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Abstract: Shrimp aquaculture has become a vital industry, meeting the growing global demand for
seafood. Shrimp viral diseases have posed significant challenges to the aquaculture industry, causing
major economic losses worldwide. Conventional treatment methods have proven to be ineffective in
controlling these diseases. However, recent advances in RNA interference (RNAi) technology have
opened new possibilities for combating shrimp viral diseases. This cutting-edge technology uses
cellular machinery to silence specific viral genes, preventing viral replication and spread. Numerous
studies have shown the effectiveness of RNAi-based therapies in various model organisms, paving
the way for their use in shrimp health. By precisely targeting viral pathogens, RNAi has the potential
to provide a sustainable and environmentally friendly solution to combat viral diseases in shrimp
aquaculture. This review paper provides an overview of RNAi-based therapy and its potential as
a game-changer for shrimp viral diseases. We discuss the principles of RNAi, its application in
combating viral infections, and the current progress made in RNAi-based therapy for shrimp viral
diseases. We also address the challenges and prospects of this innovative approach.

Keywords: penaeid shrimp; shrimp viral diseases; innate immune response; dsRNA; siRNA;
therapeutics; post-transcriptional gene silencing

1. Introduction

Modern shrimp farming commenced in Japan in 1933 when they successfully induced
artificial spawning and hatching larvae of Marsupenaeus japonicus (Spence Bate) [1]. Sub-
sequently, shrimp aquaculture evolved into a commercial enterprise in Asia during the
1950s [2], and in America during the 1970s [3]. In recent decades, this sector has experienced
rapid expansion owing to rising consumer demand, leading to substantial contributions to
the socio-economic progress of coastal communities in numerous developing nations [4].
As this industry generates significant levels of income in underdeveloped countries, it
aids in reducing economic gaps between nations [5]. In fact, penaeid shrimp have made
a considerable economic contribution to Southeast Asia’s countries of Thailand, Vietnam,
Indonesia, and the Philippines [6].
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Stress factors have enhanced disease susceptibility as a result of rapid growth and
intensification of shrimp farming [7,8]. However, the expansion of worldwide shrimp
aquaculture production has encountered a significant hurdle due to the rise in frequent
disease outbreaks, resulting in massive mortality within the industry [9]. As a result, shrimp
diseases pose significant challenges to the aquaculture industry, leading to substantial
economic losses worldwide. Infectious agents such as bacteria, fungi, and viruses, have
emerged as major culprits responsible for devastating shrimp populations [10,11]. The
majority of shrimp diseases result from viral infections, and their detrimental impacts are
almost four times stronger compared to bacterial diseases [9].

Most of the time, appropriate shrimp farm management practices can stop parasitic
and bacterial diseases from spreading, but this preventive approach may not be as effective
against viral diseases [12,13]. Conventional approaches to disease management, including
antibiotics and vaccines, have limitations in terms of efficacy, specificity, and environmental
impact [14–16]. As a result, there is a pressing need for innovative therapeutic strate-
gies that can effectively combat these diseases while minimizing their detrimental effects.
Most recently, RNA interference (RNAi) technology has gained considerable attention as a
promising tool for the treatment of shrimp diseases. RNAi is a conserved cellular mecha-
nism that regulates gene expression by suppressing the activity of specific genes [17,18]. It
offers a targeted approach to interfere with the replication and pathogenesis of infectious
agents, making it an attractive alternative for disease control in shrimp aquaculture. This
review provides an overview of the present situation and upcoming approaches related to
the therapeutic use of RNAi to combat viral diseases in shrimp.

2. Viral Diseases in Shrimp

Viral infection causes mortality, slow growth, and deformities in shrimp at different
ages of their life. Shrimps are susceptible to a variety of viral diseases, and the viral
pathogens can spread rapidly within aquaculture systems. They are vulnerable to over
20 different viruses, belonging to more than 10 distinct families [17] (Table 1). Among
these, white spot syndrome virus (WSSV), yellow head virus (YHV), Taura syndrome virus
(TSV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) have been
extensively studied and their characteristics well understood [4,19]. These are particularly
dangerous because of their widespread occurrence and significant impact on the economy.

Table 1. Different viral pathogens of shrimp.

Virus Abbreviation Family Genome
Type

Year of
Emergence

Country of
First

Appearance
Reference

Infectious hypodermal and
hematopoeitic necrosis virus IHHNV Parvoviridae ssDNA 1981 Hawaii, USA [20]

White spot syndrome virus WSSV Nimaviridae dsDNA 1992 Taiwan [21]
Hepatopancreatic parvovirus HPV Parvoviridae ssDNA 1984 China [22]

Spawner-isolated mortality virus SMV Parvoviridae ssDNA 1993 Australia [23]
Lymphoidal parvo-like virus LPV Parvoviridae DNA 1991 Australia [23]

Baculovirus penaei BP Baculoviridae dsDNA Late 1990s Mexico [24]
Monodon baculovirus MBV Baculoviridae dsDNA 1977 Taiwan [4,25]

