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Abstract: Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic di-
arrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV
(SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with sig-
nificant economic losses for the swine industry worldwide. Reverse genetics systems realize the
manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five
reverse genetics approaches have been successfully applied to engineer the swine CoV genome: tar-
geted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia
virus -based recombination, and yeast-based method. This review summarizes the advantages and
limitations of these approaches; it also discusses the latest research progress in terms of their use for
virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and
virus replication mechanism determination.

Keywords: emerging and re-emerging swine coronaviruses; reverse genetics system; pathogenesis;
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1. Introduction

Coronaviruses (CoVs) are the largest group of positive single-strand RNA viruses
in the Coronaviridae family, and they are represented by four genera: Alphacoronavirus,
Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. All CoVs have similar genomic
organization; they have a genome that is approximately 26–32 kilobases (kb) in length
and contains at least six open reading frames (ORFs): ORF1a, ORF1b, spike (S), envelope
(E), membrane (M), and nucleocapsid (N) [1]. Two overlapping ORFs, ORF1a and ORF1b,
encode the polymerase proteins, which are further cleaved into nonstructural proteins. The
S protein is responsible for the binding of the virus to specific host receptors, enabling its
entry into host cells; it is also the main structural protein for eliciting viral neutralization
antibodies [2–4]. E and M proteins are the most abundant and are the most conserved
membrane proteins in CoVs; as such, they are often used as the target proteins to establish
diagnostic tools [5]. N protein forms a complex with genomic RNA and interacts with M
protein during virion assembly [6].

Thus far, six CoVs have been reported to infect pigs: transmissible gastroenteritis
virus (TGEV), porcine respiratory CoV (PRCV), porcine epidemic diarrhea (PED) virus
(PEDV), swine acute diarrhea syndrome-CoV (SADS-CoV), porcine hemagglutinating
encephalomyelitis (PHEV), and porcine deltacoronavirus (PDCoV). TGEV, PRCV, PEDV,
and SADS-CoV belong to the genus Alphacoronavirus, PHEV belongs to Betacoronavirus,
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and PDCoV belongs to Deltacoroanvirus. PEDV, SADS-CoV, and PDCoV are considered
emerging or re-emerging swine CoV, whereas TGEV, PRCV, and PHEV have been known to
infect pigs for decades. PEDV was first identified in Europe in the early 1970s [7]; however,
it re-emerged in the late 2010s, when it caused significant economic losses to the swine
industry worldwide [8,9]. PED transmission was well controlled in China during the 1990s
and early 2000s because of the widespread use of CV777-based vaccines (inactivated or live-
attenuated vaccine) [10]. However, the emergence of prevalent mutant PEDV strains (such
as highly virulent PEDV variants) has limited the protection efficiency of these vaccines,
resulting in large PED outbreaks in China [11,12]. In many pig-raising countries, PED
outbreaks continue to cause substantial economic losses to the swine industry [13–15].
PDCoV was first identified in 2012 from porcine fecal samples in a Hong Kong surveillance
study [16]. Thereafter, a high prevalence of PDCoV infection among pigs was reported
in the United States and China, and it was associated with certain economic losses to the
swine industry [17,18]. SADS-CoV, a bat-origin alphacoronavirus, causes severe diarrhea,
vomiting, dehydration, and even death in pigs [19]. SADS-CoV was first detected in four
pig farms in Guangdong, China, in 2017, resulting in the death of 24,693 piglets [20]. Later,
SADS-CoV was identified in Fujian and Guangxi in 2018 and 2021, respectively [21,22].
Because SADS-CoV infection is associated with a high mortality rate in piglets, there is an
urgent need for molecular surveillance of SADS-CoV in swine farms.

Viral reverse genetics involves modifications intentionally introduced to the genome
at the viral genome level, including mutations, deletions, insertions, and substitutions.
Reverse genetics techniques are beneficial for studying viral gene functions, screening
antiviral drugs, and developing vaccines; however, because CoVs have a large genome
and a replicase gene sequence that is unstable during cloning in bacteria, establishing a
CoV reverse genetics system is difficult. Thus far, several methods, including targeted
RNA recombination, in vitro ligation, bacterial artificial chromosome (BAC)-based ligation,
vaccinia virus-based recombination, and yeast-based technology, have been applied to
construct reverse genetics systems for swine enteric CoVs. In this review, we summarize
the established reverse genetics systems for the emerging and re-emerging swine CoVs
and describe their applications to understand the effects of CoV proteins on viral virulence
and innate immunity, cell and tissue tropism, transcription regulatory sequence activity
determination, and antiviral drug screening.

