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Abstract: We present a large-scale analysis of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) substitutions, considering 1,585,456 high-quality raw sequencing samples, aimed at
investigating the existence and quantifying the effect of mutational processes causing mutations in
SARS-CoV-2 genomes when interacting with the human host. As a result, we confirmed the presence
of three well-differentiated mutational processes likely ruled by reactive oxygen species (ROS),
apolipoprotein B editing complex (APOBEC), and adenosine deaminase acting on RNA (ADAR). We
then evaluated the activity of these mutational processes in different continental groups, showing
that some samples from Africa present a significantly higher number of substitutions, most likely
due to higher APOBEC activity. We finally analyzed the activity of mutational processes across
different SARS-CoV-2 variants, and we found a significantly lower number of mutations attributable
to APOBEC activity in samples assigned to the Omicron variant.
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1. Introduction

Coronaviruses are different types of viruses infecting humans, providing heterogenous
respiratory infections, ranging from a mild to severe phenotype [1]. In December 2019, a
novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
was diagnosed in China, being highly infectious and causing unusual viral pneumonia.
These characteristics outlined the onset of the coronavirus disease 2019 (COVID-19), which
rapidly became pandemic and widespread all over the world [2]. Manifestations of COVID-19
can vary from case to case, showing a severe course of the disease in a subset of patients,
which led to an increase of mortality and consistent economic loss as healthcare and welfare
systems experienced unprecedented work conditions [3]. Since the beginning, clinicians
have been waiting for novel therapeutic strategies from expanded research activities in
order to improve patients’ outcome. As a matter of fact, during the first wave of the pan-
demic, the management of COVID-19 cases was a problematic struggle until the spread of
vaccinations worldwide, which helped as a public health approach to mitigate SARS-CoV-2
transmission and related mortality [4].

Unfortunately, the diffusion of vaccinations against SARS-CoV-2 has not been uniform,
since predictable socio-economic aspects are still providing consistent disadvantages for
low-income countries to receive vaccines [5,6]. In low-income African countries, the
vaccination rate is still under 20%, far away from the percentage achieved by high-income
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countries [6,7]. The low vaccination rate is known to be associated with higher levels of
virus transmission, which, in turn, increases the probability of mutagenesis after every
replication process and the subsequent onset of multiple variants [8]. Indeed, SARS-CoV-2
variants have become important to consider as mutations on spike protein domains may
occur, thus potentially quenching the vast majority of SARS-CoV-2 vaccines that use spike
protein as the main immunogenic target [4,6,8].

The Omicron B.1.1.529 variant became the dominant SARS-CoV-2 strain in December
2021, first detected in South African regions and subsequently spreading worldwide in
a few weeks, due to its high transmissibility and capability to infect previously infected
or vaccinated people [9]. The mutations characterizing Omicron are able to provide a
tighter binding of the spike protein to its ligand angiotensin converting enzyme 2 (ACE2),
in addition to a substantial reduction in terms of neutralization activity of both natural and
vaccine-induced immunity, thus explaining the selective predominance of this viral strain
over the Delta variant (B.1.617.2) and the probability of re-infection in patients exposed to
previous variants [9,10].

The low vaccination rate in Africa turned out to be a risk factor in terms of increase
of mortality and selection of variants, which further compromised the efficacy of the
vaccination itself [10]. Contrary to all expectations, the mortality rate before vaccines and
after the start of the campaign remained low, which could be only partially explained by
the younger age of African people, suggesting that other genetic and phenotypic factors
might play a role in reducing morbidity and mortality in this ethnical group with a low
vaccination rate [8,11].

In general, one inborn mechanism involved in contrasting viruses in humans is based
on the presence of defense enzymes able to recognize and neutralize exogenous nucleic
acids such as virus DNA and RNA [12]. The apolipoprotein B mRNA-editing enzyme
catalytic polypeptide-like (APOBEC) family defines a subtype of enzymes able to catalyze
cytosine to uracil (C>T) deamination of foreign single-strand DNA, thus providing virus
inactivation through genomic mutation [13]. For instance, preclinical studies showed
that the APOBEC3 subfamily (A3D/F/G/H) strongly inhibited and inactivated human
immunodeficiency virus type 1 (HIV-1) in the absence of the viral protein virion infectivity
factor (Vif), which is required by HIV-1 to evade the APOBEC3-related innate immune de-
fense, based on Vif-mediated ubiquitylation and proteasomal degradation of the APOBEC3
complex [14]. Despite this inhibition, a sublethal level of APOBEC3 deamination on HIV-1
complementary DNA (cDNA) is still present, suggesting that Vif and APOBEC3 activities
are balanced [12,14]. Interestingly, the disruption of this balance has been studied to further
investigate new therapeutic approaches for antiviral therapy, based on the accumulation
of deadly mutations preventing HIV-1 replication in host tissues [15]. Furthermore, viral
restriction made by APOBEC3 may vary according to the genic polymorphism of this
deaminase subfamily and this might have played a role in shaping the HIV-1 epidemic in
the African continent [16].