Shrimp hemocyte iridescent virus SHIV Iridoviridae DNA 2014 China [26]
Taura syndrome virus TSV Picornaviridae (+) ssRNA 1992 Ecuador [4]

Infectious myonecrosis virus IMNV Totiviridae (+) ssRNA 2002 Brazil [9]
Covert mortality nodavirus CMNV Nodaviridae RNA 2009 China [27]

Penaeus vannamei nodavirus PvNV Nodaviridae RNA 2004 Belize [28]
Yellow head virus YHV Roniviridae (+) ssRNA 1990 Thailand [4]

Gill associated virus GAV Roniviridae (+) ssRNA 1996 Australia [29,30]
Laem Singh virus LSNV Leuteovirus-like (+) ssRNA 2003 Thailand [31]
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3. The Antiviral Immunity in Shrimp

Viral pathogens have developed strategies to evade shrimp’s immune defenses.
Shrimp, in contrast to vertebrates, only have innate immunity, a type of non-specific
immune response made up mostly of cellular defense and humoral defense [32]. Cellular
immunity is a vital component of the immune response in organisms, including shrimp. It
encompasses various processes, such as phagocytosis, killing, and elimination of pathogens,
as well as apoptosis, to combat microbial infections [32,33]. Shrimps also produce antimi-
crobial peptides that can directly target and destroy viruses [34]. Additionally, they can
generate reactive oxygen species (ROS), which are toxic molecules that can damage viral
particles and infected cells [35]. This cellular immune response plays a crucial role in
recognizing and removing pathogens, thereby maintaining the overall health and integrity
of the organism.

In recent years, an increasing number of investigations have reported evidence high-
lighting the significance of RNA interference (RNAi) as a critical strategy for shrimp in
defending against viral invasions. Initially identified in plants and nematodes, subsequent
studies revealed its presence in various eukaryotes [36]. Increasing evidence suggests that
RNAi serves as a crucial antiviral immune response in animals.

4. Current Therapeutic Strategies to Minimize the Impacts of Viral Diseases

In the past 20 years, researchers devised and tested numerous strategies in experi-
mental settings to combat the detrimental effects of viral diseases, specifically focusing on
WSSV in shrimp aquaculture. Products that have been evaluated include:

4.1. Different Antiviral Agents

In the past decade and a half, several natural antiviral agents have been examined for
their efficacy in shrimp against WSSV. These antiviral substances were delivered orally to
shrimp before a WSSV challenge. The outcomes of a research investigation that involved a
diet enriched with a derivative from Spirulina demonstrated no noticeable antiviral benefits,
but instead, a slight delay in the rate of mortality [37]. In contrast, the oral application of a
compound called bis[2-methylheptyl]phthalate derived from the leaves of Pongamia pinnata
effectively hindered the WSSV progression and reduced the mortality rate among affected
shrimp (ranging from 60% to 20%) [38]. In the sole study on using the synthetic antiviral
agent cidofovir against WSSV infection, it outperformed the Spirulina-supplemented diet
in reducing and delaying mortality during intramuscular WSSV challenge. However,
cidofovir was unable to hinder the occurrence of WSSV infection [37].

4.2. Immunostimulants

These products are derived from various sources including algae (Sargassum polycys-
tum) [39], herbs [40], fungi (Saccharomyces cerevisiae, Schizophyllum commune) [41,42], and
bacteria (Bacillus sp.) [41]. These life forms have cellular walls comprising elements such
as peptidoglycans, β-glucans, and/or lipopolysaccharides. These compounds trigger both
humoral and cellular immune responses in shrimp [41,43]. Experimental animals are fed
immunostimulants prior to and at the time of the WSSV challenge, and the outcomes in-
dicate a decrease in mortality when compared to untreated groups [39,40,44,45]. However,
it is important to note that prolonged utilization of immunostimulants could result in im-
mune system exhaustion in shrimp [45,46]. This can result in decreased effectiveness of the
immunostimulants and potentially have adverse effects on the shrimp’s immune system.

4.3. DNA Vaccines

A vaccine is a form of biological preparation designed to enhance immunity against a
particular disease or a set of diseases [47]. Initially, the method of electroporation was used
to introduce foreign DNA into P. monodon eggs and embryos in shrimp. The effectiveness
of this approach varied between 37% and 19%, and the rate at which transgenic eggs
progressed into juvenile shrimp with viability was merely 0.6% [48]. In another study
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conducted on M. japonicus, DNA vaccine was delivered to embryos through particle bom-
bardment, electroporation, and microinjection. Out of these methods, microinjection was
identified as the most successful, as it facilitated the delivery of greater quantities of foreign
DNA [49]. Recent studies evaluated the protective efficacy of DNA vaccines against WSSV
by encoding WSSV envelope proteins such as vp281, vp35, vp28, and vp15 [50,51]. While
DNA vaccines have been successful in some contexts, their efficacy in combating shrimp vi-
ral diseases appears limited. The intricate immune response of shrimp and the complexities
of their viral infections may pose hurdles for DNA vaccines to induce adequate protection.
They may not be the most suitable solution for addressing viral diseases in shrimp.