2. Reverse Genetics Systems for Swine Enteric CoVs
2.1. Targeted RNA Recombination

Targeted RNA recombination was the first technique used for constructing a reverse
genetics system for recombinant PEDV in 2013. It is based on the high homologous RNA re-
combination rate in CoVs and the cell tropism determinant of S protein [23]. This technique
has also been applied to other CoVs, including feline infectious peritonitis virus (FIPV) [24],
infectious bronchitis virus (IBV) [25], and murine hepatitis virus (MHV) [26]. The system
operation of PEDV is divided into two stages (Figure 1): First, MHV S mRNA containing
the upstream and downstream homologous arms of the PEDV S gene is transcribed from
the T7 promotor and electroporated into PEDV-infected Vero cells. Then, the cells are
overlaid onto a murine cell (L cell) monolayer. The recombinant mPEDV is generated
during subsequent incubation after two rounds of plaque selection on L cells. Second, to
recover the recombinant virus, the expected mutant transcripts with homology arms are
electroporated into mPEDV-infected murine L cells. Then, the infected L cells are overlaid
onto a monolayer of Vero cells to rescue the recombinant virus. The recombinant virus is
obtained after two rounds of plaque purification in Vero cells. Although targeted RNA
recombination is the first established reverse genetics system for swine CoVs, manipulating
two-thirds of the 5′ end of the CoV genome can be difficult. No tedious cloning procedure
of the whole CoV genome is the main advantage of this approach. However, several rounds
of plaque purification are needed to obtain the recombinant CoV, which makes this method
time- and labor-intensive.
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L cells. Transcripts with expected mutations are electroporated into the recombinant virus-infected 
L cells; after 4 h post-infection, the recombinant virus with expected mutations can be obtained by 
plating the infected L cells onto monolayers of Vero cells. 
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endonucleases, such as Van91I, Bg1I, SapI, BstXI, BsmBI, AarI, and BsaI. These restriction 
endonucleases cleave DNA fragments to leave sticky ends with random bases, ensuring 
that individual fragments are ligated only directionally. After the ligated cDNA is 
purified, the infectious mRNA can be obtained through in vitro transcription. Next, the 
recombinant virus can be obtained by electroporating this mRNA into susceptible cells. 
Reverse genetics systems based on in vitro ligation have been successfully established for 
many CoVs, including MHV, PEDV, IBV, severe acute respiratory syndrome CoV (SARS-
CoV), human CoV NL63, Middle East respiratory syndrome-related CoV (MERS-CoV), and 
SARS-CoV-2 [27–32]. 

In 2016, Beall et al. established a reverse genetics system for PEDV strain PC22A [33]. 
For constructing the infectious clone of PC22A, the authors divided the PEDV genome 
into six segments for subcloning (Figure 2). The individual segments were enzymatically 
cleaved, purified, and ligated. The assembled full-length cDNA, containing a T7 RNA 
polymerase promoter at the 5′ end and a poly(A) tail at the 3′ end, was transcribed in vitro 
to generate capped full-length transcripts co-electroporated with capped N gene 
transcripts to efficiently recover an infectious virus (Figure 2). At 12 h post-electroporation, 
the medium was replaced with DMEM containing 5 µg/mL trypsin to facilitate virus 

Figure 1. Targeted RNA recombination scheme to construct recombinant PEDV with ORF3 gene
deletion [23]. MHV S transcripts with homologous arms of PEDV S gene are electroporated into
PEDV-infected Vero cells. Then, the recombinant virus is obtained by plaque purification in murine
L cells. Transcripts with expected mutations are electroporated into the recombinant virus-infected
L cells; after 4 h post-infection, the recombinant virus with expected mutations can be obtained by
plating the infected L cells onto monolayers of Vero cells.

2.2. In Vitro Ligation Method

Due to the toxicity and instability of the CoV replicase gene in the bacterial cloning
process, some researchers have ligated the full-length CoV genomic cDNA directly in vitro
and then obtained the infectious mRNA through transcription. Here, a recombinant virus
can be obtained through electroporation of the infectious mRNA into susceptible cells.
This method of ligating full-length CoV cDNA relies on type II restriction endonucleases,
such as Van91I, Bg1I, SapI, BstXI, BsmBI, AarI, and BsaI. These restriction endonucleases
cleave DNA fragments to leave sticky ends with random bases, ensuring that individual
fragments are ligated only directionally. After the ligated cDNA is purified, the infectious
mRNA can be obtained through in vitro transcription. Next, the recombinant virus can be
obtained by electroporating this mRNA into susceptible cells. Reverse genetics systems
based on in vitro ligation have been successfully established for many CoVs, including
MHV, PEDV, IBV, severe acute respiratory syndrome CoV (SARS-CoV), human CoV NL63,
Middle East respiratory syndrome-related CoV (MERS-CoV), and SARS-CoV-2 [27–32].

