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Abstract: Background: Molecular epidemiological approaches provide opportunities to characterize
HIV transmission dynamics. We analyzed HIV sequences and virus load (VL) results obtained during
routine clinical care, and individual’s zip-code location to determine utility of this approach. Methods:
HIV-1 pol sequences aligned using ClustalW were subtyped using REGA. A maximum likelihood
(ML) tree was generated using IQTree. Transmission clusters with ≤3% genetic distance (GD) and
≥90% bootstrap support were identified using ClusterPicker. We conducted Bayesian analysis using
BEAST to confirm transmission clusters. The proportion of nucleotides with ambiguity ≤0.5% was
considered indicative of early infection. Descriptive statistics were applied to characterize clusters
and group comparisons were performed using chi-square or t-test. Results: Among 2775 adults with
data from 2014–2015, 2589 (93%) had subtype B HIV-1, mean age was 44 years (SD 12.7), 66.4% were
male, and 25% had nucleotide ambiguity ≤0.5. There were 456 individuals in 193 clusters: 149 dyads,
32 triads, and 12 groups with ≥ four individuals per cluster. More commonly in clusters were males
than females, 349 (76.5%) vs. 107 (23.5%), p < 0.0001; younger individuals, 35.3 years (SD 12.1) vs.
44.7 (SD 12.3), p < 0.0001; and those with early HIV-1 infection by nucleotide ambiguity, 202/456
(44.3%) vs. 442/2133 (20.7%), p < 0.0001. Members of 43/193 (22.3%) of clusters included individuals
in different jurisdictions. Clusters ≥ four individuals were similarly found using BEAST. HIV-1 viral
load (VL) ≥3.0 log10 c/mL was most common among individuals in clusters ≥ four, 18/21, (85.7%)
compared to 137/208 (65.8%) in clusters sized 2–3, and 927/1169 (79.3%) who were not in a cluster
(p < 0.0001). Discussion: HIV sequence data obtained for HIV clinical management provide insights
into regional transmission dynamics. Our findings demonstrate the additional utility of HIV-1 VL
data in combination with phylogenetic inferences as an enhanced contact tracing tool to direct HIV
treatment and prevention services. Trans-jurisdictional approaches are needed to optimize efforts to
end the HIV epidemic.

Keywords: molecular epidemiology; phylogenetic analysis; transmission networks; regional
transmission dynamics; HIV drug resistance; clinical and phylogenetic data combined; contact
tracing tool

1. Introduction

In February 2019, there was a call to end the HIV epidemic in the U.S. within a
decade, using currently available treatment and prevention modalities [1]. Based on the
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current epidemiology in 2016–2017 of new HIV cases, 57 jurisdictions (48 counties, 7 states,
Washington, District of Columbia. (DC), and Puerto Rico) were selected as over 50% of HIV
diagnoses were made in these locations [2]. An estimated 14% of people living with HIV
(PWH) were not aware of their condition and were thought to contribute approximately
38% of new transmissions with the remaining new infections arising from individuals
with known HIV infection who were either not in care or not virally suppressed despite
being in care [3]. Continued progress towards elimination of the HIV epidemic requires
diagnosis of a higher percentage of PWH. Consistent early detection and treatment with
durable viral suppression would reduce transmission [4]. This goal may be enhanced
by implementing strategies to detect transmission clusters. Those can be reconstructed
using HIV-1 sequence data. Expanded molecular epidemiologic investigation that also
incorporates HIV-1 viral load (VL) may (i) identify undiagnosed PWH or those with
suboptimal treatment with continued viremia who need antiretroviral treatment for their
own health, but also to limit transmission to others [5–7]; and (ii) identify contacts at risk of
infection for targeted provision of prophylactic antiretrovirals including appropriate pre-
or post-exposure prophylaxis to prevent HIV acquisition [8–11].