4.4. Changing the Water Temperature

Studies have shown that manipulating the temperature of the aquatic environment can
significantly reduce the incidence and severity of viral infections among shrimp populations.
Raising the water temperature to 32 ◦C led to a decrease in virus reproduction and a
reduction in shrimp mortality (ranging from 0% to 30%), in contrast to the 100% mortality
observed in specimens kept at 27 ◦C [37,52]. The method of WSSV inoculation did not
affect the protective effects of high-temperature treatment [53]. Hyperthermia still had a
significant beneficial effect even when maintained at 33 ◦C for 18 h, with mortality ranging
from 0% to 40% [52]. Studies carried out on both shrimp and crayfish have revealed that
while hyperthermia reduces virus replication, the organisms still retain a certain level of
infection, which is detectable through real-time PCR methods [54,55]. Similarly, reduced
water temperature proves to be efficacious in suppressing virus replication among species
inhabiting temperate or cold-water regions. For M. japonicus shrimp, a temperature of 15 ◦C
exhibited better suppression of WSSV replication compared to 33 ◦C [56]. Similarly, crayfish
species such as Astacus astacus (Linnaeus), Procambarus clarkii (Girard), and Pacifastacus
leniusculus (Dana) kept at temperatures of 4, 10, or 12 ◦C, exhibited no mortality when
subjected to WSSV infection. Conversely, animals infected with WSSV and maintained
at temperatures between 22 ◦C and 24 ◦C experienced complete mortality [57,58]. Even
though the exact process causing the suppression of virus replication is not clear, there is a
proposition that hyperthermia could trigger apoptosis in infected cells [55] thereby halting
viral progression. An alternative theory suggests that hyperthermia might disturb the
crucial biochemical characteristics of enzymes required for virus replication. This disruption
could impede replication even as the animals still remain infected [37]. Hyperthermia, while
considered a potential strategy to impede viral replication in shrimp, may not guarantee
a complete halt in the replication process. Despite its inhibitory effects, viral replication
might persist to some extent even under elevated temperatures.

4.5. RNAi Based Therapy

Recently, RNAi technology has been studied in the context of shrimp farming as a way
to target and reduce the expression of genes linked to shrimp diseases. RNAi is a natural
process that occurs after transcription, where double-stranded RNA (dsRNA) induces the
degradation of mRNA transcripts that are homologous to it [15,59]. The multidomain
ribonuclease III enzyme dicer cleaves the dsRNA into fragments of 21 to 23 nucleotides (nt),
with characteristic 2-nt 3’ overhangs [60–62]. These specific dsRNA fragments, known as
small interfering RNAs (siRNAs), confer sequence specificity in subsequent steps that lead
to the degradation of target viral mRNA inhibiting viral replication [63]. In shrimp, the
use of vp28 and vp37 siRNA effectively eliminates WSSV virions from M. japonicus [64,65]
and Litopenaeus vannamei (Boone) [66,67] shrimp, challenged with WSSV, demonstrating
the efficiency of siRNA-based RNAi as a technique to combat viral infections in shrimp.
YHV-specific dsRNA-injected shrimp targeting the RdRp and rr2 genes do not exhibit
yellowhead disease after the YHV challenge [68–70]. Numerous RNAi-linked genes in
shrimp have been identified across different species of shrimp (Table 2).
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5. Basic Mechanism of RNAi

In 2005, multiple research teams reported that the administration of long dsRNA
molecules designed for specific viral genes substantially protected shrimp from a fatal viral
infection by silencing the activity of the targeted viral genes [71–73]. Basically, RNAi is
a widely conserved mechanism that regulates gene expression by efficiently degrading
target messenger RNAs (mRNAs), leading to the silencing of target genes [18]. This process
starts when dsRNAs are introduced or produced within a cell [17,62,74]. Upon entering the
cytoplasm, these dsRNAs become substrates for an enzyme called Dicer, which has multiple
domains and acts as a ribonuclease III [60]. Once Dicer cleaves the dsRNAs into shorter
fragments called siRNAs, these siRNAs are recognized by the RNA-induced silencing
complex (RISC) [75]. RISC, composed of several enzymes, binds to the double-stranded
siRNAs and unwinds them. As a result, the sense strand of the siRNA is released. In
certain organisms, this sense strand can trigger the synthesis of additional dsRNA through
an enzyme called RNA-dependent RNA polymerase (RdRp). Meanwhile, the antisense
siRNA strand remains bound to RISC, serving as a sequence that guides the targeting of
the enzyme complex. Once RISC binds to a complementary mRNA molecule, it exhibits its
nuclease activity and cleaves the mRNA strand that corresponds to the siRNA sequence.
Subsequently, the damaged mRNA is degraded by the cellular machinery, resulting in the
specific silencing of the target gene at the post-transcriptional level [17,74].

