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Abstract: Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound com-
petent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy
and rekindle infection due to inefficient proviral silencing. We propose a novel “block-lock-stop”
approach, entailing long term durable silencing of viral expression towards an irreversible tran-
scriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus.
A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently
defective proviruses is proposed, emulating and accelerating the natural path that human endoge-
nous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into
delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of
Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the
availability of advanced genome engineering technologies for the direct excision of remnant virus set
the stage for a rapid path to an HIV-1 cure.
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Timothy Ray Brown was the first of six individuals currently considered to be cured
from HIV-1. All six had cancer and received hematopoietic stem cell transplantations
from donors with a homozygous CCR5∆32 mutation. This rendered their new bone
marrow-derived immune cells resistant to CCR5-tropic HIV-1. Despite the remarkable
outcome offered by this procedure, it is not feasible on a large scale and would be unethical
to consider for most people living with HIV-1 (PLWH) given the lower risk and high
effectiveness associated with antiretroviral therapy (ART). Also, isolated disruption of CCR5
could be harmful and reinfection with X4-tropic viruses is possible. The highly investigated
“kick-and-kill” (also known as “shock-and-kill”) approach seeks to eliminate the entire
HIV-1 reservoir by forcing viral replication of the latent virus with latency-reversing agents,
thereby eliminating the infected cell population via antiviral immunity or cytopathic effects.
This approach has led to the consideration of anti-HIV-1 therapeutic vaccination, the use of
HIV-1-specific broadly neutralizing antibodies and transfusion of cell therapies, including
natural killer cells or autologous T cells as cure strategies [1]. While these methods may
obviate the use of ART, the main limitations to further advancing these approaches include
challenges in inducing robust expression of the entire HIV-1 latent reservoir; toxicity of
first-generation latency-reversing agents; risk of T-cell activation with potential for cytokine
release, leading to an immune reactivation inflammatory syndrome; and adverse effects
of reactivating agents on cytotoxic T cell and natural killer cell functions. Additionally,
although antiretroviral therapy effectively lowers plasma HIV RNA to levels below the
detection limits of commonly used clinical tests (less than 20 RNA copies/mL), low levels
of HIV RNA may persist within tissues, suggesting that ongoing viral transcription occurs
within reservoir cells [2–5]. New and radically different approaches are clearly needed to
achieve an HIV-1 cure.

One such approach is a novel “block-lock-stop” approach that entails the long-term
durable silencing of viral expression coupled with permanent transcriptional deactivation
of the latent provirus. Such an approach would provide control of viral replication in
the absence of antiretroviral therapy. The goal of block-lock-stop is to turn PLWH into
people living without HIV-1 (PLWOH). This is achieved through a graded transformation
of remnant HIV-1 in PLWH from persistent to silent into permanently defective proviruses,
thus emulating and accelerating the natural path that endogenous retroviruses have taken
in the genome over millions of years (Figure 1). We define HIV-1 latency as an incomplete
state of viral silencing and seek to intensify this state, ultimately irreversibly inactivating the
silenced provirus with advanced genome-engineering technologies. The “block-lock-stop”
concept diverges significantly from the prevailing strategy that focuses on forced proviral
reactivation and the subsequent elimination of reactivated cells with immunological or
toxin-based technologies. “Block-lock-stop” addresses important needs specifically in
sanctuaries such as the brain where forced viral reactivation is likely dangerous because of
the high density of vulnerable neurons and lack of immune clearance.
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lencing promoting agents’ (SPAs) which could be epigenetic, metabolic or Tat-modulating
drugs used in combination to silence HIV-1 proviruses (akin to the silenced state of human
endogenous retroviruses (HERVs)). Currently available Tat inhibitors and the inhibitors
of host factors have recently been summarized [6,7]. Future development of HIV-1 tran-
scriptional SPAs will build on success with the Tat inhibitor drug didehydro-Cortistatin
A (dCA) that inhibits HIV-1 transcriptional elongation and drives viral gene expression
into an induced state of persistent latency in vitro at subnanomolar concentrations [8,9]. It
is important to selectively suppress HIV-1 transcription without silencing cellular genes,
which can be achieved by targeting viral proteins such as Tat, or cellular proteins that
have unique functions on the HIV-1 promoter, and the combinatorial use of both. (2) Once
silenced, advanced genome engineering technologies will permanently stop viral replica-
tion through epigenetic mechanisms or will mutate the provirus (akin to the mutational
decay of HERVs). Unlike current practices, this approach does not involve reactivating
the provirus and will not target host genes such as CCR5. Such excision or mutation can
be achieved using several new genome-engineering technologies (the recombinase Brec1,
triplex-forming peptide nucleic acids (PNAs) and CRISPR-base editors (CRISPR-BE)) that
avoid deleterious effects of double-stranded DNA breaks (DSB), the repair of which can
lead to cell death or cancer [10]. It will be important to develop targeted delivery strategies
that can be delivered directly rather than using cell infusion protocols, which are risky
and expensive.