Molecular epidemiologic approaches to characterize HIV transmission have been used
in research and public health settings to describe local transmission dynamics [12–14]. Such
studies have augmented our understanding of transmission dynamics previously based
primarily on epidemiologic data alone. In 2014–2015, molecular epidemiologic approaches
were critical to detect and monitor an HIV outbreak leading to 181 new HIV infections in
southeastern Indiana related to drug injection [15]. The U.S. Centers for Disease Control
and Prevention have since added a molecular surveillance component to routine public
health activities to identify HIV outbreaks. Since then, this approach has been used to
investigate outbreaks across the U.S. [16]. The approach focuses on identifying rapidly
growing transmission clusters, with selection of a very low genetic distance threshold of
0.5% defining closely related viral sequences among individuals with recently diagnosed
HIV. Only a small fraction of the new diagnoses invokes a public health investigation,
with most investigations conducted by local health jurisdictions and limited to intra-state
analyses.

DC has the highest HIV prevalence in the U.S. with an estimated 1.8% of the population
living with HIV in 2019 [17]. DC residents have the highest estimated lifetime risk of
acquiring HIV infection (1:39) followed in sixth place by neighboring Maryland (1:85) [18].
The adjacent geographic location of DC to Maryland and Virginia and the sharing of work
force result in social and cultural interactions across borders, impacting the HIV epidemic.
Using public health HIV surveillance data from these three contiguous jurisdictions, we
found that approximately 21% of the PWH in the DC metropolitan area received care in
more than one jurisdiction demonstrating the converging and overlapping epidemics in
this high HIV transmission region [19]. Active movement of PWH in the metropolitan
DC area is demonstrated with routine surveillance data that demonstrate outmigration
of approximately 42% of PWH originally diagnosed in DC in 2019, and in-migration
contributing 17% of the 12,408 PWH actively receiving care in DC [17]. Investigating HIV
transmission dynamics in this region, we previously analyzed HIV pol sequence data from
individuals who had enrolled in clinical or observational studies from early in the HIV
pandemic [20–22]. Transmission clusters were common among men who have sex with
men (MSM) and younger individuals. Individuals with evidence of recent infection based
on low proportion of nucleotide ambiguity were more likely to belong in a transmission
cluster [23,24].

In this study, we used HIV-1 sequences generated for clinical purposes along with
limited demographic data, to characterize HIV transmission patterns in this high prevalence
region. Our supposition is this approach would identify transmission clusters that traverse
state borders, across this porous interconnected region, highlighting the importance of
trans-jurisdictional surveillance to maximize its benefit in reducing HIV infection. We
further postulate that laboratory surrogate markers for HIV care continuum metrics such
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as HIV-1 VL will provide an important discriminating factor to guide clinical and public
health interventions.

2. Materials and Methods
2.1. Study Population

This is a retrospective molecular epidemiology study, using HIV sequencing data
generated as part of routine clinical care from PWH receiving medical treatment in the mid-
Atlantic region including DC, Maryland (MD) and Virginia (VA). HIV pol data sequenced
using the Sanger method from 2008–2015 (protease, reverse transcriptase, and, when
available, integrase) were obtained under a data use agreement with one national clinical
laboratory. Additional information including age, sex, state, zip code, and year of service
was available to the research team. A subset of individuals had quantitative HIV-1 RNA
VL testing performed for routine clinical care at the Clinical Laboratory Improvement
Amendments of 1988 (CLIA) certified national reference laboratory using a U.S. Food and
Drug Administration cleared test method from Roche Molecular Systems (Branchburg, NJ,
USA) with a lower limit of detection of 1.3 log10 copies/mL (c/mL). Data from samples
obtained within a year of the sequencing date were included in this analysis. When zip
code or state of residence were not provided, we used where medical service was provided
as a location marker.

