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Abstract: Severe Fever with thrombocytopenia syndrome (SFTS) is a highly fatal viral infectious
disease that poses a significant threat to public health. Currently, the phase and pathogenesis of
SFTS are not well understood, and there are no specific vaccines or effective treatment available.
Therefore, it is crucial to identify biomarkers for diagnosing acute SFTS, which has a high mortality
rate. In this study, we conducted differentially expressed genes (DEGs) analysis and WGCNA module
analysis on the GSE144358 dataset, comparing the acute phase of SFTSV-infected patients with healthy
individuals. Through the LASSO–Cox and random forest algorithms, a total of 2128 genes were
analyzed, leading to the identification of four genes: ADIPOR1, CENPO, E2F2, and H2AC17. The
GSEA analysis of these four genes demonstrated a significant correlation with immune cell function
and cell cycle, aligning with the functional enrichment findings of DEGs. Furthermore, we also
utilized CIBERSORT to analyze the immune cell infiltration and its correlation with characteristic
genes. The results indicate that the combination of ADIPOR1, CENPO, E2F2, and H2AC17 genes
has the potential as characteristic genes for diagnosing and studying the acute phase of SFTS virus
(SFTSV) infection.

Keywords: SFTS; SFTS acute phase; machine learning; LASSO–Cox; immune cells infiltration

1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an acute natural focal disease
caused by Dabie bandavirus (DBV), previously known as severe fever with thrombocytope-
nia syndrome virus (SFTSV). The disease is primarily found in mountainous and hilly areas,
with a higher incidence during the summer and autumn seasons and is often associated
with tick bites. SFTS is characterized by symptoms such as fever, decreased white blood cell
and/or platelet counts, lymph node enlargement, fatigue, and gastrointestinal symptoms.
Elderly patients, those with underlying health conditions, or those who delay seeking
medical attention are at a greater risk of severe illness, and critically ill patients may die
due to multiple organ failure [1–3]. Currently, six countries (China, South Korea, Japan,
Vietnam, Myanmar and Thailand) in Asia have reported cases of the virus [4–9]. China
has the largest number of confirmed infections among these countries, and the number of
cases is increasing every year. This is because SFTSV can be transmitted not only by tick
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bites [3], but also through human-to-human contact [10–12]. In some cases, there have been
reports of transmission through contact with the blood of patients who have a high viral
load [13,14], and there have also been reports suggesting that some veterinarians and pet
owners in Japan have been infected with SFTSV from SFTS animals [15]. SFTSV infection
is characterized by acute onset, rapid progression, and high mortality, with hospitalized
patients having a mortality rate as high as 12–30% [16]. Currently, the pathogenic mecha-
nism of SFTSV infection is not fully understood, and clinical manifestations lack specificity
and can vary widely. Additionally, there is no vaccine or effective clinical intervention to
prevent SFTSV infection [17]. As a result, SFTSV has become a significant global public
health concern [18], with the World Health Organization (WHO) listing it as a priority
infectious disease in 2017 alongside Ebola and Lassa fever [19]. Therefore, studying the
specific diagnosis and the differences in immune function of SFTS is of great significance
for controlling the occurrence and development of the disease.

In recent years, with the rapid development of sequencing technology and the updat-
ing of mass spectrometer instruments, sequencing depth and sensitivity have significantly
improved. At the same time, the cost of sequencing has also rapidly declined. In the coming
years, there may be more deep sequencing projects focusing on studying the hosts infected
by viruses. Therefore, the use of scientific and effective algorithms, such as the machine
algorithm mentioned in this paper, can better help us quickly and efficiently retrieve key
feature genes from a large amount of data information. Thus, in addition to the existing
technical means, it is equally important to use bioinformatics analysis methods to identify
more effective biomarkers for studying the pathophysiological mechanisms of SFTS. Based
on this, in this study, bioinformatics analysis methods were used to re-analyze the gene
expression dataset from the transcriptional analysis of blood samples from acute SFTS pa-
tients with a definite clinical background in the Gene Expression Omnibus (GEO) database.
Two different machine learning algorithms were used to select the characteristic genes of
SFTSV acute phase patients from the differentially expressed genes obtained. Additionally,
the study utilized the currently popular cell type analysis tool named CIBERSORT to
investigate and analyze the infiltration of immune cells in the SFTSV acute phase based
on the identified characteristic genes. The aim of this study is to provide more reference
basis for the research on gene biomarkers for the diagnosis and prognosis of the SFTS acute
phase patients, and to provide new research ideas and directions for future SFTS research.

2. Materials and Methods
2.1. Data Source

The original dataset of GSE144358 (platform: GPL20795 HiSeq X Ten (Homo sapiens)),
obtained from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm, (Accessed on
1 June 2023)) database, includes 37 acute phase samples and 21 samples from non-infected,
healthy humans. R software (Version R-4.3.1 for Windows) was used to randomly select
80% and 20% of the data as test and validation sets, respectively. This means that 30 acute
samples and 17 non-infected healthy human samples were used for the test set, while
7 acute samples and 4 non-infected healthy human samples were used for the validation
set. The detailed flowchart of this study is shown in (Figure 1).

2.2. Principal Component Analysis

In this study, the UMAP function in the R software UMAP package (version 0.2.7.0) was
used for analysis. First, the expression spectrum was z-scored, then the UMAP function was
used to reduce the dimensionality and obtain the matrix result after dimension reduction.