Biological precedent for effectively inactivating invading retroviruses exists in the
human genome. HERVs make up ~8% of our genomic DNA and have undergone inactiva-
tion and mutational decay over the course of evolution [11–13]. These elements are often
transcriptionally silenced at the chromatin level by the deposition of repressive epigenetic
marks such as trimethylation of lysine 9 in histone H3 (H3K9me3) and DNA methylation
at CpG sites. These marks are introduced by a dedicated targeting machinery, including
KRAB-Zinc Finger Proteins (KZFP) in embryonic and adult somatic cells [14,15]. Since
HIV-1 has been recently introduced in humans, a dedicated silencing machinery is lacking,
explaining the labile nature of latent HIV-1 and viral replication in the absence of ART.

The HIV-1 promoter has two critical characteristics not present in HERVs: (1) the
presence of a paused polymerase complex at the start of transcription, which controls
chromatin organization of the viral promoter and keeps the locus epigenetically “open”;
and (2) the viral transactivator, Tat, which binds to the TAR RNA element at the 5′ ends
of viral transcripts and recruits the host super elongation complex (SEC), overcoming
polymerase pausing and driving high-level viral transcription. These unique aspects of
HIV-1 transcriptional regulation can be targeted to achieve latency silencing. In particular,
didehydro-cortistatin A (dCA) is an attractive SPA target [8,16]. dCA binds to the basic do-
main of Tat and blocks its binding to the HIV-1 mRNA (TAR), inhibiting its transactivation
activity. Over time, Tat inhibition by dCA prompts the viral promoter to enter into a deep
state of transcriptional inhibition that is resistant to viral reactivation [16,17]. While the use
of early Tat inhibitors was not successful in suppressing active infection and had potential
non-specific toxicity, the effectiveness of newer Tat inhibitors in driving latent infection into
a silenced state remains to be clinically evaluated [18]. Adding dCA to ART-suppressed
humanized mice reduces viral RNA in tissues and significantly delays and diminishes
viral rebound upon treatment interruption [19]. However, its complex structure makes
dCA very expensive to produce [20]. Efforts for a cost-effective synthesis pathway and
cheaper analogs are underway [9]. Additional SPA candidates, structurally distinct from
dCA that embody bioequivalent activity and/or targeting other regulatory aspects of HIV-1
transcription, are needed in the pre-clinical pipeline.

Effective use of the “block-lock-stop” approach will require research into several
key areas:
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1. The Epigenetic Architecture of the Integrated Provirus at Different Integration Sites
That Prevents Permanent Silencing of Latent HIV-1

Epigenetic modification of HIV-1 chromatin (e.g., methylation/demethylation) alters
its structure to activate or repress transcription [21–23]. While repressive histone marks are
found at the latent HIV-1 LTR, widespread and stable DNA methylation is lacking [24–30].
The transcription start site is continuously occupied by a paused polymerase complex,
preventing nucleosome repositioning and robust silencing. The key for silencing will be
establishing a dense state of chromatin (heterochromatin) around the latent proviruses
similar to what is naturally achieved at silenced developmental genes or HERVs and which
does not depend on continuing drug treatment. An in-depth examination of host factors
that regulate latency in primary CD4+ T cells by high-resolution nucleosome mapping
and other cutting-edge technologies that are tailored to dissecting transcriptional and
epigenetic states (BEM-seq, ChAR-seq, scRNA-seq, scATAC-seq, Ab-seq and PICh) will set
the stage for the rational development of small-molecule therapeutics for a “block-lock-stop”
strategy.

2. The Cell Types and Epigenetic Cell States That Favor Viral Rebound

Most of the HIV-1 reservoir is in tissues [31] and likely serves as the site of viral
recrudescence when ART is interrupted, yet tissues’ reservoirs are understudied relative to
blood reservoir. Although methods have been developed to quantitate the reservoir, the
basic ability to phenotype cells capable of reactivation has been challenging, specifically
in the brain. These cells are rare in vivo and must be stimulated ex vivo for phenotyping
since viral proteins are typically not expressed at detectable levels in unstimulated reservoir
cells [32–34]. Rapid access to freshly deceased tissues and important new technologies
can help to address these issues [35–40]. These technologies include a dual-fluorescence-
labeled virus HIVGKO [28], a Predicted Precursor as determined by SLIDE (PP-SLIDE)
analysis approach to define the features of in vivo inducible reservoir cells prior to ex vivo
stimulation [41,42], and the identification of CD127 as a surface marker of tissue-resident
memory T cells preferentially harboring inducible HIV reservoir cells [43].

