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Abstract: Plum pox virus (PPV) is a causal agent of the stone fruit tree sharka disease that often causes
enormous economic losses. Due to its worldwide distribution and economic importance, rapid and
reliable diagnostic technologies are becoming increasingly important for successful management of
sharka disease. In this study, we have produced two super-sensitive and specific anti-PPV monoclonal
antibodies (i.e., MAbs 13H4 and 4A11). Using these two MAbs, we have now developed a dot enzyme-
linked immunosorbent assay (dot-ELISA) and a colloidal gold immunochromatographic strip (CGICS)
assay. These two technologies can be used to quickly and reliably detect PPV. The results of these
sensitivity assays confirmed that the dot-ELISA and CGICS assays could detect PPV infection in
apricot tree leaf crude extracts diluted up to 1:5120 and 1:6400 (w/v), respectively. Further analyses
using field-collected apricot tree leaf samples showed that the detection endpoint of the dot-ELISA
was ~26 times above that obtained through RT-PCR, and the CGICS was as sensitive as RT-PCR. This
present study is to broaden the knowledge about detection limits of dot-ELISA and CGICS for PPV
monitoring. We consider that these newly developed dot-ELISA and CGICS are particularly useful
for large scale PPV surveys in fields.

Keywords: apricot tree; plum pox virus; monoclonal antibody; dot-ELISA; colloidal gold
immunochromatographic strip; RT-PCR

1. Introduction

Plum pox virus (PPV) belongs to the genus Potyvirus, family Potyviridae. Because
PPV can cause severe sharka disease, it is considered as the most devastating virus of
stone fruit trees worldwide [1]. PPV can infect numerous Prunus species, including plum,
apricot, peach, nectarine, almond, sweet cherry, and many other important ornamental
species [2], and causes huge economic losses [3]. Sharka disease was first documented in
plum trees in 1915 in Bulgaria and reported in 1932. This disease was then found in apricot
trees in 1933 [4]. Despite significant efforts made by farmers and research communities,
this disease has spread into at least 55 countries in Europe, Africa, Asia, and America [5]
(https://www.cabi.org/isc/datasheet/42203, accessed on 20 October 2022).

PPV-infected trees often show disease symptoms in leaves and fruit. In spring, the
PPV-induced symptoms are often conspicuous, including yellow rings, diffused chlorotic
spots, and vein-clearing in plum and apricot tree leaves [3]. PPV-infected fruits also show
chlorotic spots, brownish or reddish necrotic flesh, or fall prematurely. PPV-infected apricot
kernels often show discolored rings or spots [6]. PPV is transmitted in the field by many
aphid species, such as Aphis spiraecola, Aphis gossypii, Myzus persicae, Phorodon humuli,

Viruses 2023, 15, 169. https://doi.org/10.3390/v15010169 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15010169
https://doi.org/10.3390/v15010169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-5311-7331
https://orcid.org/0000-0002-7611-7833
https://www.cabi.org/isc/datasheet/42203
https://doi.org/10.3390/v15010169
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15010169?type=check_update&version=2


Viruses 2023, 15, 169 2 of 11

and Hyalopterus pruni, in a non-circulative manner [7–9]. PPV can also be transmitted
through grafting in nurseries [10,11]. Therefore, transport of infected plant materials and
tree seedings from one location to another is often considered as the main route of PPV
long-distance spread, including the spread between two different countries.