6. Shrimp RNAi as a Virus-Fighting Weapon

Controlling viral diseases in the shrimp industry is still a significant and ongoing
concern. Outbreaks of these diseases, particularly in economically important species such
as P. monodon and L. vannamei, have resulted in substantial production losses in various
locations since the early 1990s [76]. Shrimp are vulnerable to a variety of pathogens,
including bacteria, viruses, fungi, parasites, protozoa, and rickettsia [77]. While bacterial,
fungal, and protozoan infections can be controlled with better farming techniques, regular
sanitation, and the use of chemotherapeutics, viral pathogens pose a more significant
challenge [78].

The precise molecular mechanisms underlying the immune responses against viruses
are not yet known for most crustacean species [79]. Therefore, it is crucial to comprehend
how viruses enter and spread in shrimp, and the interactions between the host and the
pathogen at molecular and cellular levels, to develop effective strategies for combating
viral infections in shrimp [80]. The discovery of RNAi has led to the identification of key
proteins involved in the RNAi pathway, such as Dicer and Argonaute (Ago), in species
such as P. monodon [81–83], L. vannamei [84,85], and M. japonicus [86]. This confirms the
existence of the RNAi machinery in shrimp. Consequently, specific sequences of dsRNA
derived from genes of economically significant shrimp pathogens such as IHHNV, TSV,
WSSV, and YHV have been targeted, and their effectiveness in promoting shrimp survival
and interfering with viral replication has been demonstrated (Table 2).

Multiple studies have shown that administering pathogen-specific dsRNA/siRNA
either before or at the same time as a viral challenge can effectively inhibit the replication
of various virus species [64,72,87–89]. Conversely, it was also demonstrated that delivering
RNAi-inducers to shrimp that are already infected can have a therapeutic effect [90–94].
According to existing literature, silencing of viral structural and non-structural proteins
simultaneously [94], as well as targeting both host and viral genes [91], significantly
improves the therapeutic response. The potential of RNAi to provide a therapeutic effect
in infected shrimp is particularly valuable in hatcheries, as it helps prevent the loss of
valuable broodstock due to viral outbreaks.
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Table 2. Application of RNAi as a defense mechanism against the different viral genes in
shrimp aquaculture.

Virus Target Gene Host Delivery
Method RNAi Inducer Reference

WSSV WSSV051 P. monodon Oral Bacterial expressed dsRNA [95]
Rab7 P. monodon Injection Transcribed dsRNA [80]
Vp28 L. vannamei Oral Synthesized [67]
Vp28 L. vannamei Injection Transcribed dsRNA [66]

M. ja ponicus Injection Synthesized [64]
ß-integrin M. ja ponicus Injection In vitro transcribed dsRNA [96]

Vp37 L. vannamei Injection Synthesized [65]
rr2 L. vannamei Injection Bacterial expressed dsRNA [70]

V9 P. monodon, M.
ja ponicus Injection Synthesized [97]

V26 L. vannamei Injection Transcribed dsRNA [98]
YHV Rab7 P. monodon Injection Transcribed dsRNA [80]

gp116, gp64 P. monodon Transfection Transcribed dsRNA [72]
RdRp P. monodon Transfection Transcribed dsRNA [99]
RdRp L. vannamei Injection Bacterial expressed dsRNA [68]
RdRp L. vannamei Oral Microalgal expressed dsRNA [69]

rr2 L. vannamei Injection Bacterial expressed dsRNA [70]
YHV-pro P. monodon Injection Bacterial expressed dsRNA [73]

EEA 1 P. monodon Injection Bacterial expressed dsRNA [100]
TSV Rab7 L. vannamei Injection Bacterial expressed dsRNA [101]

Lamr L. vannamei Injection In vitro transcribed dsRNA [102]
LSNV RdRp P. monodon Oral Bacterial expressed dsRNA [103]
GAV ß-actin P. monodon Oral Bacterial expressed dsRNA [88]

IMNV ORF1a, ORF1b L. vannamei Injection Synthesized [104]

7. siRNA Mediated RNAi

In the process of RNAi mediated by siRNA, exogenous dsRNAs encompassing repeti-
tive sequences and transcripts capable of forming long hairpin structures, undergo process-
ing by Dicer enzyme to generate siRNA duplexes [105]. These siRNA duplexes possess
specific characteristics, such as a 3′OH, a 5′ phosphate (PO4), and 3′ dinucleotide over-
hangs [17]. The siRNA duplex then associates with the Ago protein to form the precursor
RNAi-induced silencing complex (pre-RISC). Within this complex, Ago cleaves one strand
of the duplex, known as the passenger strand. Eventually, the mature RISC, consisting of
an Ago protein and the guide strand, targets complementary mRNA molecules, resulting
in translational repression [105] (Figure 1).