3. The Molecular Functions of Tat and Host Factors That Prevent Permanent Silencing

Durable silencing of HIV-1 transcription by dCA uncovered a key role of Tat in
preventing latency. dCA abrogates virtually all virus reactivation from latently infected
primary CD4+ T cells explanted from PLWH on suppressive ART [8,9]. Nevertheless, a
nucleosome-free region remains upstream of the HIV-1 transcription start site under dCA
treatment, suggesting that dCA-treated cells are not “irreversibly” silenced [8,9,16,17].
More work is needed to clarify how HIV-1 silencing is controlled at the chromatin level,
particularly in response to dCA, and if combining other SPAs with Tat antagonists may help
to further silence the HIV-1 promoter. One such potential SPA target is sirtuin-1 (SIRT1), an
NAD+-dependent lysine deacetylase that deacetylates Tat to enhance its activity. SIRT1 acts
as a nutrient sensor and major metabolic controller, helping to shift cells from oxidative
phosphorylation to aerobic glycolysis, which increases HIV-1 transcription. Conversely, Tat
inhibits SIRT1 enzymatic activity by binding its deacetylase domain [44]. We predict that
the early inhibition of SIRT1 by Tat creates metabolic conditions that set the stage for full
proviral latency when Tat expression is extinguished.

4. HERV Silencing in the Human Genome

Mammals have long been infected by retroviruses and a fraction of these viruses have
entered germ cells and endogenized, passing from parent to offspring. Thus, approximately
8% of the human genome is composed of sequences directly derived from germline infec-
tions by retroviruses that accumulated over the past ~100 million years. None of these
HERVs are known to be a fully functional retrovirus or capable of new chromosomal inte-
grations; however, most retain noncoding regulatory sequences (generally within their long
terminal repeats, LTR) that have the capacity to act upon adjacent genes and dysregulate
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genome function [14,45]. However, most HERVs are kept transcriptionally silent via a dedi-
cated repressive DNA methylating machinery, including the host protein KAP1 (TRIM28)
which is tethered to HERV DNA via sequence-specific KZFPs. DNA methylation is brought
to ERVs in part via KRAB-ZFP which recruits de novo methyltransferase DNMT3 via KAP1.
KAP1 recruitment leads to an increase in DNA methylation at HERV loci, fostering a hete-
rochromatic epigenetic state [46]. Little is known about HERV silencing in T cells. In human
primary CD4+ T cells, KAP1 is detected in ~30% of HERVs at specific positions in different
HERV families. As KAP1 interacts with repressive KZFPs, this implicates the recruitment of
KZFPs as a mechanism silencing HERVs in CD4+ T cells [47], but the specific KZFP identity
remains unknown. For a thorough summary of ERV DNA methylation and regulatory
networks, please see our recent review [46]. Interestingly, HIV-1 infection is known to
modulate HERV expression [48–57], suggesting a crosstalk in the processes that regulate
HERVs and HIVs. Thus, there is much to learn about the mechanisms by which HERVs
are locked in T cells to develop new approaches to silence HIV-1. The development of
new multidomain KZFPs trained to bind the HIV-1 provirus and induce sequence-specific
silencing of latent HIV-1 through targeted DNA methylation offers an attractive method
for the long-term silencing of HIV-1. Studying the endogenous retroviruses from the past
holds promise to yield valuable insight and innovative approaches to durably silence HIV-1
in the future.

5. Advanced Gene-Engineering Approaches for the Generation of Defective HIV-1
Proviruses Using Targeted Delivery Systems That Do Not Require the Reactivation
of HIV-1

Host gene editing with recombinases and nucleases has focused primarily on CCR5
and proviral genome excision has generally targeted transcriptionally active viruses or ART
suppressed proviruses [58–74]. The genome editing of latent HIV-1 has been accomplished
with targeted endonucleases, such as CRISPR/Cas9, zinc finger nucleases, TALENs and
site-specific recombinases, which have shown great clinical potential [61–68,75]. There is
compelling in vitro data showing that genome-editing enzymes directly target integrated
HIV-1 sequences and lead to permanent inactivation of the provirus and, potentially, a
‘classical cure’ for HIV-1 [58–68,75]. Yet, using these approaches for HIV-1 therapy has
been challenging, mainly due to suboptimal delivery platforms and a lack of ‘safe’ genome-
engineering systems. Current approaches involve transplanting cells after gene editing
in cell culture or using adeno-associated viral vectors for delivery in vivo [58,59,69–75].
These studies provide proof-of-concept in animal models but face translational hurdles
from challenges with cell transplant protocols, efficacy and the risk of genotoxicity due to
DSBs [76,77].