PPV has a positive-sense, single-strand RNA genome of approximately 9.8 kb in length.
The 5′ end of the PPV genome is covalently bound by a viral-linked protein (VPg) and
its 3′ end has a poly (A) tail [12]. PPV virions are filamentous and are approximately
750 nm in length and 15 nm in diameter [2]. To date, ten PPV strains have been reported
according to viral genome sequences, and biological and epidemiological characters. These
strains are PPV-D, PPV-M, PPV-EA, PPV-C, PPV-Rec, PPV-W, PPV-T, PPV-CR, PPV-AM,
and PPV-CV [13]. PPV-D is currently the most common strain in Europe, North America,
South America, and Africa [14]. In the past two decades, many PPV-D isolates have been
reported in the East and South Asia countries [14]. The PPV-D isolates found in Japan
have been considered to come from overseas and are now widely spread in commercial
Japanese apricot trees (Prunus mume) [15–17]. The PPV isolates found in South Korea are
evolutionarily clustered closely with the isolates of PPV-D from Japan [18]. In 2005, PPV
was first reported in apricot trees in the Hunan Province, China [19], and then found in
the Japanese apricot trees grown in the Jiangsu Province, China in 2007 [20]. In 2007, PPV
became a pathogen in the list of Imported Plant Quarantine Pests of China. Field surveys
conducted in stone fruit tree farms from 2008 to 2018 have found that PPV is now widely
distributed in the common apricot (P. armeniaca) and Japanese apricot trees in China [6].
Phylogenetic analysis has shown that all the PPV isolates found in China belong to the
PPV-D strain [6].

Because PPV is effectively transmitted through infected plant materials and aphids,
the best way to control this disease is to eliminate infected trees and to quarantine the plant
materials before being transported from one local and commercial nursery to other places
using highly specific and sensitive detection methods. To date, several serological and RT-
PCR-based methods have been reported for PPV detections [21–27]. These methods include
the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) [22],
triple antibody sandwich ELISA (TAS-ELISA) [23,24], reverse transcription-polymerase
chain reaction (RT-PCR) [25], real time RT-PCR [25], reverse transcription loop-mediated
isothermal amplification (RT-LAMP), immunocapture RT-PCR (IC-RT-PCR) [26,27], and
reverse transcription recombinase polymerase amplification (RT-RPA) [28]. Because these
methods are all time-consuming and require complicated operations and expensive labora-
tory instruments, they are not suitable for rapid and large scale field surveys.

A colloidal gold immunochromatography strip (CGICS) test is an antibody-based
sensitive serological method and can be used in large scale field surveys without the need
of expensive equipment and reagents. Thus, this test has become the most frequently used
method for detections of viruses in large numbers of field-collected samples [29,30]. Both
polyclonal antibody (PAb) and monoclonal antibody (MAb) can be used in the CGICSs for
PPV detection [14]. To optimize the sensitivity and reliability of the CGICS, we prepared
two super-sensitive and specific MAbs using purified PPV virions as the immunogen. We
then used them to develop a dot-ELISA and a CGICS for PPV detection. Because these two
assays are super-sensitive and specific, we consider that these two assays are particularly
useful for large scale PPV surveys in stone fruit farms.

2. Materials and Methods
2.1. Virus Sources, Virion Purification

Japanese apricot tree leaves showing PPV-like symptoms were collected from the
Nanjing Botanical Garden, Nanjing, China, in 2021. PPV infection in this sample was
confirmed through RT-PCR followed by DNA sequencing. PPV virions were then extracted
from the collected leaves through differential centrifugation as described previously [31].
The purified virions were negatively stained with 0.1% phosphotungstic acid and examined
under an electron microscope to view virion morphology.
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2.2. Generation and Characterization of Murine Monoclonal Antibodies

Purified PPV virions were used to immunize eight-week-old BALB/c female mice
through intraperitoneal injections as previously described [31,32]. Briefly, BALB/c mice was
immunized twice with purified PPV virions (80 µg/mouse) emulsified in the complete and
incomplete Freund’s adjuvant (Sigma-Aldrich, St. Louis, MO, USA) at a 3-week interval.
For the third boost immunization, the purified PPV virions were diluted in a saline solution
and injected (100 µg/mouse) intraperitoneally into the mice. Three days later, splenocytes
were isolated from the immunized mice and fused with murine myeloma Sp2/0 cells using
the polyethylene glycol (MW 3350, Sigma-Aldrich) method as described [31,33]. The fused
cells were cultured and then selected on the HAT selection medium (RPMI-1640 medium,
Sigma-Aldrich) supplemented with 100 µmol/L hypoxanthine, 0.4 µmol/L aminopterin,
16 µmol /L thymidine, and 10% fetal calf serum (Hangzhou Jiangbin Biotechnology Co.,
LTD, Hangzhou, China). Supernatant from individual hybridoma cultures was screened for
PPV antibody production using an indirect-ELISA [31,33]. Hybridomas secreting anti-PPV
MAbs were cloned using the limiting dilution method. The resulting hybridomas were
injected intraperitoneally into BALB/c mice to induce ascitic fluids containing MAbs. The
MAbs in the ascitic fluids were purified using a saturated ammonium sulfate precipitation
method. The specificity and sensitivity of each MAb were determined through Western
blot and dot-ELISA assays [32,34]. The titers of the MAbs were determined through an
indirect-ELISA using purified PPV virions as the coating antigen. Isotypes of the MAbs
were determined using a mouse MAb isotyping kit as instructed (Sigma-Aldrich).