Similarly, some other studies described a C>T transition in the SARS-CoV-2 virus
genome as a result of APOBEC3 activity of restriction of viruses and mobile genomic
elements, which is further supported by the demonstration of APOBEC3 upregulation
in samples derived from hospitalized patients affected by COVID-19 [17]. To date, few
data are available that pertains to the collection of samples stating the effective activity of
APOBEC3 on the SARS-CoV-2 genome in terms of C>T signature and its relationship with
genotypic and phenotypic factors such as ethnicity and clinical outcome [18,19].

2. Materials and Methods

In order to provide further insights on this topic, we collected and analyzed
1,585,456 high-quality raw sequencing samples from patients diagnosed with COVID-19
worldwide from January 2020 to April 2022. In detail, we performed a variant calling
to obtain a list of mutations for each sample, including both fixed mutations (i.e., with
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variant frequency (VF) greater than 50%) and minor mutations (with VF less or equal to
50%) [20,21]. We refer to Supplementary File S1 for the list of considered samples.

2.1. Variant Calling

Variant calling was performed by employing the iVar (https://github.com/andersen-
lab/ivar (accessed on 6 October 2022), version 1.3.1) recommended pipeline to analyze
SARS-CoV-2 ARTIC v3 amplicon sequencing data. We performed the following steps:
(1) FASTQ files were mapped to the reference genome SARS-CoV-2-ANC with bwa mem
(https://bio-bwa.sourceforge.net (accessed on 6 October 2022), version 0.7.17-r1188).
(2) Sorted BAM files were generated from bwa mem results using SAMtools (https://
www.htslib.org (accessed on 6 October 2022), version 1.10). (3) ARTICv3 primer sequences
were trimmed using the ivar trim command. (4) Trimmed sorted BAM files were built
and indexed with SAMtools. (5) Mutation calling was performed from trimmed sorted
BAM files using ivar variants. (6) Finally, SAMtools depth was used to extract coverage
information from trimmed sorted BAM files.

Quality control was performed on the mutations obtained with ivar variants. We first
selected (ultra) deep sequencing samples with a coverage of at least 100 reads in at least
90% of the viral genome. Then, we performed further filtering by selecting only mutations
with a variant frequency of at least 5%, where mutations were supported by at least
10 reads, and with a p-value resulting from the ivar variants algorithm less than 0.01.
Finally, samples with more than 100 minor mutations (after filtering) were removed.

2.2. Dataset

We analyzed a dataset obtained from 251 distinct NCBI BioProjects which included
1,585,456 samples (see Supplementary File S1 for the full list). For all samples, only Illumina
AMPLICON paired-end high-coverage sequencing data were considered; samples were
collected from multiple locations around the world. Within this dataset, we considered for
our analyses 862,385 high-quality samples having a coverage ≥ 100 in at least 90% of the
virus genome, collected between January 2020 and April 2022.

2.3. Mutational Signatures Analysis

Mutational signatures analysis was performed with non-negative matrix factorization
and standard metrics were used to determine the optimal number of signatures (rank) as
proposed by Maspero and collegues [22].

2.4. Pango Analysis

We created consensus sequences as the input to Pangolin [23] from the mutations ob-
tained from raw sequencing data. We considered mutations with a variant frequency > 0.50,
i.e., the threshold used for standard consensus sequences. We created consensus sequences
for each sample by adding to the reference genome SARS-CoV-2-ANC [21] sequence, the
substitutions, insertions, and deletions observed in the sample for each position, and by
choosing the one at a higher variant frequency if multiple mutations were detected in the
same position. On such inputs, Pangolin version v4.1.2 was executed with default parameters.

3. Results

To investigate the existence and quantify the effect of mutational processes causing
mutations in SARS-CoV-2 genomes when interacting with the human host, we analyzed
the distribution of nucleotide substitutions in our dataset. Fixed mutations are typically
transmitted during infections; therefore, they are not representative of mutational processes
occurring within a single host [21]. For this reason, we focused on nucleotide substitutions
of minor mutations, as proposed elsewhere [20]. We split our cohort in three groups
based on the number of minor substitutions observed in a sample: (i) low mutational
activity (347,323 samples, 49% of our dataset, where very low or no mutational processes
were observed) with samples showing between 1 to 2 minor substitutions; (ii) medium
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mutational activity (297,168 samples, 42% of our dataset) with samples showing between
3 to 9 minor substitutions; (iii) high mutational activity (65,162 samples, 9% of our dataset)
with samples showing at least 10 minor substitutions.

On the one hand, this analysis highlighted that more than half of the considered
SARS-CoV-2 samples had very few minor mutations, suggesting very low or absent activity
of mutational processes in these patients. On the other hand, the small set of samples (9%
of the samples in the dataset) within the high mutational activity group was observed to
account for more than 41% of all the observed minor mutations in the dataset.