2.3. DEGs Identification

Limma (Linear Models for Microarray Data) is a differential expression screening
method based on generalized linear models. In this study, we used the limma package
(version 3.40.6) in R software for differential analysis [20]. The differentially expressed
genes (DEGs) between the acute phase sample cohort and the non-infected healthy group
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were analyzed. The resulting expression profile dataset was first subjected to multiple
linear regression using the lmFit function. Then, the eBays function was used to calculate
the reduction of statistics, applying log-odds differential expression of the empirical Bayes
moderation to the common value standard error, and finally determining the differential
significance of each gene. In this analysis, we used FDR 2.0 to generate a DEG volcano
map, displaying the top 100 genes through a heat map (top 50 up-regulated and top 50
down-regulated).

The data of mRNA with
acute SFTS from

GSE144358

Validation Dataset Test Dataset

The WGCNA between the 
acute SFTS and 

health control

Key module genes

The identification of
differentially expressed 

genes（DEGs） 

KEGG and GO analysis
of DEGs

Candidate hub genes

Lasso-cox Random forest

Signature genes

ROC GSEA Immune cell 
infiltration

Figure 1. Flowchart of this study.

2.4. Function and Pathway Enrichment Analysis

For GO enrichment analysis, we used org.Hs.eg.db (version 3.1.0) in R software
for gene GO annotation as the background. KEGG functional enrichment analysis was
performed using the KEGG rest API (https://www.kegg.jp/kegg/rest/keggapi.html, (Ac-
cessed on 1 June 2023)) to obtain the latest KEGG Pathway gene annotation as the back-
ground. The differential genes were mapped to their respective background sets, and the R

https://www.kegg.jp/kegg/rest/keggapi.html
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software package clusterProfiler (version 3.14.3) [21] was used for enrichment analysis to
obtain the results of gene set enrichment. The minimum gene set was set to 5, the maximum
gene set was 5000, and p < 0.05 was considered significant for enrichment.

2.5. Weighted Gene Co-Expression Network Analysis

Based on the scale-free topology standard, the co-expression network in the expression
profile of the dataset GSE144358 was constructed using weighted gene co-expression
network analysis (WGCNA) [22]. Firstly, the soft threshold power and adjacency were
calculated from the gene expression profile, and outlier genes and samples were removed
using the goodSamplesGenes function in the R software WGCNA package. Then, the
scale-free co-expression network was constructed by WGCNA.

The Pearson correlation matrix and the average linkage method were first applied
to all pairwise genes. Then, the weighted adjacency matrix was created with the formula
Amn = |Cmn|β (where Amn: adjacency between gene m and gene n, Cmn: Pearson’s correla-
tion, and β: soft-power threshold). After selecting the power of 3, the adjacency relationship
was transformed into a topological overlap matrix (TOM), which measures the network
connectivity of a gene. TOM is defined as the sum of the adjacency relationships between
the gene and all other genes in the network, and the corresponding dissimilarity (1-TOM)
is calculated.

To classify genes with similar expression profiles into different gene modules, the
minimum module size was set to 50 (genome), and average linkage hierarchical clustering
was performed according to the tom-based dissimilarity measure. For module analysis, the
sensitivity parameter was set to 3, the module merging threshold was 0.25, and |MM| was
0.8, while |GS| was 0.1.

2.6. Identification of Characteristic Genes

Candidate hub genes were identified by the intersection of DGE and WGCNA key
module genes. Then, the hub genes were further screened using LASSO and Random
Forest machine learning algorithms.

To integrate survival time, survival status, and gene expression data, we used the R
software glmnet package to perform regression analysis using the LASSO–Cox method [23].
We also set up a 10-fold cross-validation to obtain the optimal model. Additionally, we
determined the optimal number of variables using the average error rate of candidate hub
genes for DEGs in the randomForest package in R software [24]. By calculating the error
rate of each tree from 1 to 500 trees, we determined the optimal number of trees based on
the lowest error rate and selected the genes with the highest feature importance score as
reference genes.

The two machine learning algorithms were then analyzed by Wayne graph intersection
analysis, and the intersection genes were considered characteristic gene combinations of
patients with acute SFTS phase. Subsequently, ROC analysis was performed on the obtained
characteristic gene combinations using the R software package pROC (version 1.17.0.1).
The diagnostic efficiency of these characteristic genes was evaluated based on the area
under the curve (AUC) of the ROC characteristic curve (ROC). An AUC greater than 0.75
was selected to indicate that the model had good diagnostic performance.

2.7. Gene Set Enrichment Analysis

To further determine the association between the combination of characteristic genes
and signaling pathways, we used GSEA software (version 3.0) obtained through the Gene
Set Enrichment Analysis (GSEA) website. The samples were divided into a high expression
group (≥50%) and a low expression group (<50%) according to the hub gene expression lev-
els. We downloaded the c2.cp.kegg.v7.4.symbols.gmt subset from the Molecular Signatures
Database to evaluate related pathways and molecular mechanisms [25].
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Based on gene expression profiles and phenotypic grouping, the minimum gene set
was set to 5, the maximum gene set was 5000, and a thousand re-samplings were performed.
A p-value less than 0.05 was considered statistically significant.