2.2. Sequence Alignment and Characterization

The earliest sequence available for each individual age ≥18 years, obtained during
2014–2015 were used. We aligned protease (Pr) and reverse transcriptase (RT) regions of
HIV-1 pol sequences in Clustal-Omega version clustal-omega-1.2.1using HXB2 Pr-RT as the
reference sequence spanning nucleotides 2252–3443 of the HXB2 reference sequence [25].
The Sierra pipeline to the Stanford HIV Database was used in sequence evaluation (subtype,
gene coverage, and quality) and assessment of HIV-1 drug resistance [26]. The proportion
of nucleotides with ambiguity ≤0.5% was used to indicate early or recent HIV infection
within one year of infection [23,24].

2.3. Cluster Analyses
2.3.1. Maximum Likelihood

A maximum-likelihood (ML) phylogenetic tree was constructed using IQ-TREE mul-
ticore [27] v1.5.0-beta with the general time-reversible (GTR) substitution model with
invariable sites (I) and gamma (G) distribution (GTR+I+G) with 1000 bootstraps [28]. The
FASTA sequences and the IQtree tree files were uploaded into ClusterPicker (v1.2.3) to iden-
tify sequences that were in clusters with ≥95% bootstrap node support for pre-specified
genetic distance (GD) thresholds of 0.5%, 1.5%, 2.0%, 3.0% and 4.5% [27].

2.3.2. Bayesian Analysis

To probe the likelihood that clusters actually represented local transmission networks,
the specificity of cluster designation was assessed using a probability-based approach, the
Bayesian evolutionary analysis sampling trees (BEAST) [29]. We identified sequences that
were in groups of four or more at a GD ≤3% using the ML method. In order to verify
the veracity and robustness of the transmission clusters we performed a blast search in
the GenBank HIV sequence database for each sequence in this subset and selected the
ten sequences most similar to each sequence in our data set [30]. Excluding duplicate
sequences, sequences without dates, and those of significantly shorter length, we were left
with 120 GenBank sequences. A total of 183 sequences comprising the study and GenBank
sequences, with an additional subtype D reference sequence, were used for the BEAST
analysis. The sequences were aligned as above. BEAST analysis was performed using the
GTR+I+G substitution model, uncorrelated log-normal relaxed molecular clock [31], the
parametric tree prior coalescent assumption of the Gaussian Markov random field (GMRF)
skyride [32,33], and Markov chain Monte Carlo (MCMC) of iterations for 135 million states
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to achieve a posterior effective sample size of 302. Clusters of sequences that grouped
together with a posterior probability nodal support of 95% or greater were identified and
compared to the original clusters identified using the ML method to confirm the robustness
of grouping.

2.3.3. Network Analysis

Network analysis was performed to visually display the effect of different GD thresh-
olds on the network composition. The aligned HIV sequence data were uploaded into
HIV-TRACE [34] to implement the Tamura Nei 93 (TN93) substitution model that deter-
mines the pairwise distances between sequences [35]. The ambiguities between nucleotide
pairs were resolved at an ambiguity fraction of 0.05 and the overlap was set at 500. The pro-
gram generated a list of the nodes (represents sequences) and edges (connections between
the nodes) used to derive network figures. The node and link attribute files were integrated
with the remaining metadata and uploaded in the web-based HIV-TRACE visualization
tool. Network figures were generated for GD thresholds of 0.5%, 1.5%, 2.0%, and 3.0%.

2.4. Statistical Analysis

We used R script to generate descriptive statistics to characterize the frequency and
distribution of demographic and cluster data within the study population [36]. We con-
ducted comparisons between groups using t-test and chi square tests for continuous and
categorical data, respectively.

2.5. Ethical Considerations and Disclosures

This study was reviewed and approved by the Georgetown University Institutional Re-
view Board under the terms of the data use agreement allowing the use of limited personal
identifiers including zip code, with appropriate data security safeguards instituted by the
Georgetown University Information Systems. Data from zip codes with fewer than 20 indi-
viduals were omitted to avoid unintended loss of privacy for these individuals. The terms
of use limit access to these data to the study team and their delegates that include members
of the national reference laboratory that generated these data. Publications resulting from
this data set required review and approval by the national reference laboratory.

