during infections among these viruses, and it is of fundamental importance to
investigate this characteristic in therapeutic antibodies. The effects of ZIKV in fetal develop-
ment are also relevant when therapeutic effects are evaluated and when gestational models
should be considered.
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MAbs for Zika Disease

Therapeutic mAbs developed for Zika disease with neutralizing activity for ZIKV are
summarized in Table 2.

Table 2. Therapeutic neutralizing mAbs for ZIKV developed for Zika infection.

mAb Epitope Technology Cross-NEUT Cross-
REACT Format ADE Ref

ZIKV-117 E protein (inter-dimer
interface)

hybridoma
(human B cells) No No IgG1 ND [104,105]

DH1017.IgM E protein (inter-dimer
interface, DI and DII)

memory B-cell
sorting No No IgM No [46]

Z004 + Z021 E protein (lateral ridge
of DIII/DI-DIII hinge)

memory B-cell
sorting DENV1 DENV1 IgG1 Yes [101,106]

Z23 E protein (DIII) memory B-cell
sorting No No IgG1 ND [107]

Z3L1 E protein (DI-DII) memory B-cell
sorting No No IgG1 ND [107]

ED1-B10 E protein dimer
plasmablast sorting

(dengue
convalescent patient)

DENV 1–3 ND IgG Yes [85,108,109]

ND: not determined; NEUT: neutralization; REACT: reactivity; Ref: references.

A panel of human DENV mAbs that binds to E protein was identified and presented
in the DENV section [85]. Some potent and neutralizing DENV mAbs targeting envelope
dimer epitope (EDE) [85] showed cross-reactivity with ZIKV and inhibited ADE of ZIKV
infection [102]. EDE1-B10 has therapeutic potential against DENV and ZIKV since it
inhibited virus strains and protected ZIKV-infected mice against lethality. Besides reducing
viral persistence in immune-privileged tissues, such as the brain and testicles, this mAb
protects animals against tissue injury and virus transmission to the fetus [110]. In a rhesus
monkey study, EDE1-B10 showed therapeutic and prophylactic efficacy against ZIKV [109].

SIgN-3C is another DENV mAb binding to a quaternary epitope, mentioned in the
DENV section, that showed in vivo efficacy against ZIKV [110]. In non-pregnant mice, mAb
administration exhibited therapeutic effects against lethal infection, viremia and weight
loss [110]. In pregnant mice infected on embryonic day 10.5, mAb administration resulted in
normal fetal weight and reduced viral load in amniotic fluid and organs, showing potential
therapeutic and prophylactic effects [110].

ZIKV-117 is a representative potent mAb against ZIKV that binds to a quaternary
epitope in the inter-dimer interface of protein E. It was obtained by hybridoma fusing
B cells from a convalescent patient who was selected after a deeper serum response in-
vestigation [104]. ZIKV-117 neutralized ZIKV strains and failed to neutralize DENV, all
serotypes. When administered to mice, ZIKV-117 reduced Zika lethality; in the prophy-
lactic approach, post-exposure therapy in mouse dams showed a significant viral burden
decrease in the placenta, maternal tissues, serum and fetus tissues with also a reduction
in fetal demise [104]. Besides, no mutant escapes were detected after six passages in the
presence of ZIKV-117 [104]. ZIKV-117 was formulated as lipid nanostructures with the
mRNA encoding the mAb, and robust protection was shown in non-pregnant mice [105].

Z23 and Z3L1 mAbs were isolated from memory B cells sorted from a convalescent
Zika patient and recognized different tertiary epitopes in the E protein [107]. Z23 binding
site is at the top of DIII, while Z3L1 binds to an epitope ranging from DI to DII [107].
These mAbs strongly neutralized ZIKV with no cross-reactivity with any of the four DENV
serotypes, and mice treated with each mAb were completely protected against ZIKV
infection without weight loss [107].
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Anti-NS1 antibodies represent an alternative approach to protect against ZIKV. A
panel of ZIKV murine and human mAbs targeting NS1 was identified through hybrido-
mas secreting murine mAbs [111] or B-cell sorting of ZIKV-infected donors presented
previously [104]. 749-A4 mAb was isolated by plasmablast sorting from a dengue patient,
showing cross-reactivity with ZIKV NS1 [111]. Murine Z17, human ZIKV-292 and human
794-A4 mAbs recognized NS1 residues in the C-terminal region of the β-platform and gave
protection in immunocompromised mice receiving lethal ZIKV challenge, and the viral
RNA level was reduced in the fetuses of pregnant mice [111].