In 2016, Beall et al. established a reverse genetics system for PEDV strain PC22A [33].
For constructing the infectious clone of PC22A, the authors divided the PEDV genome
into six segments for subcloning (Figure 2). The individual segments were enzymatically
cleaved, purified, and ligated. The assembled full-length cDNA, containing a T7 RNA
polymerase promoter at the 5′ end and a poly(A) tail at the 3′ end, was transcribed in vitro
to generate capped full-length transcripts co-electroporated with capped N gene transcripts
to efficiently recover an infectious virus (Figure 2). At 12 h post-electroporation, the medium
was replaced with DMEM containing 5 µg/mL trypsin to facilitate virus recovery and
spread. The in vitro ligation is the commonly used method in the construction of CoV’s
reverse genetics system because it does not need to clone large DNA fragments in one vector
and has the high recovery efficacy of a recombinant virus. However, appropriate type II
restriction endonuclease sites are needed to check in CoV’s genome to ensure directional
assembly of CoV genome.
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into infectious genomic mRNA with a T7 transcription kit. The genomic mRNA is electroporated 
into Vero cells to rescue the recombinant PEDV. 
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strain AJ1102 using the pBeloBAC11 as a cloning vector in 2020 [39]. First, we constructed 
an intermediate plasmid pBAC-M-PEDV, which cloned the cytomegalovirus (CMV) 
promoter, PEDV genome segments [nucleotide (nt) 1–1,092, PacI cleavage site, followed 
by nt 22,199 to 3′ untranslated region (UTR)], a poly(A) tail, hepatitis delta virus ribozyme 
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pBeloBAC11 vector. The remaining AJ1102 genome was divided into five fragments and 
amplified through a reverse transcription (RT) polymerase chain reaction (PCR). The five 

Figure 2. Engineering the genome of PEDV by in vitro transcription [33]. The genome structures of
PEDV and the in vitro ligation approach are shown. Cohesive overhangs are shown; the length is not
to scale. The full-length cDNA of PEDV is directionally assembled in vitro and then transcribed into
infectious genomic mRNA with a T7 transcription kit. The genomic mRNA is electroporated into
Vero cells to rescue the recombinant PEDV.

2.3. BAC-Based Ligation

The CoV genome is large (26–32 kb) and has a replicase gene with cDNA sequences,
which are unstable in bacterial cloning systems. The BAC vector is based on the bacterial F’
factor, which regulates the DNA synthesis so that its copy number is kept at a low level; this
ensures the stability of its cloned genes and increases its tolerance for >300-kb genes [34]. As
such, many researchers have applied BAC plasmids to effectively construct reverse genetics
systems for CoVs, including SARS-CoV, MERS-CoV, FIPV, TGEV, MHV, and PEDV [35–38].
For instance, we constructed an infectious cDNA clone for the PEDV strain AJ1102 using
the pBeloBAC11 as a cloning vector in 2020 [39]. First, we constructed an intermediate
plasmid pBAC-M-PEDV, which cloned the cytomegalovirus (CMV) promoter sequence,
PEDV genome segments [nucleotide (nt) 1–1,092, PacI cleavage site, followed by nt 22,199
to 3′ untranslated region (UTR)], a poly(A) tail, hepatitis delta virus ribozyme (HDVr), and
a bovine growth hormone (BGH) polyadenylation sequence into the pBeloBAC11 vector.
The remaining AJ1102 genome was divided into five fragments and amplified through a
reverse transcription (RT) polymerase chain reaction (PCR). The five DNA fragments were
assembled into a pBAC-M-PEDV vector through homologous recombinations to obtain an
infectious clone of AJ1102. The recombinant virus could be recovered through transfection
of 6 µg of the recombinant BAC plasmid into Vero cells and by replacing the medium with
DMEM containing 5 µg/mL trypsin 6 h after transfection (Figure 3).
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Figure 3. Flowchart for construction of the PEDV infectious clone using BAC system [39]. The
genome structure of PEDV followed by DNA fragments amplified by RT-PCR is shown. The F1 and
F2 DNA fragments are ligated to an intermediate plasmid pBAC-M-PEDV which cloned the CMV
promoter, PEDV genome segments [nucleotide (nt) 1–1,092, PacI cleavage site, followed by nt 22,199
to 3′ UTR] a poly(A) tail, HDVr, and BGH polyadenylation sequence by homologous recombination;
similarly, F3, F4, and F5 are also ligated to pBAC-M-PEDV by homologous recombination. Finally,
DNA fragments (F3–F5) were cut by restriction enzymes PacI and SacII and then ligated to the
recombinant BAC plasmid cloned F1 and F2 with T4 DNA ligase to obtain an infectious PEDV clone
plasmid. The virus could be rescued through transfection of the recombinant BAC plasmid into
Vero cells.