2.8. Immune Cell Infiltration

The immune system of the body encompasses three distinct tiers of defense. The
initial tier, known as the first line of defense, comprises the skin and mucosal barrier.
Subsequently, the second line of defense is constituted by macrophages and bactericidal
substances. Both of those two lines of defense are non-specific immune components. The
third line of defense, on the other hand, is a specific immune defense mechanism that
encompasses immune organs and immune cells. In the event that the pathogen effectively
breaches the first two lines of defense, it will elicit the activation of the third specific
immune defense line. At this time, the immune organs and a large number of immune
cells will be urgently mobilized to defend against foreign pathogens. CIBERSORT is the
tool for deconvolution of the expression matrix of human immune cell subtypes based
on the principle of linear support vector regression. By using the chip expression matrix
and sequencing expression matrix, the deconvolution analysis of the expression matrix of
unknown mixtures and similar cell types is performed. This research method has become
the most cited immune cell infiltration estimation analysis tool since it was first published
in the Nature method in 2015 [26]. Based on the known reference data set, CIBERSORT
compares the gene expression feature sets of 22 immune cell subtypes provided in the
database, further performs non-negative matrix decomposition on the expression matrix,
and calculates the proportion of different cell types, so as to clarify the composition of
immune cells in the human microenvironment, and then clarify which immune cells play
an important role in the occurrence and development of the disease. CIBERSORT can be
used to explore the difference of immune cell subtypes between the SFTSV acute phase
group and the non-infection control group [26]. Therefore, we screened immune cells
with significant differences in infiltration between the SFTSV acute phase group and the
non-infected control group and used the Spearman method to analyze their correlation
with characteristic genes.

2.9. Statistical Analysis

All statistical analyses in this study were conducted using R software (version 4.2.2).
Unless otherwise stated, a p-value less than 0.05 was considered statistically significant,
and all p-values were two-tailed.

3. Results
3.1. Identification of DEGs between SFTSV Acute Phase and Non-Infected Control

The GEO data set provider showed that there were clear clinical data to distinguish
between SFTSV acute patients and healthy controls in the data set introduction. In order to
further clarify the difference between SFTSV acute phase patients and healthy people in
the data set from the molecular level, this study conducted cluster analysis on the sample
set. We first used the R software ‘UMAP’ package for principal component analysis and
found that the SFTSV acute phase and non-infected control groups could be significantly
distinguished (Figure 2A). As expected, SFTSV acute patients and healthy controls can be
effectively distinguished in the results. We then used the “limma” package to analyze the
DEGs of these two groups, selecting a 2.0-fold difference and an FDR less than 0.01. A total
of 10,309 DEGs were screened, including 8793 up-regulated genes and 1516 down-regulated
genes (Figure 2B). We displayed the top 100 DEGs between the SFTSV acute phase and
non-infected control groups using a heat map, which included the top 50 up-regulated and
top 50 down-regulated DEGs (Figure 2C).
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Figure 2. Identification of DEGs. (A) Principal component analysis results of the SFTSV acute phase
and non-infection control groups. (B) Volcano plot of differential genes between the SFTSV acute
phase group and non-infection control group. (C) Heat maps of differential genes (top 50 up-regulated
genes and top 50 down-regulated genes) in the SFTSV acute phase and non-infection control groups.

3.2. Functional Enrichment Analysis

GO analysis includes three categories: Biological Process (BP), Cell Component (CC),
and Molecular Function (MF). These categories are helpful in exploring the biological
processes of these DEGs. The results of BP enrichment of DEGs showed that cell cycle
ranked first in the significant enrichment ranking, followed by the mitotic cell cycle, mi-
totic cell cycle process, organelle organization, DNA metabolic process, cell cycle process,
mitotic cell cycle phase transition, mitochondrial translation, cell cycle phase transition,
and mitochondrial gene expression. Most of these enriched results have a high correlation
with the cell cycle, suggesting that the BP of DEGs between the acute SFTSV phase group
and the healthy control group may be involved in affecting the cell cycle process of the
host, as shown in (Figure 3A). The results of DEGs enrichment in CC were the nucleoplasm,
cytosol, mitochondrion, mitochondrial part, organelle envelope, envelope, mitochondrial
envelope, chromosome, mitochondrial protein complex, and nuclear part. Except for the
cytosol, organelle envelope, and envelope, in these top 10 CC enrichment results, the re-
maining 7 results are more correlated with nucleus and mitochondria, such as nucleoplasm,
mitochondrion, mitochondrial part, mitochondrial envelope, chromosome, mitochondrial
protein complex, and nuclear part. Therefore, these CC enrichment results of the DEGs
between the acute SFTSV phase group and the health control group indicate that the cell
composition of these DEGs may have a high correlation with the nucleus and mitochon-
dria, as shown in (Figure 3B). In addition, the top 10 MF enrichment results are catalytic
activity, antigen binding, RNA binding, hydrolase activity acting on acid anhydrides in
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phosphorus-containing anhydrides, pyrophosphatase activity, nucleoside-triphosphatase
activity catalytic activity, acting on RNA, hydrolase activity, and nucleoside phosphate bind-
ing (Figure 3C). Among the convergence of these MF enrichments, most of them are related
to the activity of various enzymes and the combination of molecules. This may mean that
DEGs between the acute SFTSV phase group and the health control group may be participat-
ing in the function of activity of various enzymes and the combination of molecules. And
the GO overall enrichment results showed that the nucleoplasm, cytosol, mitochondrion,
mitochondrial part, organelle envelope, envelope, mitochondrial envelope, chromosome,
mitochondrial protein complex, and nuclear part had significantly higher enrichment rank-
ings (Figure 3D). Regarding KEGG analysis, the top 15 enriched pathways were mainly the
Cell cycle, Protein processing in endoplasmic reticulum, Proteasome, Parkinson disease,
Alzheimer disease, Oxidative phosphorylation, Thermogenesis, Huntington disease, Non-
alcoholic fatty liver disease (NAFLD), Spliceosome, Metabolic pathways, mTOR signaling
pathway, B cell receptor signaling pathway, Th17 cell differentiation, and T cell receptor
signaling pathway (Figure 3E).
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Figure 3. Functional Enrichment Analysis of DEGs. (A) GO enrichment results of DEGs in Biological
Processes (BP). (B) GO enrichment results of DEGs in Cellular Component (CC). (C) GO enrichment
results of DEGs in Molecular Function (MF). (D) GO enrichment results of DEGs overall. (E) KEGG
enrichment results of DEGs.