2.3. Dot-ELISA

Detection of PPV in leaf samples using dot-ELISA was performed as described
previously [31]. Briefly, each apricot tree leaf sample (about 50 mg) was ground in 1 mL
of 0.01 mol/L phosphate buffered saline (PBS), pH 7.4, followed by 3 min centrifugation
at 5000 rpm at 4 ◦C. The resulting supernatant was used for PPV detection. A known
PPV-infected and uninfected apricot tree leaf samples were used as the positive and neg-
ative controls. Each supernatant (2 µL) was loaded onto a nitrocellulose membrane (GE
Healthcare, Bucks, UK) and the dotted nitrocellulose membrane was air-dried for 10 min
at room temperature (RT). The nitrocellulose membrane was blocked for 30 min in a PBS
solution containing 5% skimmed milk powder followed by 1 h incubation in a diluted
anti-PPV MAb solution (first antibody). After three rinses in the PBS solution containing
0.05% Tween-20 (PBST), the membranes were probed again for 1 h in a diluted alkaline
phosphatase (AP)-conjugated goat anti-mouse IgG (second antibody) followed by three
rinses in the PBST. Color reaction on the membrane was visualized after the addition of a
nitro-blue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate substrate solution
(Sigma-Aldrich) for 10-20 min at RT.

2.4. Preparation of Colloidal Gold Nanoparticle-Conjugated Antibody

Colloidal gold nanoparticles (CGNPs), 40 nm in diameter, were prepared using a
citrate reduction method as described previously [30,35,36]. The CGNP-conjugated MAbs
were made through mixing 1.0 mg of a purified MAb slowly with 60 mL of CGNP solution.
The mixture was stirred gently for 30 min at RT followed by the slow addition of 1 mL
of 10% bovine serum albumin (BSA) in a 0.01 mol/L borate solution. The mixture was
then gently stirred for 30 min at RT followed by 20 min centrifugation at 20,000 g at 4 ◦C.
The CGNP-conjugated MAb pellets were rinsed twice with a 0.02 mol/L PBS, pH 7.4,
containing 2% BSA, 5% sucrose, and 0.5% polyethylene glycol 6000, and then dissolved in
10 mL of 0.02 mol/L PBS, pH 7.4, containing 3% sucrose, 2% BSA, and 0.02% NaN3. The
final CGNP-conjugated MAb was stored at 4 ◦C until use.