The BAC system has also been applied to other swine CoVs. For example, Zhou
et al. constructed an infectious clone for PDCoV CHN-HN-1601 using a BAC plasmid
as the cloning vector [40]. The authors used pBeloBAC11 to construct an intermediate
plasmid, pBeloBAC11-M, cloning a synthesized gene including the CMV promoter, a partial
N-terminal region of the viral genome (nt 1–2,869), a partial region of ORF1b (nt 11,591–
11,687) containing a BstBI restriction site, a partial C-terminal region of PDCoV genome (nt
24,030–25,419), a 25 nt poly(A) tail, HDVr, and a BGH sequence. Then, five DNA fragments
encompassing the genome of PDCoV CHN-HN-1601 were amplified through RT-PCR,
and the first two DNA fragments were ligated into pBeloBAC11-M by seamless cloning
using an NEBuilder HiFi DNA Assembly Cloning kit (New England BioLabs, MA, USA).
Similarly, the other three DNA fragments were also ligated into pBeloBAC11-M through
seamless cloning. Finally, the infectious clone plasmid can be obtained through restriction
digestion and ligation with BstBI and MluI. Virus recovery can be performed through
transfection of recombinant BAC plasmid into LLC-PK1 cells, followed by replacement
of the medium with 10 µg/mL trypsin and 37.5 µg/mL pancreatin. The limitation of
this approach is that tedious cloning procedures are needed to obtain a recombinant BAC
plasmid encoding the full-length CoV genome. Due to the low copy number of BAC in a
bacterium, extracting a certain amount of BAC plasmid from bacteria is time-consuming.
However, several advantages, including high stability of exogenous genes, high efficacy of
cDNA transfection into susceptible cells, and easy manipulation for genes, make it is an
attractive method to establish CoV reverse genetics system [41].
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2.4. Yeast-Based Method

An advantage of using the yeast system for constructing a CoV reverse genetics
system is that >10 cDNA fragments can be ligated simultaneously such that the total
fragment length exceeds 110 kb. In 2022, Zhou et al. reported the construction of a PEDV
reverse genetics system using the yeast system [42]. The sequences of CMV promoter,
HDVr, and BGH termination signal sequence were cloned into pYES1L vector to obtain the
vector pYES1L-CMV-HDVrbz-BGH. DNA fragments encompassing the whole genome of
PEDV HM strain were amplified through RT-PCR with fidelity polymerase. Next, these
DNA fragments were ligated into pYES1L-CMV-HDVrbz-BGH through transformation-
associated recombination (TAR) in yeast to obtain pYES1L-PEDV, the HM strain infectious
cDNA clone (Figure 4). The infectious virus could be recovered through the transfection of
pYES1L-PEDV into Vero cells. Rapid assembly of the whole CoV genome in one time is
the main advantage for yeast-based method. However, this method needs extract yeast
plasmid from yeast culture; yeast plasmid extraction is more complicated, time-consuming,
and expensive than bacterial plasmid extraction [42].
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Figure 4. Engineering the genome of PEDV through yeast-based vector. The complete genome
of PEDV was divided into seven fragments with at least 30 nt overlaps with neighbor fragments.
All the seven cDNA fragments were transformed together with a linearized vector (pYES1L) into
yeast competent cells for assembly through transformation-associated recombination in yeast. After
identification and extraction of the positive clones, the full-length cDNA clones were transfected into
Vero cells for virus recovery.