It has been shown that different mutational processes may generate characteristic
mutational patterns in terms of nucleotide substitutions named mutational signatures,
which can be computationally extracted from raw sequencing data [20,22]. Mutational
signatures computational analyses fall mostly within two categories: (i) de novo discovery
of mutational signatures [22,24] and (ii) signatures assignment [22,24,25]. In the first case,
the presence of mutational processes is first assessed from the data, signatures are identified
and extracted, and finally assigned to samples. Instead, the estimation of signatures
assignments is performed by holding a set of signatures fixed and assigning them to
samples by minimizing, e.g., the mean squared error between the observed and estimated
mutational patterns for each sample.

Accordingly, we: first performed de novo discovery considering only the high mu-
tational activity group in order to guarantee efficient signatures inference [25] and then,
given the signatures discovered in the previous step, we performed signatures assignment
for both the medium mutational activity group and the high mutational activity group
(see Materials and Methods). This approach allowed us to both detect the presence of
significant mutational processes causing mutations and to quantify the extent of the activity
of such processes. We did not consider the low mutational activity group for this analysis,
as mutational processes appear not to be significantly active in such a group.

As a result, we identified three well-differentiated mutational signatures (Figure 1A):

• Signature S#1: mostly characterized by C>A|G>T mutations and previously associated
with reactive oxygen species (ROS) activity [20];

• Signature S#2: mostly characterized by C>T|G>A mutations and previously associated
with APOBEC activity [19];

• Signature S#3: mostly characterized by T>C|A>G mutations and previously associated
with adenosine deaminase acting on RNA (ADAR) activity [20].

Given the three discovered signatures, we then performed signatures-based
clustering [20,22,24] for the high- and medium-mutational activity groups and obtained in
both cases three well-differentiated clusters, mainly characterized by either one of the three
signatures, suggesting that in these samples, mutations were typically caused by either one
of the three mutational processes (Figure 1B,C).

We next assessed the activity of the three mutational processes in different continental
groups, by grouping the samples by continent. While no differences were observed in the
medium mutational activity group (see Supplementary Figures S1 and S2), the samples
from Africa within the high mutational activity group showed a significantly higher number
of minor mutations (Figure 2A, standard t-test p-value = 4.055 × 10−59) mostly due to
the higher activity of signature S#2 (Figure 2B, standard t-test p-value = 8.085 × 10−76),
possibly suggesting higher occurrence of APOBEC-mediated mutations in such samples.
Furthermore, we verified the absence of significant sampling bias, which might have
explained the observed differences and found no significant impact, which was also due to
the very large sample size and long timeline of the analyzed dataset.
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three mutational signatures across SARS-CoV-2 variants for the high mutational activity group.
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We finally analyzed the activity of the three mutational signatures among different
SARS-CoV-2 variants. To this end, we first categorized each sample via Pangolin [23] (see
Materials and Methods) by considering four major groups: (1) Alpha variant (B.1.1.7 and
Q Pango [26] lineages), (2) Delta variant (B.1.617.2 and AY Pango lineages), (3) Omicron
variant (B.1.1.529 and BA Pango lineages), and (4) Other, including all the remaining Pango
lineages. We report the results in Figure 2C for the high mutational activity group and in
Supplementary Figure S3 for the medium mutational activity group.

Interestingly, we found a significant lower activity of mutational signatures S#2
(APOBEC) in the high mutational activity group for the samples assigned to the Omi-
cron variant (Figure 2C, standard t-test p-value = 0). This result, although intriguing,
requires further investigation.

Finally, we performed dN/dS analysis [20] for the three signatures-based clusters
within the high mutational activity group (see Supplementary Figure S4) to investigate the
presence of selection. While mutations associated with ADAR activity present a pattern
of neutrality, ROS- and APOBEC-associated mutations appear to be purified. This is
particularly expected for APOBEC mutations.

4. Discussion

In this work, we have presented the largest quantitative analysis of minor mutations
and mutational signatures of SARS-CoV-2 to date, which allowed us to characterize the
mutational processes that are actively causing new mutations in the viral genomes, as well
as their prevalence across different geographical locations and virus variants.

We identified three mutational processes, respectively, associated to reactive oxygen
species (ROS), apolipoprotein B editing complex (APOBEC), and adenosine deaminase
acting on RNA (ADAR), and evaluated the activity of these mutational processes in different
continental groups, showing that some samples from Africa present a significantly higher
number of substitutions, most likely due to higher editing activity.

Finally, we analyzed the activity of mutational processes across different SARS-CoV-2
variants and found a significantly lower number of mutations attributable to APOBEC in
samples assigned to the Omicron variant. We leave to future works the investigation of
possible mechanisms leading to such observations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v15010007/s1, Figure S1: Number of minor mutations for
the medium mutational activity group, Figure S2: Number of minor mutations per signature for the
medium mutational activity group, Figure S3: Signatures activity across SARS-CoV-2 variants for the
medium mutational activity group, Figure S4: dN/dS analysis; File S1: Samples information.
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