An approach to avoid escape mutants in ZIKV is the administration of a combination
of two or more mAbs targeting distinct epitopes. Z004 mAb was selected from memory
B-cell sorting of ZIKV-infected patients, showing reactivity to ZIKV and DENV-1, and
targeting the lateral ridge of DIII of the E protein with potent neutralizing activity in vitro.
It also protected mice and decreased symptoms and lethality when given pre- and post-
infection [101]. High-dose ZIKV challenge in rhesus macaques was tested and showed
prolonged viremia which led to escape virus mutants. Z021 mAb was isolated with the
same B-cell sorting strategy as Z004, with similar characteristics of this mAb related to
reactivity and neutralizing potency in vitro and in vivo; however, Z021 recognizes EDIII
nearby or overlapping epitope by Z004 [106]. When Z004 and Z021 were administered as a
cocktail in monkeys before receiving the high-dose ZIKV challenge, infection was delayed
and viremia was reduced, preventing ZIKV escape mutants [106].

Therapeutic antibodies are usually IgG, but memory B-cell sorting of a pregnant
patient with secondary ZIKV infection yielded ultrapotent DH1017. IgM, targeting a
quaternary epitope in the E dimer in DII [46]. All variable domains of DH1017.IgM could
bind to the same virion, but neutralization seems to occur because of viral aggregation [46].
The neutralization of this mAb is dependent on isotype since IgG was expressed and did
not neutralize ZIKV and induce ADE, and besides, IgM protected mice more effectively
from the infection, with reduced viremia [46].

The development of new strategies to accelerate therapeutic mAb discovery should be
relevant since the selection of potential candidates is a long process. An integrated work-
flow that combined the discovery and the validation of the protective efficacy in animals
was designated to identify promising ZIKV mAbs in a shorter time. High-throughput
investigation of B cells from immune donors can rapidly provide a large number of mAbs,
and this strategy could be applied for a rapid response in case a new disease outbreak
emerges in the future [56].

3.4. Chikungunya Virus (CHIKV)

CHIKV is an alphavirus associated with musculoskeletal disease (arthritogenic al-
phaviruses), including Mayaro virus (MAYV), Ross River virus (RRV), O’nyong-nyong
virus (ONNV) and Semliki Forest virus (SFV). These viruses are globally distributed [112]
and the infection causes a severe and debilitating illness. The most common symptom is
fever, but infection can also provoke joint pain, rash, and headache. In some cases, the joint
pain can be so severe that it can last for months or even years [113–115].

The genotypes Asian, East/Central/South African (ECSA) and West African (WA) are
known and CHIKV has limited genetic diversity among strains with 95.2 to 98% amino
acid identity [116]. Antibodies raised against one strain can react with all others, leading to
the broad consensus that CHIKV lineages constitute a single serotype [114,117–119].

Antivirals for prophylaxis or therapy have not been approved yet, and current treat-
ment options are purely symptomatic. Development of mAbs against CHIKV has been
under way (Table 3) and could be an alternative for clinical treatment.
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Table 3. Therapeutic neutralizing mAbs for CHIKV infection.

mAb Epitope Technology NEUT Cross-REACT Format Ref

CHK-152 +
CHK-166 E2/E1 protein Hybridoma CHIKV Asian,

ECSA, WA ND IgG2 [114,120]

4N12 E2 protein hybridoma (human B cells) CHIKV Asian,
ECSA, WA ND IgG2 [115]