3. Results

The analysis included 2775 individuals aged ≥18 years with genotype sequences
available from 2014–2015 (Table 1). The mean age was 42.9 years (SD: 12.7, range: 18–79).
The majority were males, (N = 1843, 66.4%). Residence was in MD for 2124 participants
(76.5%); VA for 375 (13.5%); and DC for 242 (8.7%). Subtype B HIV-1 was the predomi-
nant subtype, 2589 (93.3%), of which 643/2589 (24.8%) sequences had the proportion of
nucleotide ambiguity ≤0.5 suggestive of recent infection.

Table 1. Cohort Socio-demographic and HIV-1 Characteristics, 2014–2015.

Subtype B HIV-1
N = 2589

Non-B Subtypes
N = 186

Total
N = 2775

Gender Female
823 105 928

(31.8%) (56.5%) (33.4%)

Male
1762 81 1843

(68.1%) (43.5%) (66.4%)

Not Reported 4 0 4
(0.15%) (0.14%)

State DC
232 10 242

(9%) (5.4%) (8.7%)

MD
1988 136 2124

(76.8%) (73.1%) (76.5%)
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Table 1. Cont.

Subtype B HIV-1
N = 2589

Non-B Subtypes
N = 186

Total
N = 2775

VA
338 37 375

(13.1%) (19.9%) (13.5%)

Not Reported 31 3 34
(1.2%) (1.6%) (1.2%)

Age 18–37 years 902 64 966
(34.8%) (34.4%) (34.8%)

38–52 years 1014 91 1105
(39.1%) (48.9%) (39.8%)

≥53 years 673 31 704
(26.0%) (16.6%) (25.3%)

Ambiguity (Amb) * Amb ≤ 0.5
643 29 672

(24.8%) (15.6%) (24.2%)

Amb 0.5–0.99
443 26 469

(17.1%) (13.9%) (16.9%)

Amb ≥ 1
1503 130 1633

(58.1%) (69.8%) (58.8%)

Clustered
Genetic Distance 3.0%

Female
107 1 108

(4.1%) (0.5%) (3.9%)

Male
349 3 352

(13.5%) (1.6%) (12.7%)

Total
456 4 460

(17.6%) (2.2%) (16.6%)

* Ambiguity (Amb)—proportion of nucleotides within the sequence with ambiguity. Percentages may not add up
to 100% due to rounding.

3.1. Cluster Data

Among 2589 individuals with subtype B HIV-1, 456 (17.6%) aligned within 193 clusters
using the ML method (GD 3%, 90% bootstrap support) (Table 2). The majority of clusters
were dyads (149) and triads (32). There were 12 clusters of ≥4 individuals: 4 clusters of
4; 5 clusters of 5; and 1 cluster each with 6, 7, and 8 individuals. Proportionally, males
were more likely to be in clusters than females, 349/1762 (19.8%) vs. 107/823 (13.0%),
p < 0.0001. The age distribution of individuals based on cluster designation is demonstrated
in Figure 1. Individuals in clusters were younger, with a mean age of 35.3 years (SD 12.1),
compared to 44.7 years (SD 12.3) among those not in clusters (p < 0.0001). Individuals in
clusters were more likely to have low proportion of nucleotides with ambiguity, ≤0.5%,
suggestive of recent infection, with 201/456 (44.1%) having the low ambiguity score among
those in clusters compared with 442/2133 (20.7%) among those not in clusters, p < 0.0001.
The majority of individuals in clusters with low sequence ambiguity were males, 81%
(163/201), and only 19% (38/201) were female. There was no statistically significant
difference in the proportion of individuals in a cluster by state of residence. Of 193 clusters,
43 (22.3%) included individuals residing in different states: DC-MD in 20 clusters; MD-VA
in 18 clusters; VA-DC in 4 clusters; and DC-MD-VA in 1 cluster.