3.3. Construction of the Weighted Gene Co-Expression Network

We used WGCNA in R software to analyze the SFTSV acute phase and non-infection
control groups and establish a scale-free co-expression network. We constructed a common
expression network based on the optimal soft threshold construction, and the soft threshold
was determined to be 3. The scale-free index was 0.87, with favorable average connectivity
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(Figure 4A,B). By calculating the characteristic genes of different modules, we further
reduced the module system clustering tree and merged the modules with a distance less
than 0.25. After dividing the genes into different modules, genetic clustering trees can be
drawn. From the result chart of the clustering tree, we can see that the upper part is the
layered clustering tree diagram of the gene, and the lower part is a gene module, that is, the
network module. The clustering results indicate that a total of six co-expression modules
can be obtained, namely black, purple, brown, turquoise, magenta and ellow modules
(Figure 4C,D). Correspondingly, we can see that the closer gene (cluster to the same branch)
is divided into the same module. Then we calculated the gene significance (GS) value of
the gene module associated with the clinical grouping of the SFTS acute phase and healthy
controls and calculated the module feature vector and the gene expression correlation
(MM) value according to the truncation criteria (|MM| > 0.8 and |GS| > 0.1), And then,
we also calculated the correlation and significant clinical characteristics of the module
and drew the correlation heat map. The heat map results showed that the brown module
was the highest correlation with the characteristic performance (cor = 0.94, p < 0.0001),
while the yellow module was the lowest (cor = 0.30, p < 0.0001) (Figure 4E). Therefore,
we finally selected the brown module with the highest correlation as a key module and
its corresponding 2132 genes for further analysis. We further calculated the correlation
between each module and the correlation with SFTSV acute phase. The results showed
that the brown module was significantly correlated with SFTSV acute phase (cor = 0.94,
p < 0.0001) (Figure 4F). Therefore, the brown module containing 2132 genes was considered
a key module related to SFTSV acute phase. By overlapping the genes in the brown module
with 10,309 DEGs (including 8793 up-regulated genes and 1516 down-regulated genes) and
2132 genes contained in the brown module, we obtained four brown module unique genes,
8181 DEGs unique genes and 2128 overlapping genes (Figure 4G).

3.4. Feature Genes Were Selected by LASSO–Cox and Random Forest Algorithms

The feature genes of the 2128 intersection key genes were further screened by LASSO–
Cox and Random Forest machine algorithms. In the LASSO–Cox analysis, the Lambda
value was set to 0.05, and a total of 24 characteristic genes were obtained (Figure 5A,B). The
formula of the model is as follows: RiskScore = −0.0697 ∗ ADIPOR1 + 0.0295 ∗ APOBEC3B-
0.0722 ∗ BAG1-0.0021 ∗ BCAM + 0.0419 ∗ BUD31 + 0.0310 ∗ CENPO + 0.0716 ∗ E2F2-0.0306
∗ ENTPD2 + 0.1174 ∗ FAM174B-0.0023 ∗ GPC4 + 0.0005 ∗ H2AC17 + 0.0814 ∗ IAH1 +
0.0440 ∗ IFI27 + 0.0949 ∗ KDELR3-0.0078 ∗ LOC101928037 + 0.0421 ∗ LOC112543491 +
0.01629 ∗ MIR4435-2HG + 0.1121 ∗ NASP + 0.0007 ∗ PLGRBKT ∗ RAIFNTX0.0174. A total
of 41 characteristic genes were obtained in random forest analysis (Figure 5C,D). These
selected characteristic genes are shown in Table 1. Through the interaction of these two
algorithms, four characteristic genes were finally identified, including ADIPOR1, CENPO,
E2F2, and H2AC17 (Figure 5E). In order to further confirm the disease specificity of these
four characteristic genes obtained from the screening, we also downloaded the dataset
of acute measles patients (GSE5808) and the dataset of AIDS patients (GSE140713) with
the same detection method for further analysis and comparison. Moreover, these results
showed that these four feature genes could effectively distinguish SFTS patients from
patients with acute measles and those with AIDS, so we still initially believe that these four
feature genes have the specificity of the SFTSV acute phase (Figure 5F,G). Then, we further
analyzed these four characteristic genes.
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Figure 4. WGCNA module analysis of the GSE144358 dataset and identification of candidate key
genes. (A) Soft threshold power results of WGCNA. (B) Average connectivity results of WGCNA.
(C) WGCNA clustering tree results. (D) Correlation analysis results between WGCNA clustering
modules. (E) Correlation analysis results between WGCNA clustering module and differential
grouping. (F) Results of correlation analysis between module membership in brown module and gene
significance for Group (Acute). (G) Intersection gene results of DEGs and genes in brown module.