In Penaeus japonicus (Spence Bate) shrimp, siRNA-mediated RNAi is an essential im-
mune protection mechanism that plays a significant role in responding to viral infections
by degrading viral mRNA molecules [64]. This antiviral strategy is based on the premise
that viruses produce dsRNA as part of their life cycle [106]. When a shrimp is infected
with an RNA virus, the host cells facilitate the replication of viral genomic RNA, leading
to the formation of dsRNA precursor molecules. Subsequently, the Dicer2 enzyme pro-
cesses the dsRNA to generate virus-derived siRNAs, which are then incorporated into a
ribonucleoprotein complex known as RISC, containing Ago2 protein [17]. These siRNAs
guide the RISC to specifically target and degrade viral mRNAs, thereby inhibiting virus
replication [107]. Studies have revealed that siRNAs consist of a seed region (2nd–7th
nucleotides) and a supplementary region (12th–17th nucleotides) [108]. The seed region is
responsible for the initial recognition of the target, while the supplementary region aids in
binding to the target [17]. In the case of P. monodon shrimp, it has been observed that in vitro
transcribed dsRNAs corresponding to YHV helicase, polymerase, protease, gp116, and
gp64 can effectively inhibit the replication of YHV in cultured cells [72]. Moreover, when
dsRNA targeting the protease gene of YHV is injected into P. monodon, the progression
of YHV is notably hindered, leading to a decrease in shrimp mortality [73]. These results
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highlight the significance of siRNA-mediated RNAi in enhancing the immune response of
shrimp against RNA virus invasion [17].
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Figure 1. Schematic illustration of RNAi pathway (endogenous and exogenous). The siRNA and
miRNA pathways are denoted by solid and dotted arrows, respectively. In the siRNA pathway,
Dicer cleaves dsRNA to produce siRNAs in the cytoplasm. These siRNAs are integrated into the
RISC complex and then unwound into two single-stranded RNAs known as the passenger and
guide strand. The guide strand stays inside the RISC to control the sequence-specific decay of
complementary mRNA while the exonucleases break down the passenger strand. On the other hand,
the miRNA pathway starts with endogenously encoded pri-miRNAs, which are then transcribed
by RNA polymerase II and trimmed by Drosha to produce pre-miRNAs. These precursors are
subsequently transported to the cytosol where Dicer cleaves them to create miRNAs. Similar to the
siRNA pathway, the miRNA duplex unwinds and one of the strands, the so-called mature miRNA,
assembles into RISC, causing either mRNA breakage or translation inhibition, depending on the
degree of similarity between the miRNA and the mRNA target. Exogenous RNAi triggers (pink
dashed arrows), such as vector-based shRNAs and synthetic dsRNAs, siRNAs, and miRNAs, may
also induce RNAi.

During DNA virus infection, the mRNA transcripts originating from the viral genome
have the capacity to shape structures exhibiting double-stranded attributes, referred to as
mRNA hairpins. Dicer2 enzyme can identify and process these hairpin structures [109]. The
resulting siRNA duplexes are incorporated into the RISC, which facilitates the degradation
of viral mRNA molecules, leading to the suppression of virus infection [110]. In M. japonicus
shrimp, it has been observed that the shrimp can produce a specific antiviral siRNA
called vp28-siRNA in response to WSSV infection. In the process of RNAi, against DNA
viruses, the essential involvement of shrimp Dicer2 and Ago2 proteins is fundamental
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for the formation and functioning of vp28-siRNA [109]. These findings highlight the
effectiveness of siRNA-mediated RNAi as a strategy employed by animals to combat DNA
virus infections [17].

8. miRNA Mediated RNAi

miRNAs play a crucial role in regulating numerous biological functions within organ-
isms, including cell development, proliferation, differentiation, metabolism, apoptosis, and
immunity [111]. One of the distinctive characteristics of miRNA-mediated regulation is its
network-based nature. This means that a single miRNA can target multiple genes simul-
taneously, and multiple miRNAs can also target the same gene [112–116]. Such complex
interactions between miRNAs and their target genes contribute to the intricate regulatory
networks that govern diverse biological processes.

In the pathway of RNAi mediated by miRNA, miRNAs are produced from noncoding
RNA transcripts or small introns that fold into partially formed stem-loop structures [117].
The process begins with the transcription of primary miRNAs (pri-miRNAs) by RNA
polymerase. These pri-miRNAs are then trimmed by an enzyme called Drosha, resulting
in the production of ~70 nucleotide precursors called pre-miRNAs (Figure 1). The pre-
miRNAs, bound to exportin 5, are transported from the nucleus to the cytoplasm. In the
cytoplasm, the pre-miRNAs are further processed by an enzyme called Dicer, resulting in
the formation of miRNA duplexes. The miRNA duplexes associate with Ago proteins to
form a precursor RNA-induced silencing complex (pre-RISC). The passenger strand of the
duplex is subsequently removed, leaving behind the mature RISC complex that contains
the guide strand. This mature RISC complex then guides the recognition and binding of the
target mRNA, leading to post-transcriptional gene silencing [117]. The miRNA molecules
possess a key domain known as the seed sequence, which comprises the 2nd to 7th bases.
This seed sequence plays a critical role in recognizing and binding to target mRNA through
Watson–Crick base pairing [118]. In M. japonicus, the pri-miRNAs transcribed from the
genome undergo processing by the enzyme Drosha, resulting in the generation of pre-
miRNAs. Subsequently, these pre-miRNAs undergo additional processing into mature
miRNAs within the cytoplasm, facilitated by the enzyme Dicer1 [119,120]. The mature
miRNAs associate with the Ago1 protein in shrimp, forming the RISC, which facilitates
post-transcriptional gene silencing [63,119–121].