When using a more stringent genetic distance threshold of 2%, the number of clusters
decreased to a total of 109:88 dyads, 14 triads, four clusters of four, and three clusters of
five individuals. Even fewer clusters (72) were identified using a genetic distance cutoff
of 1.5%, with 59 dyads, 10 triads, and 3 clusters of 4 individuals. At the genetic distance
threshold of 0.5%, only 13 dyads and 1 triad were identified.
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Table 2. Comparative characteristics of individuals with subtype B HIV-1 identified within and
outside clusters with a genetic distance threshold of 3%.

Clustered
N = 456

Non-Clustered
N = 2133

Total
N = 2589 Chi-Square

Gender Female
107 716 823

p < 0.0001
(23.5%) (33.6%) (31.8%)

Male
349 1413 1762

(76.5%) (66.2%) (68.1%)

Mean (SD) 35.3 (12.1) 44.7 (12.3) 43 (12.8) p < 0.0001

Age 18–37 years 289 613 902

p < 0.00001

(63.4%) (28.7%) (34.8%)

38–52 years 114 900 1014
(25.0%) (42.2%) (39.2%)

≥53 years 53 620 673
(11.6%) (29.1%) (26.0%)

Ambiguity (Amb) Score Amb ≤ 0.5
202 442 644

p < 0.00001

(44.3%) (20.7%) (24.9%)

Amb 0.5–0.99
99 343 442

(21.7%) (16.1%) (17.1%)

Amb ≥ 1
155 1348 1503

(34.0%) (63.2%) (58.1%)

State DC
36 196 232

p = 0.09 (NS)

(7.9%) (9.2%) (9%)

MD
370 1618 1988

(81.1%) (75.9%) (76.8%)

VA
48 290 338

(10.5%) (13.6%) (13.1%)

NR
2 29 31

(0.4%) (1.4%) (1.2%)

Percentages may not add up to 100% due to rounding.
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Figure 1. Distribution of individuals over clustered, non-clustered and sex by age group, genetic
distance 3%. The bar graph demonstrates the frequency and age distribution of individuals in
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Viruses 2023, 15, 68 7 of 14

3.2. BEAST Analysis

All the clustered sequences with ≥4 members found using the maximal likelihood
approach with a genetic distance threshold of 3% remained in clusters, with posterior proba-
bility support ≥0.95 (Figure 2a,b) when analyzed using BEAST. Twenty-one out of the sixty-
two individuals had HIV-1 VL available, and 18/21 (85.7%) had HIV-1 VL ≥ 3.0 log10 c/mL.
There was evidence of transmitted K103N/K103S drug resistance mutations within a large
transmission cluster as shown in Figure 2b, with the resistance mutation noted among mul-
tiple members of the cluster. The range and frequency of major HIV-1 resistance mutations
are shown in Figure S1.
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Figure 2. Phylogenetic trees of sequences in clusters with ≥4 members. (a). Study population
sequences and closest related sequences from GenBank. Bayesian phylogenetic tree of 62 subtype B
HIV-1 sequences that were identified in clusters size four or more based on GD 3% using the maximal
likelihood method were included alongside the most closely related sequences from the GenBank
HIV Sequence database at Los Alamos (labeled “LA”). Bayesian evolutionary analysis sampling
trees [29] analysis was performed using the GTR+I+G substitution model, uncorrelated log-normal
relaxed molecular clock, tree coalescent assumption of the Gaussian Markov random field (GMRF)
skyride [31–33], and run of 135 million states to achieve an effective sample size of 302. The cluster
relationships were maintained with high posterior probability of ≥95% when analyzed using this
BEAST approach. Male participants are indicated in purple and females indicated in green, and
sequences from Los Alamos indicated in black. (b). Cluster characteristics: HIV-1 drug resistance
mutations and viral load. HIV-1 viral load data are written in black with the corresponding sequence
when available. Among the 21 individuals with HIV-1 VL data available, 18 (85.7%) had levels
≥3 log10 c/mL. Four HIV-1 drug resistance associated mutations were identified in two clusters
including the resistance mutations Y188H, K101E, K103N/S, and G190S. One cluster had multiple
cluster members with drug resistance mutations.