SVIR023 E2 protein hybridoma (human B cells) CHIKV Asian,
ECSA, WA ND IgG1 [121]

SVIR001 E2 protein CDR grafting humanization CHIKV ECSA ND IgG1 [122]

IM-CKV063 E2 protein (DA) phage display/immune
library

CHIKV
pseudovirus SFV IgG1 [123]

CC3 E1 protein phage display CHIKV strain
181/25 ND VHH [124]

DC2.271B E2 protein B-cell sorting CHIKV Asian,
ECSA ND IgG1 [116]

CHIKV Asian: Asian genotype; CHIKV ECSA: East/Central/South African genotype; CHIKV WA: West African
genotype; DA: Domain A of E2 protein; ND: not determined; NEUT: neutralization; REACT: reactivity; Ref:
references; SFV: Semliki Forest virus; VHH: variable heavy domain.

mAbs for CHIKV

CHK-152 and CHK-166 are murine mAbs that target CHIKV E2 and E1 proteins,
respectively, and were selected from a panel of CHIKV-neutralizing mAbs produced by
hybridomas using mice immunized with CHIKV virus-like particles (VLPs) [114]. A single
dose of the combination of two mAbs was effective in limiting the development of resistance
to the antibodies and protected immunocompromised mice from the disease when given
24 to 36 h before CHIKV-induced death in post-exposure therapeutic trials [114]. Rhesus
macaques received the mAb combination and it was effective in reducing viral spread and
infection at distant tissue sites; however, residual viral RNA was present in tissues and
organs and additional treatments could be needed to fully eliminate CHIKV [120].

The E2 protein is a major target for mAbs, and some mAbs were thus developed:
4N12 [115], SVIR023 [121] and DC2.271B [116].

4N12 is a fully human IgG2 kappa mAb that neutralizes in vitro three genotypes of
CHIKV and was selected from a single individual who had CHIKV infection in Sri Lanka
in 2006. A stable hybridoma was generated, and 4N12 neutralized the wild-type virus, as
well as mutant forms. 4N12 was able to protect mice against CHIKV-induced death, even
when administered after infection [115]. 4N12 mAb was then improved by moving CDR
sequences to another framework, resulting in SVIR001 mAb, displaying similar antigen
binding and neutralizing activity as the parental mAb. This modification was made to
address some of the challenges that 4N12 mAb faced, such as the limited ability to control
acute infection, the inability to reduce viral persistence, and the potential to cause long-
term joint disease. SVIR001 was administered to CHIKV-infected Rhesus macaques and
showed reduced viremia and the potential to decrease CHIKV-associated inflammatory
diseases [122].

SVIR023 is a human IgG1 mAb derived from a human hybridoma that showed neu-
tralizing activity against three clades of CHIKV. When administered until three days
post-infection, it reduced virus number in various tissues. It was effective in preventing
disease in mice when administered up to 4 weeks prior to the virus challenge. CHIKV-
infected mice treated with mAb were resistant to the secondary challenge, and no evidence
of ADE was detected [121].

DC2.271B is a human IgG1 mAb that binds the CHIKV E2 protein between the β-
connector region and the B domain. Single B-cell sorting was used to isolate human mAbs
from CHIKV-infected convalescent donors. The lethal viral dose challenge in mice showed
that this mAb was highly protective after prophylactic and therapeutic administration [116].

An immune library was constructed with CHIKV-infected individuals and IM-CKV063
was selected by phage display technology using structurally intact E1/E2 on VLPs as a
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target. This mAb showed high neutralizing activity, and therapeutic and prophylactic
protection in multiple-animal models up to 24 h post-exposure was observed [123].

Single-domain antibodies (sdAbs) are alternatives to conventional antibodies for
diagnostic and therapeutic applications. CC3 and CA6 are nanobodies, obtained by llamas
immunized with CHIKV VLPs, they bind to both the VLPs and the recombinant E1 protein
and have neutralizing activity [124].