The development of advanced novel genome-engineering technologies and novel
sequence-specific silencing approaches that target both host and viral sequences is needed
for an HIV-1 cure. The complete elimination of proviruses throughout the body will
be challenging; thus, target host susceptibility genes like CCR5 would be a synergistic
approach that reduces the chances of reinfection. These include the reengineering of
Brec1 [59], a traceless recombinase specific for HIV-1 LTR that could be transformed into a
new silencing agent. These also include other gene-engineering approaches (e.g., triplex-
forming PNAs [78] and CRISPR-derived base editors [Bes] [79]) that target the provirus
directly, like Brec1, but avoid DSBs. Many of the current models involve activating the HIV-
1 provirus before treatment with genome-engineering technologies, which poses significant
risks associated with increased viral loads, especially within the central nervous system
where viral reactivation has serious deleterious effects [80,81]. While targeting non-active
chromatin for genome engineering is a relatively new field, there is significant evidence for
its feasibility [82–87]. The significant knowledge about the state of chromatin on the HIV-1
promoter under different conditions makes it an excellent system for the development of
genome editing methods that are effective in non-active genes or heterochromatic regions
of the genome. Focus on the targeted in vivo delivery of genome engineering therapies
rather than cell infusion will also be needed to overcome current delivery challenges.
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There is significant risk associated with cell infusion methods, which are also prohibitively
expensive for many PLWH around the world. Targeted delivery methods will have to be
influenced by the identification of HIV-1 reservoirs and the ability to target cell markers that
are not unique to active HIV-1. New humanized CD7 antibodies targeting T cells, viral-like
particles (VLPs) packaging CRISPR-BE or Brec1 in a trace-less, scarless, non-integrating,
DNA-free manner and biocompatible PLGA-nanoparticles for PNA delivery are enticing
new areas of research.

6. Community Engagement

It is critical to recognize that novel HIV-1 cure research requires mutual understanding,
participation and trust between researchers and the PLWH communities for its ultimate
success. HIV-1 cure approaches must be scalable and cost-permissive in low- and middle-
income countries. Early partnerships with communities during HIV-1 cure research design
allows communities to offer insights into avenues for research at the initial stages of project
development. The HOPE Community Engagement Team employs a CAIR (Community
Arts Integrated Research) Program and is guided by an Equity Space model and Parallaxic
Praxis framework [88] that value and support all stakeholder voices. The framework drives
focus group design where participants engage in arts-integrated research activities. The
arts serve as a connector and knowledge-generating tool.

Community partners help develop HIV-1 cure curricula that resonate at local levels in
diverse countries and among people in historically stigmatized populations [89].

The block-lock-stop approach may hold special appeal for HIV long-term survivors
since this strategy avoids potential clinical risks inherent in reactivating the latent HIV
reservoir and it is feasible (in theory) for PLWH for whom treatment with ART was not
initiated until chronic infection, i.e., the majority of PLWH globally. Moreover, some of the
Tat and JAK inhibitors that have shown promise for the “Block” phase may also help to
reduce chronic immune activation and the resulting systemic inflammation that contributes
to advanced/accelerated aging.

7. Conclusions

Current ART regimens are highly effective in suppressing HIV-1 replication but do
not eliminate the small reservoir of HIV-1 that persists and these drugs must be taken daily
for life. Furthermore, ART does not fully reverse immune deficits associated with HIV-1
infection [90], and PLWH on ART can also suffer from chronic inflammation associated
with immune activation caused by low-level viral production [91–95] and associated with
multiple comorbidities. Thus, there is an urgent need to explore novel therapies that lead
to viral eradication or a functional cure. Functional cures which involve the complete
suppression of viral gene expression would reduce these risks, similar to elite controllers
who have been shown to have low levels of immune activation [96–98]. Although “shock
and kill” efforts have so far failed to significantly reduce the latent HIV-1 reservoirs,
immunotherapeutic approaches in combination with new strategies may be required to
achieve durable viral control in the absence of ART [99]. For the “block-lock-stop” approach
to work, several questions will need to be answered. Will the silencing be specific to HIV-1
transcription? How long will the silencing be functional? Will gene editing reach all
the reservoirs? Although several hurdles remain, the “block-lock-stop” offers a new and
under-explored approach to achieve ART-free HIV-1 remission.
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