Table 1. Candidate Genes Display Table Screened by LASSO–Cox and Random Forest Analysis.

Lasso–Cox Random Forest

ADIPOR1, APOBEC3B, BAG1, BCAM, BUD31,
CENPO, E2F2, ENTPD2, FAM174B, GPC4, H2AC17,
IAH1, IFI27, KDELR3, LOC101928037,
LOC112543491, MIR4435-2HG, NASP, PLGRKT,
RAB5IF, RNASE1, TXN, YBX3, ZNF687-AS1

TBPL1, NEU1, DNAJC1, ADPRM, DPH3, CAMK1D,
NMRK1, CAB39L, PHF11, RASGRP3, PSMA6,
RAB18, PALM2AKAP2, TRIM69, TMEM165, E2F2,
CNP, NECAP1, H2AC17, TRAPPC6B, GPR84,
ETFBKMT, NDUFB3, UBE2F, SERPINB1, GPR146,
TMEM126B, ADIPOR1, STBD1, CAPZA1, CMC1,
ACOT13, SCAPER, MSL3, CENPO, PPP2R3C, POMP,
CRIPT, IL15RA, HEXB, PHOSPHO1
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Figure 5. The figure shows the process of obtaining characteristic genes using a machine learning
algorithm. (A) The LASSO–Cox regression model is used to screen for characteristic genes. (B) A
fixed lambda value is determined by cross-validation. (C) The error rate confidence interval of the
random forest model. (D) The candidate feature genes are recommended by the random forest
algorithm. (E) The intersection results of the candidate feature genes obtained by the LASSO–Cox
and random forest algorithms. (F) The expression of four characteristic genes in patients and health
control groups in AIDS. (G) The expression of four feature genes in patients and health control groups
in Acute measles.
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3.5. The Diagnostic Efficacy of Characteristic Genes in Predicting SFTSV Acute Phase

In this study, we further demonstrated the expression results of four differentially
expressed genes screened based on machine learning methods. The results presented in
Figure 6A suggest that the expression of characteristic genes ADIPOR1, CENPO, E2F2,
and H2AC17 is significantly different in different groups (p < 0.0001), indicating that the
expression of these four characteristic genes was significantly different between the SFTSV
acute phase group and the healthy control group. Moreover, the AUC values in the ROC
curve results of these four characteristic genes are all 1, indicating that there is at least
one threshold in the model, which can perfectly divide positive and negative samples into
different groups (Figure 6B). These results also show that these four characteristic genes of
the prediction model can effectively distinguish between different groups of samples.
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Figure 6. The performance of four characteristic genes obtained from the test data set. (A) The
expression levels of the four characteristic genes obtained from the test data set between different
groups. (B) The ROC curve results for the four characteristic genes obtained from the test data set.

In addition, the diagnostic efficiency of the validation set cohort for predicting the
SFTSV acute phase with each characteristic gene was consistent with the results of the
test set. As shown in Figure 7A, there were significant differences in the expression levels
of ADIPOR1, CENPO, E2F2 and H2AC17 in the samples between the acute phase group
and the healthy group (Figure 7A), and the results in the ROC curve corresponding to
their respective characteristic genes were also consistent with the results of the test set
(Figure 7B).

3.6. GSEA Analysis

By analyzing the GSEA results of the differentially expressed genes, we found that the
four differentially expressed genes obtained in this study were mainly related to the cell
cycle, which was consistent with the results of GO enrichment and KEGG enrichment. The
results showed that there was a big difference between the SFTSV acute phase patients and
healthy people, which was related to the regulation of host cell cycle. Specifically, GSEA
analysis was used to evaluate the signaling pathways related to characteristic genes, and
significantly enriched pathways with p values < 0.05 were identified (Figure 8A–D).
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Figure 8. GSEA results of 4 characteristic genes. ADIPOR1 (A), CENPO (B), E2F2 (C) and H2AC17
(D) was identified as characteristic genes.

The results showed that ADIPOR1 expression was associated with various pathways
such as snare interactions in vesicular transport, RNA degradation, toll-like receptor signal-
ing pathway, systemic lupus erythematosus, oocyte meiosis, intestinal immune network
for IgA production, cell cycle, p53 signaling pathway, arrhythmogenic right ventricular
cardiomyopathy arvc, apoptosis, basal transcription factors, oxidative phosphorylation,
hematopoietic cell lineage, etc. While CENPO expression was correlated with pathways
such as RNA degradation, protein export, nucleotide excision repair, cell cycle, p53 sig-
naling pathway, intestinal immune network for IgA production, DNA replication, snare
interactions in vesicular transport, motor signaling pathway, chronic myeloid leukemia,
etc. And the E2F2 was associated with pathways such as cell cycle, peroxisome, RNA
degradation, protein export, DNA replication, RNA polymerase, nucleotide excision repair,
p53 signaling pathway, cardiac muscle contraction, chronic myeloid leukemia, etc. The
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H2AC17 was associated with pathways such as p53 signaling pathway, nucleotide excision
repair, DNA replication, cell cycle, RNA degradation, proteasome, protein export, intestinal
immune network for IgA production, apoptosis, chronic myeloid leukemia, etc.

Based on the results, it is evident that ADIPOR1 enrichment is mainly involved in
the immune system function. And the other three genes (CENPO, E2F2, and H2AC17) are
involved in regulating the cell cycle. This finding aligns with the previous GO and KEGG
enrichment analyses of the overall DEGs, indicating that, to some extent, the cell cycle of
the acute SFTSV-infected patient group may be differentially regulated compared to the
healthy control group.