2.5. Vaccinia Virus-Based Recombination

As a cloning vector, the vaccinia virus enables stable propagation of full-length CoV
genomic cDNA in cell culture, as well as genetic manipulation through vaccinia virus-
mediated homologous recombination (Figure 5). Kristen-Burmann et al. constructed an
infectious clone of PEDV by using the vaccinia virus as a cloning vector and evaluated
the pathogenic role of the ORF3 and S gene in the PEDV US strain MN [43]. The genome
of PEDV-MN was divided into eight cDNA fragments (F1–F8), which were then used to
generate four plasmids: pA, containing fragment 1 upstream and fragment 8 downstream
of the guanosine phosphoribosyl transferase (GPT) gene; pB, containing fragment 2 and
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7; pC, containing fragment 3 upstream and fragment 6 downstream of the GPT gene; pD,
containing fragment 4 and 5. The introduction of the full-length PEDV-MN genomic cDNA
into the vNotI/tk vaccinia virus genome was performed through four rounds of vaccinia
virus-mediated homologous recombination by using GPT as a positive or negative selection
marker. In brief, vaccinia virus-mediated homologous recombination was carried out as
follows: CV-1 cells (5 × 105) were infected with the respective recombinant vaccinia virus
at 1 multiplicity of infection; at 1 h after infection, 5 µg of plasmid DNA was transfected
using Lipofectamine 2000 (Invitrogen). After 2 days, plaque purification was performed
to isolate the recombinant vaccinia virus after three rounds of plaque purification with
GPT-positive or -negative selection as a selection marker.
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Figure 5. Vaccinia virus vector-based reverse genetics system for PEDV [43]. The PEDV genome
was divided into eight fragments (F1–F8), which were then used to construct four plasmids: pA,
containing fragment 1 upstream and fragment 8 downstream of the GPT gene; pB, containing
fragment 2 and 7; pC, containing fragment 3 upstream and fragment 6 downstream of the GPT
gene; pD, containing fragment 4 and 5. The genome was introduced into vaccinia virus genome
through four rounds of vaccinia virus-mediated homologous recombination with GPT as a positive
or negative selection marker. After linearization of the vaccinia virus genome by NotI digestion, the
infectious mRNA was transcribed and electroporated into Vero cells to rescue recombinant PEDV.
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However, even after the full-length cDNA of PEDV-MN was cloned into vNotI/tk
vaccinia virus genome, an attempt to recover the virus failed. The recombinant PEDV was
successfully recovered only after the authors modified the genome by substituting two
nucleotides within the 5′UTR and two additional nucleotides within the S gene based on
the sequence of cell-adapted PEDV CV777 [43]. The vaccinia virus genome has many non-
essential regions, which enable the insertion of large fragments of foreign genes without
affecting viral replication. Vaccinia virus can be easily cultured to high titers and can
effectively infect primary, mammalian, and non-mammalian cell lines. However, several
rounds of vaccinia virus-mediated homologous recombinations and plaque purifications
make this method more complicated and time-consuming.

2.6. Alternative Methods
2.6.1. Transformation-Associated Recombination Cloning

A 2020 study from Switzerland and Germany used a transformation-associated re-
combination (TAR) cloning platform to construct a CoV reverse genetics system. The
authors constructed a recombinant novel CoV SARS-CoV-2 virus using the GFP protein
to replace ORF7a, an accessory protein [44]. First, DNA fragments with 45–500 base pair
(bp) overlaps can be obtained by overlapping PCR or RT-PCR of viral RNA extracted from
viral strains. The vector DNA fragment used for TAR cloning was amplified through PCR
from vector pCC1BAC-His3 with 45-bp overlaps to fragments encompassing the 5′ or 3′

ends of different viral genomes. Next, for viral genome assembly, all DNA fragments
were transformed into Saccharomyces cerevisiae VL6-48N. This was followed by the extrac-
tion of yeast artificial chromosome (YAC) from the yeast culture medium and cleavage
of YAC-containing viral cDNA at the unique restriction site downstream of the 3′-end
poly(A) tail. After transcription in vitro, the infectious mRNA was electroporated along
with the N gene transcript into susceptible cells to recover the recombinant virus (Figure 6).
Although this method has not yet been applied to swine CoVs, it enables manipulation
of the CoV genome without multiple subcloning steps and allows for rapid recovery of
the recombinant virus. However, the efficacy of the whole viral genome assembly in yeast
requires further analysis.