Broadly neutralizing antibodies that protect against several arthritogenic alphaviruses
should be an interesting therapeutic approach. DC2.M16 and DC2.M357 are examples of
human mAbs isolated from a donor previously exposed to CHIKV by a single B-cell sorting
using MAYV E3-E2-E1 recombinant protein as a target. They showed neutralizing activity
against CHIKV and MAYV, and DC2.M357 also neutralized RRV, ONNV and SFV. Both
mAbs protected mice from CHIKV- and MAYV-induced musculoskeletal disease [112].

Pan-protective mAb refers to mAbs that can protect against more than one disease [113–115]
and provides another relevant therapeutic approach. DC2.112 and DC2.315 are pan-
protective and weakly neutralizing human mAbs that bind to a conserved epitope in
alphaviruses in the DII of the E1 protein, located near the fusion peptide. They were
selected by B-cell sorting from CHIKV seropositive individuals, bind to a variety of al-
phaviruses, those causing arthritis (CHIKV and MAYV) and encephalitis (Venezuelan,
Eastern and Western equine encephalitis). The passive transfer approach of each mAb was
tested in mice to evaluate the protection. Mice were protected from musculoskeletal disease
induced by CHIKV and MAYV and the lethal neurological infectious disease provoked by
encephalitis viruses [125].

3.5. West Nile Virus (WNV)

WNV emerged as an important cause of viral encephalitis and is maintained between
mosquito vectors and birds in an enzootic cycle. However, it can cause infection disease
in humans, horses and other vertebrate animals [126,127]. In humans, the infection is
characterized by febrile illness that could advance to meningitis, encephalitis, and even
fatal disease, especially for elderly and immunocompromised individuals [128].

Nine evolutionary lineages of WNV have been identified, and only strains of lineage
1 and 2 (WNV-1 and WNV-2) were responsible for human infections [129]. WNV-1 was
described in Africa, Europe, the Middle East, Australasia and India, while WNV-2 showed
less virulence, occurring in Sub-Saharan Africa, Madagascar and Europe [130]. WNV
disease outbreak was in the Middle East, Europe and Africa and then spread to North
America and other Americas [126].

mAbs for WNV

Table 4 presents mAbs that have been developed for WNV infection.

Table 4. Therapeutic neutralizing mAbs for WNV.

mAb Epitope Technology Neutralization Format Ref

MGAWN1 E protein (DIII) hybridoma/CDR grafting WNV I-II IgG1 [131–136]
WNV-86 E protein (DII) hybridoma (human B cells) WNV I IgG [137]
CR4354 E protein (DIII) phage display/immune library WNV I IgG1 [138–140]
WN_83 E protein (DIII) single B-cell sorting WNV I IgG1 [141]
MIT89 E protein single B-cell sorting WNV I IgG1 [55]

E16 mAb, derived from hybridoma, recognized WNV DIII of the E protein and
had in vitro and in vivo inhibitory potency. Hm-E16 or hE16 is the humanized mAb
version, obtained by the CDR grafting technique, that presented similar affinity and efficacy
when mice were administered post-exposure [131,132]. Studies in WNV-infected hamsters
showed that, when hE16 was administered after the virus reached the neurons in the brain,
the treatment improved survival [133] and ameliorated neurological disease after viral
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replication [134]. Then the humanized mAb was designated as MGAWN1 to enter phase 1
clinical study [136]. The phase 1 clinical trial was registered with NCT00515385 and was
completed in 2009, confirming the safety of a single intravenous infusion of up to 30 mg/kg
of MGAWN1 in healthy adults [136,142]. The phase 2 trial (NCT00927953) was designed
to study the WNV treatment with MGAWN1 and was terminated early due to the low
enrollment [143].

Phage display scFv immune library was constructed with peripheral blood donated
by three WNV-infected individuals and neutralizing mAbs targeting DIII of the E protein
were selected [138]. CR4354 is a fully human IgG1 mAb derived from this immune library
showing strong neutralizing activity against WNV I and protecting mice against lethal
infection [139]. It neutralizes WNV infection at a post-attachment stage in the viral life cycle
by blocking the pH-induced rearrangement of the E protein that prevents the virus fusion
to the endosomal membrane [139,140]. Structural determination of the WNV-antibody
complex was performed to determine the epitope and the neutralization mechanism was
suggested as blocking virus fusion with the endosomal membrane [140].