In order to further explore and analyze the functional correlations that these four
characteristic genes may involve, we carried out all the significantly enriched pathways
(p < 0.05) of GSEA enrichment of characteristic by UpSetR. This method is to visualize
the UpSetR package based on the data set in R language. In these analysis results, the
upper columnic diagram represents the number of intersections, and the lower left bar
chart represents the size of the collection path; and the dotted diagram of the lower right
indicates the specific combination of the overlapping matrix between the set. And the
results showed that the common intersection of these four characteristic gene pathways
were homologous recombination, progesterone mediated oocyte maturation, ubiquitin
mediated proteolysis, RNA degradation, nucleotide excision repair, systemic lupus erythe-
matosus, oocyte meiosis, intestinal immune network for IgA production, cell cycle, folate
biosynthesis, p53 signaling pathway, mismatch repair, vibrio cholerae infection, amino
sugar and nucleotide sugar metabolism, and oxidative phosphorylation. This also reminds
us that the four characteristic genes may participate in important immune and metabolic
signaling pathways (Figure S1 and Table S1) which is consistent with the expected results.

3.7. Immune Cell Infiltration

In fact, in previous studies on SFTS, although researchers knew that SFTSV infection
would cause host immune cell disorders, there was no study on the overall changes of host
immune cells after SFTSV infection. Therefore, in order to determine the effect of the SFTSV
acute phase on host immune cells, CIBERSORT was used to analyze the proportion of
host immune cells. This study first evaluated the overall immunological characteristics by
immune cell infiltration analysis. A total of 22 immune cell marker genes were provided in
the official CIBERSORT database, among which NK_activated_cells, Dendritic_resting_cells
and Eosinophils three immune cell groups were not significantly enriched in this dataset.
Therefore, these three immune cell groups were excluded from the evaluation results.
Among 19 common immune cell groups that showed different expression, gamma delta
T cells and activated Dendritic cells had a positive correlation coefficient of 0.73, while
Monocytes and Macrophages M0 groups showed a significant positive correlation with a
correlation coefficient of 0.73. However, gamma delta T cells and CD4 memory resting T
cells had a significant negative correlation with a correlation coefficient of −0.83 (Figure 9A).

Interestingly, in this study, we found that SFTSV infection altered host immune infil-
tration, specifically, the acute SFTSV phase increased the proportion of memory B cells,
Plasma cells, CD4 memory activated T cells, regulatory T cells (Tregs), gamma delta T
cells, Macrophages M0, Macrophages M1, activated Dendritic cells, resting Mast cells and
Plasma cells (Figure 9B). The proportion of naive B cells, CD8 T cells, CD4 memory resting
T cells, and resting NK cells was higher in healthy control population tissues (Figure 9B).
Moreover, correlation analysis was performed between the four selected characteristic
genes and 13 immune cell groups showing significant differential infiltration (p < 0.05).
The results showed that CENPO, E2F2, and H2AC17 were negatively correlated with the
infiltration of naive B cells, CD8 T cells, and CD4 memory resting T cells, but positively
correlated with the infiltration of other immune cells. ADIPOR1 was negatively correlated
with the infiltration of memory B cells, Plasma cells, CD4 memory activate T cellsd, and
gamma delta T cells, but positively correlated with other immune cells (Figure 9C).
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Therefore, the analysis results suggest that the SFTSV acute phase does indeed have
some association with immune cell disorders, and the absolute correlation between the four
characteristic genes and T cell and B cell infiltration was significantly higher than that of
other immune cells. For example, the absolute correlation coefficients between naive B cells,
memory B cells, CD8 T cells, CD4 memory resting T cells, CD4 memory activated T cells,
and the four characteristic genes ranged from 0.53 to 0.85 (Figure 9C). These results suggest
that the changes in the composition of these immune cells may be related to the SFTSV
acute phase, which may also be a new idea and direction for future SFTS immunotherapy
research.

4. Discussion

SFTSV is a tick-borne virus that can cause severe acute fever syndrome. Currently,
there are no specific therapies or preventive measures against this virus. Therefore, early
diagnosis and treatment are crucial for preventing the spread of SFTSV infection. In
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addition, the study of biomarkers can also be used to monitor disease progression and
treatment response, providing important clues for the development of relevant prevention
and treatment strategies. Hence, the importance and urgency of researching biomarkers for
the acute SFTSV phase are highlighted.

This study evaluated the differentially expressed genes (DEGs) between individuals
with the acute SFTSV phase and healthy individuals, and then performed GO and KEGG
enrichment analysis on these DEGs. The results showed significant enrichment of cell cycle
and related pathways among the highly ranked terms. Previous research has reported that
various viruses are involved in influencing and regulating the host cell cycle upon infection,
causing host cell cycle arrest and promoting viral replication. However, no literature on
the impact of SFTSV infection on the host cell cycle has been reported. Additionally, this
study used WGCNA module analysis and combined DEGs analysis to identify 2128 dif-
ferentially expressed genes highly associated with acute SFTSV phase. Further analysis
using LASSO–Cox and random forest machine learning methods identified four feature
genes (ADIPOR1, CENPO, E2F2, and H2AC17) that are significantly associated with SFTSV
infection. Subsequently, expression profiles and ROC analysis of these four differential
feature genes were examined in both the training dataset and validation dataset, and the
results matched the expected GSEA analysis that was conducted on these four feature
genes to explore their relevant signaling pathways. The analysis revealed that, apart from
ADIPOR1, which primarily contributes to immune system function, the other three genes
are involved in regulating the cell cycle. This finding is consistent with the previous GO and
KEGG enrichment analysis of overall DEGs, indicating that the cell cycle in patients with
the acute SFTSV phase may be regulated differently compared to the healthy control group
to some extent. Moreover, in order to investigate the impact of the acute SFTSV phase on
host immune cells, this study conducted immune cell infiltration analysis to evaluate the
overall immunological characteristics. The CIBERSORT algorithm was utilized to explore
and analyze changes in the composition of host immune cells between the acute SFTSV
phase group and the healthy control group.