Based on the discoveries made in shrimp, it can be inferred that the pathways in-
volving miRNA-mediated and siRNA-mediated mechanisms are largely separate in these
organisms. The production of siRNA or miRNA duplexes is carried out by different
enzymes, namely Dicer 1 or Dicer 2, and these duplexes are then sorted into function-
ally distinct RISC that contain either Ago1 or Ago2 proteins. These findings align with
similar observations made in fruit flies [122] but differ from what has been observed in
mammals [123].

Recent investigations have demonstrated increasing evidence highlighting the crucial
roles of miRNAs in the regulation of antiviral responses in aquatic organisms [63]. Studies
have reported that shrimp miRNAs can exert antiviral effects by targeting specific genes,
leading to the promotion of cellular phagocytosis and apoptosis, thus suppressing virus
infection [63,124,125]. For instance, in WSSV infection, the viral miRNA WSSV-miR-N24
directly acts on the shrimp caspase 8 gene, inhibiting apoptosis and consequently resulting
in an increased number of WSSV copies in M. japonicus shrimp [124]. Furthermore, shrimp
miRNAs have been found to activate multiple immune pathways simultaneously, leading
to the suppression of virus infection [125]. An example is miR-12 in shrimp (M. japonicus),
which targets shrimp genes BI-1 (transmembrane BAX inhibitor motif containing 6) and
PTEN (phosphatase and tensin homolog), as well as the viral gene wsv024, thereby trigger-
ing phagocytosis, apoptosis, and antiviral immunity [125]. Additionally, shrimp miRNAs
have been implicated in the interplay between cellular autophagy and virus infection [126].
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9. Evaluation of RNAi as a Remedy to Combat Viral Infection

RNAi offers a suitable alternative strategy by degrading the mRNA responsible
for crucial viral proteins, effectively preventing the production of functional viral par-
ticles [127,128]. The efficacy of RNAi has been demonstrated in combatting various viral
infections [129,130]. Numerous research investigations have employed sequence-specific
dsRNA to impede the replication of viruses such as TSV, IHHNV, YHV, WSSV, LSNV, and
GAV in shrimp [71,87,88,90,103]. These studies involve the targeted suppression of particu-
lar genes such as Vp28 [67], Vp37 [65], rr2 [70], V9 [97], rab7 [80], a caspase-3 protein [131],
and others (Table 2).

The application of dsRNA to a primary culture of black tiger shrimp lymphoid cells
(Oka cells) demonstrated defense against YHV infection [72]. Similarly, the introduction of
dsRNA through injection conferred immunity to WSSV and TSV in Pacific white shrimp, L.
vannamei [132]. It was possible to achieve a systemic and dose-dependent reduction in YHV
infection in P. monodon by specifically administering certain dsRNA molecules [71,73,132].
Research conducted using dsRNA targeting a potential protease found in TSV demonstrated
that dsRNA with a specific sequence effectively suppressed TSV replication (resulting in
an 11% mortality rate) in orally infected shrimp. In contrast, the control group experienced
a complete mortality rate of 100% by the fifth-day post-infection [71]. Specific dsRNA has
effectively hindered the replication of IHHNV or HPV. In an in vivo trial involving the
intramuscular administration of dsRNA targeting YHV protease, the treated shrimp exhibited
no mortality (0%) after 10 days following the challenge. In contrast, the control group
experienced over 90% mortality [73]. Prophylactic administration of in vitro transcribed long
dsRNA corresponding to viral genes vp28, vp281, and protein kinase in Fenneropenaeus chinensis
(Osbeck) resulted in survival rates of 100%, 53%, and 93%, respectively, when administered up
to 3 days before viral challenge [133]. Longer dsRNA molecules have the potential to generate
a more diverse range of effective siRNAs incorporated into the RISC compared to shorter
counterparts [72].

The application of YHV-specific dsRNA to shrimps infected with the virus within 12 h
of infection completely halted viral replication and averted shrimp mortality [92]. This
finding implies that besides its preventive role, RNAi could also be employed as a curative
approach. In a different investigation, the complete elimination of WSSV in juvenile P.
japonicus was achieved through a series of three consecutive injections of vp28-siRNA
administered at 0, 24, and 48 h after the challenge [64]. Numerous investigations have
been conducted concerning dsRNA targeting WSSV, primarily due to its significant threat
in shrimp farming. Varied levels of success have been attained in suppressing WSSV
replication through the utilization of sequence-specific dsRNA directed at diverse genes
responsible for both structural and non-structural proteins. Despite the majority of these
studies testing RNAi’s ability to hinder diseases or viral activity being conducted on a
small scale, the positive results strongly suggest RNAi’s substantial potential for improving
shrimp survival in aquaculture.