Non-immune human phage display library was screened with WNV E protein and
identified some scFvs. The scFv epitope was within the DI and DII sites of the E protein.
The scFv-Fc were developed and five mAbs protected 100% of the mice from death when
given prior to the virus infection [144].

MIT89 is a fully human IgG1 neutralizing mAb specific for WNV E protein, identified
from WNV convalescent subjects, by combining the single B-cell sorting and the next-
generation sequencing (NGS). Immune response study of the infection disease, using the
integration of single-cell data, serum analysis and repertoire sequencing data, is a relevant
approach that can be applied to other diseases [55].

WNV-86 is a neutralizing mAb to the WNV DII E protein that recognizes mature
virions inhibiting the virus infection and dissemination. This contrasts with other flavivirus-
specific antibodies, which tend to recognize immature virions and may rely on Fc-mediated
functions to provide protection. Wild-type and L234A/L235A (LALA) mutant of WNV-86
significantly reduced viral burden in the spinal cord and brain of infected animals [137].

WN_83 is a human mAb that binds to WNV DIII of the E protein and was isolated
from B cells from individuals vaccinated with inactivated JEV presenting WNV- and JEV-
neutralizing antibodies in the sera. Recombinant WNV E protein was used to isolate
WN_83 and it neutralized WNV both in vitro and in a WNV-inoculated mouse model [141].

3.6. Tick-Borne Encephalitis Virus (TBEV)

Tick-borne encephalitis (TBE) is a flavivirus infection that affects the central nervous
system and is caused by TBEV. TBEV has three major subtypes: European, Siberian and
Far-Eastern [145]. TBE is endemic in the “TBE belt” area comprising Central Europe, the
Baltic region, Russia and part of eastern Asia [146]. The majority of human TBE cases are
mild, but severe TBE can lead to sequelae and death [8].

Although ADE of TBEV infection was demonstrated in murine peritoneal macrophages
in vitro [147], it was not detected in the in vivo model [148,149]. Passive administration
of polyclonal antibodies for TBE treatment was discontinued in Europe because of possi-
ble ADE in two patients, but it still remains in use in Russia [149]. The development of
neutralizing mAbs for TBEV is necessary as a better alternative [150].

mAbs for TBEV

The neutralizing mAb 14D5 was obtained by the hybridoma technology targeting DIII
of the E protein of the Far-Eastern subtype [151,152]. Therapeutic and prophylactic efficacy
was tested in BALB/c mice, and the prophylactic administration was more effective [152].
Chimeric mAb of 14D5 was constructed (ch14D5a) and displayed improved neutralizing
potency than murine mAb [153]. Mouse protection was examined against TBEV lethal
infection for both mAbs administered 24 h after virus exposure, and ch14D5a mAb provided
a 100% survival rate, while 14D5 mAb achieved 70% [153]. A stable cell line producing
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chimeric mAb designed as chFVN145 was obtained and TBEV-infected mice receiving
higher mAb dose had better protection. In the therapeutic approach, chFVN145 was given
one, two and three days after infection of mice, and efficacy was found to be dependent on
TBEV dose [154].

The murine mAb 13D6 targeting DIII of the E protein showed in vivo neutralization
property, and Levanov et al. generated chimeric mAb (ch13D6) [155]. The affinity and
neutralization activity of ch13D6 mAb was better than that of murine mAb [155].

Neutralizing human mAb T025 was isolated by single B-cell sorting from TBEV-
infected convalescent individuals, and its epitope is the lateral ridge of DIII of the E
protein [156]. T025 showed cross-reactivity and cross-neutralization with other tick-borne
flaviviruses such as louping ill virus (LIV) and Omsk hemorrhagic fever virus (OHFV),
besides binding to Kyasanur Forest disease virus (KFDV) and Langat virus (LGTV). In the
prophylactic approach, BALB/c mice received T025 mAb 24 h before the TBEV challenge
and they were protected. In the therapeutic scheme, T025 was administered after TBEV
infection and early treatment was effective [156].