3.3. Network Analysis

Using HIV-TRACE we identified 519 nodes linked to at least one other node at GD 3.0%
(Figure 3a–d). A total of 189 clusters were formed, of which the largest had 33 nodes with
46 connected links at a mean genetic distance of 2.8% and 1.39 links per node. The second-
largest dense cluster consisted of 15 nodes making 38 links with a higher transmission
speed of 2.53 links per node. The male transmission clusters comprised 66% of identified
networks and the female clusters were 10.5%. Recent infection based on the proportion of
nucleotide ambiguity ≤0.5% identified a higher number of nodes from 2014 than from 2015.
Networks spanning more than one jurisdiction were identified in 75 nodes comprising 14%
of individuals identified to be in a transmission cluster.
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Figure 3. HIV-TRACE Transmission Networks by Genetic Distance. Cluster networks configured in
HIV-TRACE from HIV pol sequences are inferred using genetic distances between sequences. Cluster
networks demonstrate decreasing linkages with lower genetic distance cutoffs ((a) ≤3%; (b) ≤2%;
(c) ≤1.5%; and (d) ≤0.5%), although multijurisdictional networks are identified at all genetic distance
cutoffs. Using the less restrictive genetic distance cutoff of 3% provides greater detail and the resulting
network visualization provides context and highlights connections that more completely represent
potentially important HIV-1 transmission dynamics.

3.4. Transmission Clusters and Viremia

HIV-1 VL was available for 54% (N = 1394) of the study population (Table 3). The
majority, 78% (1091/1394) had VL ≥3.0 log10 copies/milliliter (c/mL); 3.5% (49/1394) had
VL 2.7–3.0 log10 c/mL; 17.4% (242/1394) had VL 1.3–2.7 log10 c/mL, and 0.01% (12/1394)
individuals had VL <1.3 log10 c/mL. The median VL was 4.4 log10 c/mL (IQR 25–75%:
3.2–4.99). The quantitative VL differed by cluster size with the highest VL among those in
clusters of four or greater, median VL 4.6 log10 c/mL, compared with 3.9 c/mL log10 for
those in clusters of 2 and 3, and 4.4 log10 c/mL among those not in a cluster. The proportion
of individuals with HIV-1 VL ≥3.0 log10 c/mL varied among different-sized cluster groups
and was highest in the group with cluster size ≥4, 85.7% (18/21); 65.8% (137/208) among
those in cluster size 2–3; and 79.3% (927/1169) among those individuals not in a cluster
(p < 0.0001).
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Table 3. Relationship between HIV-1 viral load (VL) and transmission cluster size (genetic distance
3%).

Cluster Data HIV Viral Load (VL)

Number of HIV VL
Tests

N = 1394

Median in log10
Copies/mL

(IQR 25–75%)
≥3.0 log10 c/mL <3.0 log10 c/mL

Overall HIV VL 1394 4.4
(3.2–4.99) 1091 (78.3%) 303 (21.7%)

Cluster size ≥ 4 (N = 62) 21 4.6
(3.8–5.2) 18 (85.7%) 3 (14.3%)

Cluster size 3 (N = 96) 47 3.1
(2.3–4.6) 26 (55.3%) 21 (44.7%)

Cluster size 2 (N = 298) 161 4.0
(2.1–4.8) 111 (68.9%) 50 (31.1%)

Cluster size 2 and 3 (N = 394) 208 3.9
(2.2–4.8) 137 (65.9%) 71 (34.1%)

Not in clusters
(N = 2133) 1169 4.4

(3.3–5.0) 927 (79.3%) 242 (20.7%)