2.6.2. Circular Polymerase Extension Reaction-Based Reverse Genetics System

The recently reported circular polymerase extension reaction (CPER)-based method
may be an attractive method for recombinant-positive RNA virus recovery [45]. CPER is
bacteria- or yeast-free and does not require complicated cloning procedures for establishing
an infection system. However, it requires a viral genome obtained through the amplification
of the overlapping DNA fragments encompassing the viral genome using a fidelity PCR
polymerase. A linker DNA fragment, containing homology arms, CoV 3′ UTR, a poly(A)
tail, HDVr, a BGH polyadenylation sequence, a spacer sequence, a CMV promoter sequence,
and CoV 5′ UTR, was also amplified through fidelity PCR. A single CPER using a high-
fidelity DNA polymerase can be performed in one PCR tube with the amplified DNA
fragments as templates; it yields circular DNA containing the full-length viral cDNA
(Figure 7). Then, the CPER mixture was transfected into susceptible cells to recover the
recombinant virus [46]. Thus far, CPER has not yet been used for swine CoVs. Nevertheless,
Torii et al. constructed a reverse genetics system for SARS-CoV-2 using a CPER-based
method and successfully inserted two reporter genes, sfGFP and HiBiT luciferase genes,
into the genomic sites of ORF7a and ORF6 genes, respectively [47]. CPER is an easy and
rapid method to manipulate such a large viral genome, making it an attractive approach
for rapid recovery of positive-strand RNA viruses. However, the efficacy of this approach
for obtaining recombinant viruses with expected mutations warrants evaluation.
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promoter sequence, and CoV 5′ UTR. The linker sequence and overlapping DNA fragments were
assembled through CPER, and, then, the CPER mixture was transfected into susceptible cells for
virus recovery.
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3. Application of Reverse Genetics Systems to Swine Enteric CoVs
3.1. Virulence Determinant Identification

Identification of the virulence factors in CoVs is essential for the rational design of
live-attenuated vaccine candidates. To date, an extensive effort has been made toward
understanding the virulence factors of the emerging and re-emerging swine CoVs [48–55].
Many studies have suggested that the virulence of PEDV is associated with its S protein.
In 2017, Hou et al. constructed a recombinant PEDV with a 197-amino-acid deletion in
the N-terminal domain of the S1 subunit; their animal experiment results demonstrated
that the deleted 197-amino-acid is a virulent factor in PEDV [55]. The reverse genetics
systems have also been applied to evaluate the role of the S1 subunit between different
genotypes. Chimeric PEDVs with the S1 subunits from different genotypes were generated,
and the results demonstrated that the S1 subunit contributes to differences in virulence
between PEDV G1 and G2 strains [56,57]. Hou et al. also constructed a recombinant
PEDV with a deleted YxxF motif at the C-terminus of the S protein; the recombinant PEDV
was noted to reduce virulence in pigs [48]. These studies suggested that the S2 subunit
is also an important virulence factor for PEDV. In 2018, Wang et al. applied the reverse
genetics systems of two PEDV strains to confirm that the S gene is not the only virulent
factor in PEDV [49]. Li recently deleted seven amino acids (aa 23–29) in PEDV E protein,
and this deletion can attenuate PEDV but retain its immunogenicity and promote IFN
expression [58].

In addition to structure proteins, nonstructural proteins, including nsp1, nsp15, and
nsp16, are also linked to the virulence of PEDV. Niu et al. mutated two amino acids (N93A
and N95A) in PEDV nsp1 and noted that the recombinant virus increased viral sensitivity
to the host immune response and demonstrated an attenuation phenotype in vivo [52]. We
also found that complement component 3 (C3) significantly inhibited PEDV replication
in vitro; however, PEDV can antagonize the immune suppression of C3 via inhibition of the
nsp1 phosphorylation of CEBP/β [59]. Mutation of the residue V50 in nsp1 can attenuate
the immune evasion effects of variant PEDV. In 2020, Deng et al. inactivated three interferon
antagonists (nsp1, nsp15, and nsp16), thus attenuating PEDV pathogenesis [53]. At least
11 viral proteins encoded by PEDV can inhibit the IFN responses, including nsp1, nsp3,
nsp5, nsp7, nsp14, nsp15, nsp16, ORF3, E, M, and N [60–67]. Although the mechanisms
underlying the inhibition of IFN responses by these viral proteins vary, inactivating any of
the IFN antagonist sites in these proteins may attenuate PEDV pathogenesis. The nsp16
of PEDV encodes the 2′-O methyltransferase, which is responsible for the methylation
of the 2′-O in the first ribose of viral RNA. Hou et al. suggested that the inactivation of
2′-O methyltransferase activity in the PEDV strain PC22A can reduce its virulence [51]
and provide sufficient protection until three weeks after the viral challenge. Deng et al.
inactivated the nsp15, which encodes the endoribonuclease, to obtain an attenuated PEDV;
the recombinant virus could promote the expression of both type I and III IFN [54]. Studies
have also focus on identifying the virulence factor in PDCoV. In 2019, Zhang et al. found that
piglets inoculated with NS6-deleted PDCoV did not show any clinical signs of infection,
indicating that the accessory protein NS6 is an important virulence factor for PDCoV.
However, NS6 deletion in PDCoV would reduce the viral titers in vivo and in vitro [50].