4. Next-Generation Strategies for Therapeutic mAbs

Earlier studies on mAb discovery targeting arboviruses selected non-human mAbs.
However, advances in technological platforms, such as engineering techniques, have led
to the isolation of human mAbs with characteristics for therapeutic purposes. Table 5
summarizes mAbs obtained by next-generation strategies to obtain improved mAbs.

Table 5. MAbs for arboviruses obtained by next-generation strategies.

mAb Arbovirus Epitope Engineering Strategy Engeneering
Purpose Format Ref

VIS513 DENV E protein (DIII)

Humanization of 4E11 by
in silico approaches

(predicted and guided
mutations)

Enhance
neutralization and

achieve broad
neutralization

IgG1 [157–160]

SIgN-3C DENV
Inter-dimer

interface of E
protein

LALA mutation Abrogate ADE IgG1 [79]

3G9 DENV E protein
(fusion loop)

LALA mutation or N265A
or N297A Abrogate ADE IgG1 [78]

ED1-B10 DENV/
ZIKV E protein dimer LALA mutation Abrogate ADE IgG [108]

Z021 + Z004 ZIKV E protein/E
protein

Fc engineering by
GRLR/LS modification Abrogate ADE IgG1

(cocktail) [106]

SMZAb1 +
SMZAb2 +
SMZAb5

ZIKV E protein
(DIII/DII/DIII) LALA mutation Abrogate ADE IgG1

(cocktail) [161]

FIT-1 (ZKA190
+ ZKA185) ZIKV

E protein
(DI-DIII linker
and DIII/DII)

tetravalent symmetric
format Fabs-in-tandem-Ig

(FIT-Ig) for bispecific
construction and LALA

mutation

Abrogate ADE,
enhance

neutralization and
prevent escape

mutants

Bispecific
mAb [162]

One point that should be taken into consideration when developing therapeutic
mAbs for infectious diseases, especially for an RNA virus such as arbovirus, is high
mutation rate-generating variants. Therapeutic use of the neutralizing antibodies may
also pose a selective pressure, obtaining escape mutants and leading to an ineffective
treatment [60]. One approach to avoid this is the combination of various mAbs targeting
different neutralization epitopes as mentioned in previous sections, which was applied to
some therapeutic mAbs developed for arboviruses.

The ADE phenomenon is another point of attention when therapeutic mAbs are be-
ing developed for flaviviruses. ADE is well known with DENV antibodies in secondary
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infection, leading to hemorrhagic fever [23,68], but not only antibodies for the same virus
may cause this phenomenon. It occurred for DENV antibodies used for Zika infection
treatment in the in vitro model [102] and also in the murine model [103]. The main mecha-
nism proposed for ADE is the more efficient infection of Fc
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receptor-expressing myeloid
cells in vivo [68]. This inconvenience can be addressed by the antibody engineering ap-
proach, focusing on the Fc portion. The L234A/L235A (LALA) and N297A Fc mutations
are commonly used mutations that dramatically reduce the affinity of Fc for the Fc
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re-
ceptor [163]. Many antibodies for arboviruses have the LALA mutation to abrogate the
ADE phenomenon (Table 5). However, in some cases this engineering approach completely
abolished Fc-dependent responses, i.e., effector functions, and therefore, careful evaluation
is needed when this strategy is applied [164].