4. Discussion

This collaborative project was designed to determine the utility of regional sequence
and HIV-1 VL data generated as part of clinical care for the characterization of HIV trans-
mission patterns, given the highly interconnected mid-Atlantic metropolitan DC area. An
important element of our research is the public-private-academic partnership that allowed
us to access this representative regional dataset generated in the course of routine clinical
care with multi-jurisdictional representation under a legally binding data sharing agree-
ment. Enrolling such a comprehensive cohort to obtain sequence and laboratory data for
research purposes only would have been challenging and costly. With the safeguards that
we have placed both in the design and implementation of the study to protect individual’s
privacy, we demonstrate the feasibility and utility of such collaborations. Our findings
of the relative frequency of trans-jurisdictional transmission clusters in this highly inter-
connected region highlights the need to overcome restrictions in data sharing based on
traditional jurisdictional borders, regional or national. Such restrictions limit collaborations
and innovative strategies that span jurisdictions are essential to adequately respond to the
call to end the HIV epidemic.

We demonstrate the high fidelity of rapid maximal likelihood phylogenetic approaches
for identifying transmission clusters, further validated with the more time intensive
probability-based sequence and network analyses. Overall, we rarely identified large
transmission clusters, with most clusters containing two or three sequences in this conve-
nience sample of sequences. There were few transmission clusters with size 4 or greater.
This is likely the result of the sampling framework that was not focused exclusively on
newly diagnosed PWH, but rather included all individuals for whom HIV sequence data
were generated for clinical management, including those with chronic HIV-1 infection. In
addition to MSM and younger individuals, we also identified a subset of individuals in their
fourth or higher decades of life, including women, in transmission clusters. Interventions
to end the HIV epidemic in the region will need targeting also these important and often
missed sub-populations that remain at risk for HIV-1 infection.

Evidence supporting the validity of rapid maximal likelihood based phylogenetic
methods shows that large data sets can be analyzed to support contact tracing within
relatively short periods of time, with computational capacity that is generally available in
many public health settings. In this context, more recent uses of HIV sequence data have
emerged that focus on identifying new HIV outbreaks. These projects have primarily used
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very narrow genetic distance thresholds of 0.5–1.5% [13,14]. While this may be appropriate
for identifying emerging large outbreaks, these cutoffs yield o reduced case numbers for
investigation when applied to our regional dataset, with only fourteen clusters (thirteen
dyads and one triad) fitting the most stringent metric. Most individuals found in larger
clusters, identified using the genetic distance threshold of 3% and verified using a network
and probability based phylogenetic analysis with BEAST, would have been missed. A
significant proportion of individuals with evidence of linked transmission in our analyses
demonstrated very low proportion of nucleotide ambiguity, suggesting that some of these
infections indeed could have been more recently acquired. The relatedness of individuals
within clusters using a less stringent genetic distance cutoff could be epidemiologically im-
portant in a mature epidemic such as in the mid-Atlantic region, where linked transmissions
may span decades. The consistent findings despite using different methods of inference to
determine sequence relatedness demonstrate justifies using a 3% genetic distance threshold
to robustly identify relevant transmission clusters. The persistence of the identified clusters
after the addition of the most closely related sequences from GenBank suggests supports
likely epidemiologic linkages among the persons from whom sequences were obtained.
While use of currently accepted genetic distance thresholds in public health molecular
surveillance programs are set to identify emerging outbreaks, we demonstrated how these
thresholds would miss identifying epidemiologically important targets for intervention in
the context of an established generalized epidemic. Relaxing the stringency beyond 3%,
though, appeared counter-productive in our case as it may result in artifactual linkages, a
finding that has previously been reported by others [13].