10. Delivery Strategies of RNAi Molecules

The method of delivering therapeutic molecules in RNAi-based therapy is a cru-
cial concern [134]. Gaining insights into gene functionality and managing diseases in
diverse aquatic organisms, it is essential to optimize effective protocols for delivering RNA
molecules into cells or organisms. RNAi holds great potential for treating a wide range of
diseases. However, the successful translation of RNAi from the laboratory to real-world
applications faces challenges in delivering RNA molecules to specific cells of therapeutic
interest within the organism. Various barriers exist, both inside and outside cells, that
require careful design of delivery strategies. A variety of delivery techniques have been
developed to effectively transport siRNA molecules, both in laboratory settings and in liv-
ing organisms. These methods include electroporation, microinjection, oral administration,
polymer-based systems, protein-based systems, and lipid nanoparticles [134] (Figure 2).
The approach chosen will depend on the objectives of the study, the cell types that will be
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targeted, and/or the accessibility of the target [135]. There are benefits and drawbacks to
each delivery strategy.
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In 1999, the initial trial to introduce foreign DNA into P. monodon shrimps was carried
out using the electroporation delivery technique [48]. Subsequently, electroporation has
been employed multiple times for introducing foreign DNA into other organisms such as
Litopenaeus schmitti, (Burkenroad) and Artemia [136,137]. The electroporation technique has
also been utilized to introduce siRNA molecules into embryos of a model shrimp species
(Artemia sinica) to downregulate the As-sumo-1 gene [138]. These studies provide support
for the efficacy of the electroporation technique in delivering nucleic acids into fish and
shellfish embryos during early developmental stages. Furthermore, electroporation enables
the delivery of nucleic acids to a large number of zygotes or embryos simultaneously [134].

The microinjection technique has been extensively employed for introducing nucleic
acids, including dsRNA, into various fish and shellfish species at different developmental
stages. Several studies have utilized microinjection to deliver siRNA to aquatic animals,
yielding varying degrees of success. Examples of these studies include the delivery of
siRNA to Daphnia magna (Straus) [139], Macrobrachium rosenbergii (De Man) [140], P. van-
namei [141], and P. monodon [142]. The injection approach is employed when a precise
amount is needed to be administered or in cells that require extra safety, such as zy-
gotes [135].

Various transfection reagents have been utilized to introduce siRNA into diverse cell
lines. Lipofectamine 2000 and Oligofectamine (Invitrogen) are commonly employed for
siRNA delivery. Currently, no chemical transfection method for delivering dsRNA to
shrimp has been reported. However, in an experiment involving DNA transformation in
L. vannamei, successful results were achieved by microinjection, electroporation, and the
use of the jetPEI transfection reagent method. This suggests that jetPEI has the potential
to introduce dsRNA into shrimp embryos, at least in the case of this specific shrimp
species [143,144].

Vector-based delivery methods encompass approaches that utilize plasmids and
viruses. Viral vectors have been acknowledged as an effective delivery strategy for RNAi
technology. However, their usage in aquaculture is restricted due to concerns about trig-
gering detrimental immune responses and the potential risk of integrating into the host
genome [145,146].

The administration of RNAi therapeutic molecules through oral delivery has shown
success in various arthropod species. This can be achieved by delivering the molecules in a
naked form, conjugated with a polymer, or using bacteria that carry specific dsRNA/siRNA.
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Additionally, incorporating the molecules into the feed of fish or shellfish has also been
effective [147–149]. The utilization of nanoparticulate RNAi to specifically target the WSSV
vp28 gene resulted in significant antiviral efficacy. The study successfully suppressed
the gene’s activity in both healthy and diseased models, providing substantial protection
against viral challenges [150]. The most effective delivery of RNAi molecules has been
achieved by the oral intake of dsRNA-enriched bacteria and viable brine shrimp (Artemia)
zygotes [135]. However, the oral route stands out as the most encouraging approach for
delivering RNAi in aquatic environments [151].

11. Challenges in RNAi Therapy

RNAi has gained recognition as a potent technique for modulating gene function and
is seen as a promising approach for disease pathogen control in aquaculture. Despite the
enthusiasm surrounding this impressive biological mechanism for precise gene regulation,
several challenges and considerations need to be addressed before RNAi therapy can be
practically implemented in shrimp aquaculture. These challenges include the risk of off-
target effects, the activation of innate immunity, and notably, the successful administration
of RNAi agents in vivo.