Since the measles virus and HIV infection can both induce the abnormal immune
reaction or affect the immune reaction in the host, we also downloaded the PBMC dataset of
acute measles patients (GSE5808) and the dataset of AIDS patients (GSE140713) to further
confirm the disease specificity of these four characteristic genes obtained from the screening.
Moreover, the results showed that these four feature genes could effectively distinguish
SFTS patients from patients with acute measles and those with AIDS. Therefore, we still
initially believe that these four feature genes have the specificity of the acute SFTSV phase.
Then, we further analyzed these four characteristic genes.

Firstly, we elaborated on the potential relationship between the four differentially
expressed genes screened in this study and the acute phase of SFTSV. ADIPOR1, also
known as Adiponectin Receptor 1, is a gene that encodes a protein primarily expressed
in adipose tissue. Its main function is to regulate physiological processes such as energy
metabolism and insulin sensitivity by receiving signals from adiponectin. Research has
shown that ADIPOR1 not only facilitates energy storage and utilization in the body but
also affects lipid metabolism and synthesis, promotes fatty acid oxidation, and has anti-
inflammatory effects. Additionally, it is involved in anti-apoptosis, anti-inflammation, anti-
fibrosis, anti-lipotoxicity, and promotes increased fibroblast activity [27,28]. Therefore, the
down-regulation of ADIPOR1 expression in the infected group may be an important factor
contributing to inflammation after viral infection. ADIPOR1 has been identified as one of
the main receptors for adiponectin. When adiponectin enters cells, it binds to ADIPOR1,
activating a signaling pathway that produces various biological effects. The expression
level of ADIPOR1 is regulated by adiponectin, and studies have shown that adiponectin can
significantly increase the expression of ADIPOR1 mRNA [29]. Adiponectin can also inhibit
the expression of TNF-α and certain adhesion molecules in vitro. Plasma adiponectin
levels have been found to decrease in women with mildly elevated C-reactive protein,
and low adiponectin levels are negatively correlated with high C-reactive protein [30].
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Furthermore, studies have suggested that the C1q receptor on the surface of macrophages
is one of the receptors for adiponectin. Adiponectin can significantly inhibit the formation of
granulocyte colony-forming unit-granulocyte (CFU-GM), granulocyte colony-forming unit-
granulocyte (CFU-G), and monocyte-macrophage colony-forming unit-monocyte (CFU-M)
but has no effect on the formation of early erythroblast precursor cells (BFU-E) and mixed
erythroblast colonies. Adiponectin can also significantly inhibit the phagocytic activity of
mature macrophages, suggesting that the combination of ADIPOR1 and adiponectin may
be an important regulator of the inflammatory response. Additionally, ADIPOR1 may be
involved in regulating immune responses [31].

Abnormally high expression of CENPO can disrupt the regulation of the cell cycle.
For example, studies have shown that the CENPO gene is involved in regulating cell
proliferation and apoptosis, mainly through its interaction with p53. This interaction may
play a role in promoting colorectal cancer through the EMT and PI3K/AKT signaling
pathways [32]. Additionally, the function of CENPO in cell cycle regulation may have
implications for viral infections. Some viruses rely on cell division for replication, and
since CENPO is involved in chromosome division, it may affect viral replication. Therefore,
studying CENPO can help uncover the molecular mechanisms of viral infection and provide
insights for the development of antiviral drugs. Furthermore, CENPO has been implicated
in predicting conflicts between viruses and the human host [33].

E2F2 is a member of the E2F family of DNA-binding transcription factors, which bind
to Rb and are released through phosphorylation by cell cycle protein/CDK kinases. E2F2
plays a crucial role in regulating genes involved in cell proliferation, invasion, secretion of
inflammatory factors [34] and organismal aging [35]. Additionally, studies have identified
E2F2 and H2AFx as key genes in the cell cycle process, while miR-24 plays a role in the
terminal differentiation of mammalian hematopoietic stem cells (HSCs) [36]. For instance,
research has shown that miR-24 can restrain cell proliferation by targeting E2F2, MYC, and
other cell cycle genes. Moreover, E2F2 is crucial for myeloid development [37]. Overall,
E2F2 is a multifaceted transcription factor that plays a vital role in various physiological
and pathological processes. And understanding the functional mechanisms of E2F2 is also
important for investigating, treating, and preventing related diseases.

H2AC17 (H2A clustered histone 17) is a unique histone protein with both N-terminal
and C-terminal tails. The C-terminal tail is involved in the structure of highly compacted
chromatin. Mutations in H2AC17 can directly affect chromosome structure and cell growth.
Histones, including H2A, H2B, H3, and H4, are responsible for the nucleosome structure of
chromosomal fibers in eukaryotes. Abnormal changes in H2AC17 can lead to instability and
dissociation of nucleosome structure and hinder the formation of higher-order chromatin
structures. This can loosen chromosome structure and affect the entry of transcription
factors, RNA polymerases, and transcription complexes.