The addition of selected laboratory testing such as HIV-1 VL further increases the
potential utility of molecular sequence data. HIV-1 VL is an important marker of linkage,
engagement and retention in care in the context of the HIV care continuum [37]. The most
recent report indicates that 57% of the estimated 1.2 million individuals with HIV in the
U.S. had viral suppression [38]. Ideally, all individuals with detectable viral load would
benefit from interventions to support linkage to care. We demonstrate how overlaying
molecular epidemiology with HIV-1 VL data allows for further risk stratification such
that individuals with evidence for recent infection based on sequence ambiguity, cluster
membership, and high HIV-1 VL would be preferentially targeted for support services
if resources are constrained. Natural history studies have demonstrated HIV-1 VL of
approximately 3 log10 c/mL as the threshold for transmission risk, with escalating VL
associated with increasing transmission risk [39]. More recent data have identified that ART
use with durable viral suppression decreases risk of transmission [5–7]. The relatively high
proportion of individuals within clusters with HIV-1 VL ≥ 3log10 copies/mL highlights the
need for targeted and effective ART programs. While all individuals should receive ART for
their own health, those who are in transmission clusters with high VL could be prioritized
for adherence support and interventions to halt further transmission. Individuals who
are in dyads and triads are often not considered high value targets for intervention and
contact tracing but are more frequently identified than the larger transmission networks
that are currently the target of public health interventions [40]. The addition of HIV-1 VL
data to transmission cluster data allows one to discern which individuals are biologically
more likely to transmit and hence should be prioritized for supportive intervention. Such
an approach may allow us to break through the current plateau in new HIV-1 diagnoses
towards the goal of ending the HIV epidemic.

Earlier molecular epidemiology studies in clinical settings have demonstrated the
decreased transmission risk with antiretroviral treatment and viral suppression [41]. We
demonstrate how molecular epidemiologic elements can bolster efforts to identify individ-
uals with potential for transmission at the local population level, using routinely collected
clinical management laboratory data. Ideally, all individuals with viremia should receive
interventions to support engagement in care. In the absence of unlimited resources, how-
ever, priority could be directed to those with elevated viremia for whom there is molecular
epidemiologic support for risk for transmission [42], thereby providing an additional incen-
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tive for intervening both for the sake of the individual’s health and to reduce transmission
to others. Such active monitoring with expanded use of molecular data in conjunction
with clinical metadata such as HIV-1 VL would contextualize and refine assessments of
transmission risk [42]. Individuals in larger cluster sizes who remain viremic have greater
potential to transmit HIV, risk that could be effectively mitigated with appropriate outreach
to ensure engagement in care and effective suppressive antiretroviral therapy. Discovery of
risk before transmission and successful mitigation represents the holy grail of infectious
disease control, and successful implementation would serve to accelerate the progress
towards ending the HIV epidemic.

One of the limitations of our study is the sampling frame only covers an estimated
quarter of data that are generated from individuals in the region. While the lower sampling
density may decrease the number of transmission clusters that are identified due to missing
data, our findings suggest that the identified clusters are robust. The persistence of the
identified clusters after the addition of the most closely related sequences from GenBank
suggests that the inferred relationships were not simply due to sampling bias. Our data
are limited to PWH receiving care and does not capture the important subset of PWH who
are not in care. Although having near complete sampling from the affected community
would result in finding more transmission clusters, even this subset yields important
information with actionable findings, of the kind pivotal to ending the HIV epidemic
efforts. While individual data related to social contacts was not available in our data set,
partner information is often under-reported [43]. The dataset does not include ART histories
and thus limits full characterization of the HIV care-continuum for the studied population.

Lastly, there has been a mixed response to using molecular epidemiology to char-
acterize transmission dynamics both in the scientific community and among advocacy
groups [44–47]. It remains critical to assess any presumed negative consequences. Our
analysis validates the utility of genotypic and viral load data even in the absence of detailed
epidemiologic data and may be an important adjunctive public health tool in areas where
concerns related to stigma and marginalization may limit the engagement of people living
with HIV [48].

5. Summary

Optimal use of molecular genotypic data should include more relaxed genetic distance
cutoffs to identify putative transmission clusters. These data should be analyzed in the
context of additional routine clinical and laboratory data that are collected during the
implementation and monitoring of standard of care treatment and prevention programs.
Such an approach would provide context and identify opportunities for intervention to
guide care teams to provide differentiated care services and optimize resource allocation
and utilization. Only through bold and integrated interventions will we reach the next
milestone towards ending the HIV epidemic.
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