Ensuring the specificity of RNAi molecules is crucial to avoid unintended silencing
of non-target genes. Off-target effects, where unintended genes are suppressed, can lead
to undesirable consequences and potential side effects [152]. The theoretical specificity of
RNAi is not fully realized, and off-target effects represent a significant challenge in the
field of siRNA-based therapeutics. The comprehensive impact of individual siRNAs on the
entire genome is largely unknown and difficult to predict. Extensive research has revealed
that many experimentally validated off-target effects are associated with a 6 to 7 nucleotide
match in the “seed” region of the siRNA [153–155]. Additionally, studies have shown
that even an 11nucleotide match between the siRNA and unintended targets can lead
to off-target gene silencing [156]. In vitro studies conducted on cell lines have indicated
that off-target effects can adversely impact cellular viability and result in a toxic cellular
phenotype [157]. Creating optimal siRNA duplexes or shRNA designs is a key approach
for reducing the occurrence of unintended effects. Various factors have been identified
in the literature that can impact the specificity of siRNAs/shRNA, including the selected
target region [158], size [159], starting nucleotide [160], GC content [160], thermodynamic
properties [161], and the presence of internal repeats or palindromes [162]. Consequently,
several computational design tools have been created to systematically and precisely assess
the off-target impacts of RNAi between siRNA sequences and target genes across the entire
transcriptome [163–165].

The effective administration of RNAi molecules to particular cells or tissues re-
mains a significant hurdle to developing a safe and successful in vivo RNAi therapy.
siRNAs/shRNAs are prone to quick excretion, nonspecific tissue distribution, poor cellular
absorption, low stability, and ineffective release within cells [166]. To enhance their stability
in intracellular and extracellular environments, chemical modifications such as altering
the backbone, substituting nucleotides with analogs, and incorporating conjugates can be
introduced into the RNA oligos [167]. However, naked siRNAs, for their negative charge
and size, generally cannot penetrate the cell membrane and reach the cytoplasm of the
target cell, which is essential for efficient gene silencing [168]. Therefore, it is vital to possess
suitable delivery techniques that enhance the concentration of siRNAs within cells and
assist in their liberation from endosomes into the cytoplasm [169]. Improper selection of a
delivery vector can diminish gene-silencing activity, increase unintended off-target effects,
and lead to toxicity [170]. Overcoming the barriers of cellular and tissue-specific delivery is
crucial for effective RNAi therapy.

Another crucial practical concern that must be considered is the potential for certain
viruses to evade RNAi-mediated suppression. This evasion can occur through mutations in
the targeted region and the presence of viral suppressors [171]. To counteract the emergence
of resistant viruses, one strategy is to simultaneously target multiple viral sequences using
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a pool of siRNAs [172]. Another commonly employed alternative is the administration of
long hairpin RNAs (lhRNA), which produce several siRNAs from one precursor without
triggering an interferon (IFN) response [173]. However, it is important to note that the
over-expression of multiple siRNAs may saturate the endogenous RNAi pathway, leading
to undesired effects [174].

Additionally, RNAi molecules and other nucleic acids have the potential to trigger
immune responses by being perceived as viral infections, which activate the interferon
system [135]. The immunogenicity of RNAi molecules, along with the delivery systems
used, can result in undesired immune reactions or diminished therapeutic effectiveness. It
is crucial to effectively handle the immune response and minimize any immune-related
adverse effects in order to ensure the success of RNAi therapy. Addressing these challenges
through ongoing research and technological advancements will contribute to the successful
implementation of RNAi therapy and its potential as a targeted therapeutic approach for
various diseases.

12. Conclusions

RNAi offers a powerful tool to combat viral, bacterial, and parasitic infections that
pose significant threats to shrimp populations. By targeting specific genes involved in
the pathogen’s life cycle or the shrimp’s immune response, RNAi can effectively silence
the expression of these genes, inhibiting the growth and replication of pathogens. This
approach could help mitigate disease outbreaks, reduce mortality rates, and improve the
overall health of shrimp stocks. Additionally, RNAi can be used to enhance the shrimp’s
innate immune system, boosting their resistance against various pathogens.

The advancement of RNAi technology, from its initial discovery to potential clinical
applications, has been remarkable. RNAi has recently emerged as a powerful tool for gene
inhibition and shows promise in managing viral diseases in shrimp. The excitement and
anticipation surrounding RNAi are well-founded; however, there are several challenges
and considerations that need to be addressed for the practical application of this modern
technology in aquaculture. These include the careful design of RNA constructs, optimizing
the dosage, selecting an effective delivery strategy, implementing chemical modifications
to enhance stability, and improving cellular uptake.

The findings and insights discussed in this review offer great promise for RNAi- based
therapy. With the increasing occurrence of viral outbreaks among shrimp populations, there
is an urgent requirement for enhanced therapeutic measures to effectively manage and
control these diseases. If the challenges mentioned earlier can be addressed in a logical and
systematic manner, RNAi-based therapies hold significant potential for combating these
viral pathogens in shrimp aquaculture compared to conventional approaches, particularly
in terms of specificity, targeted action and reduced environmental impact. Despite the
obstacles that lie ahead, RNAi remains the most promising avenue for developing powerful
and innovative therapeutic approaches against shrimp viral diseases. However, further
research and development efforts are required to overcome the existing challenges and
bring this game-changing remedy into practical application.
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