The application of both approaches, the mAb cocktail and LALA mutation could
generate improved mAbs for therapeutic purposes. SMZAb1, SMZAb2 and SMZAb5 are
mAbs to ZIKV derived by plasmablast sorting from ZIKV-infected subjects and exhibited
therapeutic potential when used as a cocktail since each mAb binds an epitope overlapping
the fusion loop of the E protein. SMZAb1 and SMZAb5 target DIII, while SMZAb2 binds to
DII. Some cross-reactivity with DENV was observed in these three mAbs, and Fc LALA
mutations were introduced to prevent potential ADE. The cocktail of engineered mAbs
were administered to non-pregnant Rhesus monkeys one day before the ZIKV challenge,
and viral replication was completely prevented in a prophylaxis regimen [161]. The same
cocktail was administered to pregnant Rhesus macaques ZIKV-infected at peak viremia,
and the treatment was effective in clearing the virus; however, viral RNA was present in
amniotic fluid and failed to prevent fetal demise [165]. Thus, the treatment was not capable
of stopping vertical transmission.

Antibody engineering is a promising approach to obtain improved therapeutic mAbs.
VIS513 is a humanized IgG1 antibody for DENV obtained by antibody engineering of the
murine 4E11 mAb, which neutralized all four DENV serotypes [75]. Initially, the com-
bination of predicted mutations obtained by the in silico approach, without any crystal
structure, promoted a 450-fold increase in affinity to DENV4, while affinity to DENV1–3
remained unchanged [157]. The structure-guided approach was then applied introducing
other mutations to improve affinity and produce broad mAb neutralization [158]. Cynomol-
gus macaques infected with DENV2 were treated with VIS513 24 h post-onset of viremia
or 5 days after infection, at the peak of viremia, and the mAb abrogated the infection,
while viremia was detectable during post-treatment at a lower level compared to control
animals [159]. VIS513 was evaluated in two DENV-infected mouse models, AG129 for pri-
mary infection and A129 for secondary infection of maternal antibody-mediated enhanced
infection. Both groups showed viral load reduction and no mortality [160]. All studies of
the VIS513 mAb showed that this engineered mAb was a promising DENV therapeutic
antiviral drug.

One mAb for TBEV was also engineered. The chimeric mAb ch14D5 binds with high
affinity to the Far Eastern subtype, and with lower affinity to the Siberian and European sub-
types. Rational design and machine-learning methods were applied to generate engineered
mAb with higher affinity to the Siberian and European subtypes [166].

The development of bispecific mAbs is an alternative approach for the combination of
two or more therapeutic mAbs to minimize viral escape and ADE. Bispecfic mAb for ZIKV
was developed. Initially, a panel of anti-ZIKV mAbs was identified from four ZIKV-infected
patients with two of them DENV-naïve, and it was then grouped by affinity of B cells to the
ZIKV NS1 and E protein and also by the neutralizing potency to ZIKV and DENV DIII of the
E protein or quaternary epitope displayed on the infectious virions [47]. The epitope of the
ZKA190 mAb isolated from this panel was further investigated, and it was located in the E
protein in the DI-DIII linker and the lateral ridge region of DIII, a conserved epitope [162]. In
a mouse model, ZIK190 was capable of delaying morbidity and mortality in a prophylactic
approach, and its LALA variant did not show ADE. In the therapeutic approach, >80%
survival rates were achieved, as well as a reduction in morbidity [162]. Despite that, a ZIKV



Viruses 2023, 15, 2177 17 of 25

escape mutant was detected in vivo, which completely abrogated ZIK190 neutralization
activity [162]. A bispecific mAb was developed to circumvent this problem, and ZIK185
mAb, targeting DII of the E protein, was chosen to combine with ZIK190 [162]. Escape
mutants also emerged from ZIK185 mAb, indicating that this phenomenon occurs in mAbs
binding to distinct epitopes [162]. A tetravalent symmetric format Fabs-in-tandem-Ig
(FIT-Ig) was constructed with ZIK190 and ZIK185 Fabs, combined with the engineered
Fc backbone with the LALA mutation, and FIT-1 bispecific antibody was produced [162].
In a mouse model, FIT-1 provided protection against lethal infection in all cases, with the
detection of no viral load, and nonetheless, no escape mutant was detected in vitro or
in vivo [162].

Finally, Table 6 summarizes the therapeutic efficacy of mAbs developed for arboviruses
using various animal models.