3.2. Rational Design Vaccine Candidates

The aforementioned virulence factors for swine CoVs can be the target for manipula-
tion by reverse genetics systems for rapid virus attenuation. The attenuated virus particles
can then serve as attenuated vaccine candidates. By using the reverse genetics system of
PEDV AH2012/12, we recently proved that the C-terminus of the S2 subunit contributes to
PEDV virulence. We further confirmed that compared with the killed vaccine, the recombi-
nant PEDV with seven-amino-acid deletion at the C-terminus of S protein elicits increased
immunoglobulin (Ig) G and IgA, neutralization antibody production, and better protection
effects against virulent virus challenge.
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The efficient replication of many swine CoVs, such as PEDV and PDCoV, requires the
presence of trypsin. By using the reverse genetics system, some studies have identified the S
protein of PEDV as the determinant of this trypsin dependency [68–70]. Substitution of the
S2720–892 aa with a trypsin-independent strain or the furin cleavage site in S protein induces
trypsin independence during PEDV replication. Notably, replacement of S2894–1386 aa in G2
PEDV with the trypsin-independent G1 strain can confer protective effects against both
G1 and G2 PEDV challenges and enable propagation to high viral titers in vitro. Changing
the biological characteristics of the swine CoVs, such as adding trypsin independence and
increasing viral titer in vitro by using reverse genetics systems, can improve the swine CoV
vaccine manufacturing processes.

Moreover, the reverse genetics system has the potential to be an expression vector that
delivers antigens of interest. For example, Pascual-Iglesias et al. generated a recombinant
chimeric TGEV that expresses PEDV S protein, which could protect against challenges with
a virulent PEDV strain [71]. Because their study lacked animal experiments with a TGEV
challenge, it is still unknown whether the chimeric TGEV can protect against virulent TGEV
challenge. Li et al. engineered a bivalent vaccine using PEDV YN150 as the backbone to
express VP7 of porcine rotavirus, and vaccination of the piglets with the recombinant virus
protected them against both PEDV and porcine rotavirus infection [72].

3.3. Delineation of Cell and Tissue Tropism

Binding to cognate receptors is a prerequisite for the initiation of virus infection.
For instance, the binding of S protein from SARS-CoV-2 to different species’ angiotensin-
converting enzyme 2 (ACE2) is the molecular basis of the broad host range for SARS-CoV-
2 [73,74]. We previously noted that the receptor binding domain (RBD) of PDCoV binds
to the conserved residues of aminopeptidase N (APN) of different species, which exhibits
a high risk for cross-species transmission [75]. PEDV is an important swine CoV that
continues to cause economic losses to the swine industry. Isolation of wild PEDV in vitro
remains challenging; this greatly impedes the PEDV vaccine development process. A study
by Li et al. found that the S gene is the determinant for the adaptation of PEDV in both
LLC-PK1 and Vero cells [76]. Using a reverse genetics system, the authors discovered that
the S1 subunit and half of the S2 are critical for the cellular adaptability of PEDV. Similarly,
Chen et al. found that three amino acid mutations (A605E, E633Q, and R891G) in S protein
enable the attenuated PEDV strain DR13 to efficiently replicate in Vero cells [77].

CoV infection is initiated by the interaction between S protein and specific cellular re-
ceptors; this biological process largely determines a CoV′s host spectrum and tissue tropism.
Phylogenetic analysis reveals that PDCoV is closely related to sparrow CoV HKU17, which
supports the hypothesis that PDCoV evolved from avian deltacoronavirus [16,78]. Niu
et al. constructed chimeric PDCoVs that harbor the S protein of HKU17 (icPDCoV-SHKU17)
or the RBD of ISU73347 (icPDCoV-RBDISU) [79]. HKU17 and ISU73347, both sparrow
deltacoronaviruses, had the closest phylogenetic relationship with PDCoV. Notably, both
chimeric PDCoVs demonstrated decreased virulence and intestinal tropism loss in pigs;
however, they retained the ability to infect the respiratory tract. Alhamo et al. found
that the chimeric PDCoVs expressing S protein or the RBD of sparrow deltacoronavirus
demonstrated lower replication ability in DF-1 cells and poultry than wildtype PDCoV; this
result confirmed that PDCoVs, not sparrow deltacoronavirus, exhibit higher adaptability
for a cross-species infection [80]. Taken together, these findings suggest that in CoV S
protein determines their cell and tissue tropism and some key resides determine their
cellular adaptability.