Additionally, the reason why this study designed and analyzed the immune infiltration
analysis of acute SFTSV infected and healthy people is that with the advancement of
omics technology, more and more researchers have learned that the changes in the host’s
immune microenvironment after viral infection have potential research significance for
improving immunotherapy. Therefore, further analysis and understanding of the host
microenvironment infected by the virus, as well as the analysis of the composition of
immune cells in the host immune tissue has gradually become a research hotspot. The
essence of analyzing the host immune microenvironment is to analyze the proportion
of a large number of aggregated immune cells. The CIBERSORT algorithm adopted in
this study can effectively analyze the composition of immune cells in patients with acute
SFTSV infection and healthy people. Interestingly, the results of this study found that
SFTSV infection was indeed involved in changing the state of host immune infiltration.
Specifically, the acute SFTSV phase showed an increase in these immune cells, such as
memory B cells, Plasma cells, CD4 memory activated T cells, regulatory T cells (Tregs),
gamma delta T cells, Macrophages M0, Macrophages M1, activated Dendritic cells, resting
Mast cells and Plasma cells. And the proportion of naive B cells, CD8 T cells, CD4 memory
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resting T cells, and resting NK cells was higher in healthy control population tissues. Not
only that, among the differential genes screened in this study, CENPO, E2F2, and H2AC17
are directly or indirectly involved in the regulation of the host cell cycle, which aligns
with the results of enrichment analysis in this study. It is hypothesized that SFTSV may
have related regulatory mechanisms after infecting the host, considering the influence and
regulation of the host cell cycle following viral infection. During the acute phase of SFTSV
infection, innate and humoral immune disorders are significant pathological mechanisms
in SFTS. Effective activation and differentiation of myeloid DC cells (mDC) and follicular
Th cells (Tfh) play a crucial role in clearing the virus. The inflammatory response in SFTSV-
infected patients is characterized by imbalanced secretion of cytokines and chemokines,
with Th1 cytokines being correlated with disease severity [38]. In patients with acute
phase and those who died, serum cytokines such as IL-1, IL-6, IL-10, colony-stimulating
factor G-CSF, IFN-γ inducer protein 10, and monocyte chemoattractants protein-1 were
generally increased, while the cytokine contents of PDGF-BB and RANTES were generally
decreased, causing a “cytokine storm”. However, these cytokine levels returned to normal
after SFTSV patients recovered [38–40], indicating that the “cytokine storm” may be one of
the causes of severe infection phase and death. Additionally, the levels of platelets, serum
enzymes, inflammatory cytokines, and anti-inflammatory cytokines were closely correlated
with SFTSV viral load [41], suggesting that an increase in the SFTSV viral load was also
correlated with immune cell disorder. Research in 2018 revealed that failure of specific
antibody production and B-cell differentiation were important factors contributing to
severe illness and death in SFTS infection. The study found that patients with acute severe
illness and death had seriously abnormal numbers and function of myeloid dendritic cells
(mDC). Furthermore, Tfh cells in these infected individuals not only had fewer numbers,
but also lost their ability to stimulate the activation of B cells. Therefore, apoptosis and
dysfunction of mDC induced by SFTSV infection are among the main factors causing
dysfunction of CD4+ T cells, and dysfunction of Tfh cells in CD4+ T directly leads to
dysfunction of B cell activation and failure of antibody type conversion. In this mechanism,
Tfh cells act as a bridge between innate and adaptive immune deficiency caused by SFTSV
infection [18]. These results indicated that the differential expression of characteristic
genes was significantly associated with immune cells, aligning with the actual disease
course of the SFTSV acute phase patients. Therefore, the four-feature gene combination
identified by the machine learning algorithm in this study is scientifically applicable and
can provide valuable references for the clinical diagnosis and prognosis of SFTS in future
clinical practices. This study screened the target characteristic genes from a large amount
of data in public databases using bioinformatics methods, leveraging the maturity of
sequencing technology and the extensive data available. Furthermore, while these four
characteristic genes could effectively distinguish SFTS patients from patients with acute
measles and those with AIDS, it is also clear that data related to SFTS patients have not
been sufficiently compared with data related to patients with measles and HIV, which is a
limitation of our current study. Therefore, in future studies, we will continue to conduct
more experimental validation and complement other disease types to help better confirm
the specificity of these four characteristic genes.

5. Conclusions

In conclusion, this study identified four differentially expressed genes (ADIPOR1,
CENPO, E2F2, and H2AC17) for the first time as potential markers for diagnosing the
SFTSV acute phase for the first time by using machine learning algorithms. The use of
the CIBERSORT algorithm also provided insights into immune cell infiltration patterns
during the acute SFTSV phase. This research contributes to the understanding of SFTS
through omics analysis and provides a new approach for identifying gene markers in
disease diagnosis and prognosis. The analysis of immune cell infiltration offers potential
implications for clinical diagnosis and immunotherapy of SFTS. In summary, this study
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provides a new research idea for the clinical diagnosis and immunotherapy of the SFTSV
acute phase.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v15102126/s1, Figure S1: GSEA intersecting signal pathway
results for four characteristic genes; Table S1: Table of GSEA intersecting signal pathway results for
four characteristic genes.
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