Table 6. In vivo therapeutic efficacy of mAbs for arboviruses.

mAb Arbovirus Therapeutic Efficacy

3G9-N297A DENV Immunocompetent BALB/c mice were infected with DENV2, and mAb
treatment reduced viremia [78].

SIgN-3C-LALA DENV mAb treatment decreased the viremia of four serotypes in infected-mice [79].

VIS513 DENV
mAb was administered after DENV2 infection in cynomolgus macaques, and
viremia was reduced [159]. Mouse model for primary and secondary infection

received mAb treatment, and viremia decreased [160].

ZIKV-117 ZIKV
ZIKV-infected mouse dams were treated with mAb and the viral burden was

decreased in mother, placenta and fetal tissues, with fetal demise also
reduced [104].

DH1017.IgM ZIKV ZIKV-infected mice were treated with mAb, and viremia was reduced [46].

Z004 + Z021 ZIKV Macaques were ZIKV-challenged and received two mAbs, and low level of
viremia was observed [106].

EDE1-B10 ZIKV

mAb was given to ZIKV-infected mice, and RNA level was reduced in
immune-privileged sites (serum, brain, epididymis, eye). In pregnant mice,

infection and injury to the placenta and fetus were prevented [108].
ZIKV-infected Rhesus monkeys were treated with mAb, and viremia

decreased [109].

SMZAb1 + SMZAb2 + SMZAb5 ZIKV

mAb cocktail was administered to Rhesus monkeys before ZIKV infection, and
viral replication was prevented [161]. In pregnant macaques ZIKV-infected, the

treatment was effective in clearing the virus, but viral RNA was present in
amniotic fluid; treatment failed to prevent fetal demise [165].

FIT-1 ZIKV Mice received FIT-1 mAb (ZKA190+ ZKA185) before ZIKV-challenge and viral
titers were abrogated [162].

CHK-152 + CHK-166 CHIKV
A combination of mAbs was given to CHIKV-infected mice, and they were

protected [114]. CHIKV-infected Rhesus macaques were treated with two mAbs,
and viral burden was low [120].

SVIR023 CHIKV CHIKV-challenged mice were treated with mAb and showed reduced virus titer
and resistance to secondary infection [121].

SVIR001 CHIKV
mAb was administered to CHIKV-infected mice, and viremia was reduced. In

Rhesus macaques, viremia was eliminated, and CHIKV-associated inflammatory
diseases were decreased [122].

hE16 (MGAWN1) WNV WNV-infected hamsters received mAb, and the neurological disease was
ameliorated after viral replication [134].

WNV-86 WNV Mice were WNV-challenged and treated with mAb, and reduced viral burden
was observed in the spinal cord and brain [137].

chFVN145 TBEV TBEV-infected mice received mAb, and efficacy was dose-dependent [154].

T025 TBEV Mice were TBEV-infected and treated with mAb, and early treatment was
effective [156].

5. Conclusions

The lessons learned with the COVID-19 pandemic showed that it is important to have
continuous support to develop mAbs for emerging diseases, and to be prepared to respond
faster when new threads appear. Passive immunotherapy should be an effective alternative
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for the treatment of infectious diseases, especially for immunocompromised patients and
individuals for whom the vaccination is not indicated.

Neutralizing mAbs with therapeutic potential have been developed to fight arboviruses
using advanced mAb discovery technologies. Many extensive B-cell studies allowed the
in-depth analysis and understanding of the immune response elicited by infected donors
during the acute-phase, post-infection period, secondary infection phase and other times.

Studies related to the discovery of the protective arbovirus mAbs are also important
for the rational vaccine design giving complementary information to obtain potent vaccines
with better protective features.

There are many challenges to obtaining mAbs for arbovirus diseases with desired
features, such as highly potent and broadly neutralizing agents. Engineering approaches
could improve mAb characteristics and lead to this objective. The technology is always
advancing, and novel techniques will be introduced as soon as proof of concept is shown
to them, which will allow the selection of mAbs with improved and refined features.
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