3.4. Screening Antiviral Drugs for Swine Coronaviruses

Considering the high pathogenicity of most emerging and reemerging swine CoVs,
many scientists screened antiviral drugs that can inhibit pathogenic swine CoV replication.
Edwards et al. synthetically constructed a recombinant SADS-CoV with a gene encoding
tomato red fluorescent protein rather than ORF3 and applied it to understand whether
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remdesivir can efficiently inhibit SADS-CoV in vitro by calculating the florescence area [81].
In 2021, Li et al. constructed a recombinant PEDV that expresses nano luciferase (NLuc)
to develop an NLuc-based, high-throughput screening platform to identify anti-PEDV
compounds [82]. By using this platform, the authors screened 25 compounds—from a
library of 803 natural compounds—that could significantly inhibit the replication of PEDV
in vitro. Similarly, Fang et al. constructed a recombinant PDCoV that expresses NLuc by
replacing the NS6 gene to identify antiviral drugs and found that PDCoV is sensitive to
lycorine and resveratrol [83]. Chen et al. used the recombinant PEDV DR13 expressing
the green fluorescent protein (GFP) to screen potential anti-PEDV drugs from carbazole
alkaloid derivatives; the authors noted that three carbazole alkaloid derivatives exhibited
high anti-PEDV activity [84]. Taken together, these studies indicate that reverse genetics
systems are highly beneficial for antiviral research.

3.5. Determination of the Activity of Transcription Regulatory Sequences

Accessory and structural proteins are expressed by a series of nested subgenomic
RNAs, which are regulated by transcription regulatory sequences (TRSs) [85]. The assembly
of mature virions depends on the precise ratio of each viral structural protein. We Recently
evaluated the transcriptional regulatory efficacy of PEDV TRSs by inserting an EGFP
transcriptional unit between 3′UTR and the N gene of the PEDV genome using a PEDV
reverse genetics system [86]. The results showed that, among all the inserted TRSs, the TRS
of the M gene displayed the greatest ability to drive EGFP expression. The main research
progress by each reverse genetics system is shown in Table 1.

Table 1. Main research progresses using each reverse genetics system.

Types of Reverse Genetics System Main Research Progresses References

Targeted RNA recombination The ORF3 is not essential for PEDV replication; the role of cellular
adaptation of PEDV S2 in Vero cells [23]

In vitro ligation method

The 197-amino-acid of S1 is a virulent factor in PEDV; YxxF motif of
S2 subunit is associated with PEDV virulence; nonstructural proteins
(nsp1, nsp15, and nsp16) are virulence factors for PEDV; accessory

protein, NS6, is the virulence factor for PDCoV; PEDV nsp14
determines the viral genetic stability; Screening antiviral drugs

for SADS-CoV

[48,50,51,53–55,81]

BAC-based ligation

Screening antiviral drugs for PDCoV; E protein is associated with
PEDV pathogenicity; the seven-amino-acid motif is associated with

the PEDV virulence; determined the regulatory activity of PEDV
TRSs; PEDV can antagonize the immune suppression of C3 via

inhibiting nsp1 phosphorylation of CEBP/β; trypsin-determinant via
PEDV S2

[58,59,62,83,86]

Yeast-based method The ORF3 is not essential for PEDV replication [42]

Vaccinia virus-based recombination The role of ORF3 and S in the pathogenicity of PEDV [43]

4. Concluding Remarks

Despite the challenges associated with establishing the reverse genetics systems for
swine CoVs, several research teams have generated the infectious cDNA clones of swine
CoVs. The availability of reverse genetics systems has enabled precise genetic manipulation
of the viral genome. The reverse genetics systems of swine CoVs have been used extensively;
for instance, they have been used to investigate the biological function of CoV proteins,
elucidate CoV transcriptional regulatory mechanism, screen antiviral drugs for CoVs, and
identify virulence factors and cell tropism related to CoVs. The studies reported thus far
deepen our understanding of the biology of swine CoVs and assist in the rational design
of a new generation of vaccines with improved safety and efficacy for the emerging and
re-emerging swine CoVs.
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