2.5. Development of a Colloidal Gold Immunochromatographic Strip (CGICS)

CGICS was made using the method described previously (30). Briefly, PPV MAb
4A11 and goat anti-mouse IgG were added separately onto a nitrocellulose membrane
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at the test (T) and control (C) line (Figure 1a, Position 3), respectively, using a Quanti
3000 BioJets attached to a BioDot XYZ-3000 dispensing platform (Bio-Dot, Irvine, CA,
USA). The membrane was air-dried at 37 ◦C for 1 h and then incubated in a PBS solution
with 2% BSA for 1 h. The membrane was rinsed three times in the PBST and air-dried for
1 h at 37 ◦C. The sample and conjugate pad (Figure 1a, Position 1 and 2) was cut from a
glass fiber membrane, soaked in a PBS solution, pH 7.4, with 2% BSA, 3% sucrose, 0.05%
Tween-20, and 0.05% NaN3, and dried at 37 ◦C for 24 h. The CGNP-conjugated PPV MAb
13H4 was dispensed to the above-treated conjugate pad followed by 2 h incubation at 37 ◦C.
The absorbent pad (Figure 1a, Position 4) was cut from a cellulose fiber membrane, soaked
in the PBST, and then dried at 37 ◦C for 2 h. The sample pad, the CGNP-MAb conjugate
pad, the coated membrane, and absorbent pad were laminated orderly and tandemly with
2 mm overlap at the conjunction site and pasted onto the backing plate (Figure 1). The
assembled plate was cut longitudinally with a guillotine cutter to produce strips (60 mm
long × 3 mm wide). The strips were packaged inside aluminum foil bags with silica gels
and stored at RT under dry and lucifugal conditions until use.
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membrane and is captured by anti-PPV MAb 4A11 at the T line to form a first red band, whereas 
the free CGNP-conjugated MAb 13H4 passes through the T line and then is captured by goat anti-
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Figure 1. A schematic diagram showing the colloidal gold immunochromatographic strip. (a) Designs
of CGICS strips. (1) a sample loading pad; (2) a CGNP-MAb 13H4 conjugate pad; (3) a nitrocellulose
membrane with MAb 4A11 (left) and goat anti-mouse IgG antibody (right) at the testing (T) and
control (C) line, respectively; and (4) an absorption cellulose fiber membrane pad. (b) Diagram
showing working principle of the strip. Crude extracts from tree leaf samples are individually
dropped to the sample pad. If a sample is infected with PPV, the CGNP-conjugated MAb 13H4 will
bind to PPV virions (green dots) at the conjugate pad. The complex migrates to the nitrocellulose
membrane and is captured by anti-PPV MAb 4A11 at the T line to form a first red band, whereas the
free CGNP-conjugated MAb 13H4 passes through the T line and then is captured by goat anti-mouse
IgG second antibody at the C line to form a second red band. The remaining sample will move and
accumulate in the absorption pad. The grayish and blue dots represent different plant proteins in
the samples.

2.6. Test Procedure of the CGICS

Apricot tree leaf samples (50 mg each) were ground individually in 1 mL of 0.01 mol/L
PBS solution, pH 7.4, and the crude extracts (50–150 µL per sample) were dropped individ-
ually into the sample pad. After 5–10 min, the samples showing two red bands at the T and
C lines were considered as PPV positive, while the samples showing only one red band at
the C line were considered as PPV negative. If the C line did not show a red color band, the
test was considered as invalid.
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2.7. Detection of PPV Infection through RT-PCR

To validate PPV infection, total RNA was extracted from the assayed samples using
Trizol reagent (Invitrogen, Carlsbad, CA, USA). Concentrations and qualities of the total
RNA samples were determined using a Nanodrop Spectrophotometer. The total RNA
was reverse-transcribed with the gene-specific reverse primer and the HiScript Reverse
Transcriptase kit (Vazyme, Nanjing, Jiangsu, China) according to the manufacturer’s instruc-
tions. The subsequent PCR was conducted using a set of conserved PPV primers [PPV-F
(5′-CAGACTACAGCCTCGCCAGA-3′) and PPV-R (5′-ACCGAGACCACTACACTCCC-
3′)] or a set of PPV-D strain specific primers [PPV-D-F (5′-AGAACCGCCAAGTCAGTA-3′)
and PPV-D-R (5′-CATCCAAGTGCCGAACAT-3′)]. Each PCR reaction contained 12.5 µL of
2× Green Taq mix (Vazyme), 1 µL of each primer (10 µmol/L), 1 µL of cDNA, and 9.5 µL
of sterile deionized water. The reaction cycle was set at 94 ◦C for 2 min; 30 cycles of 94 ◦C
for 30 s, 56 ◦C for 30 s, and 72 ◦C for 30 s. The final extension was 10 min at 72 ◦C.

3. Results
3.1. Preparations of PPV Virions and PPV MAbs

Japanese apricot tree leaves showing typical PPV-induced chlorotic ringspots (Figure 2a)
were collected from the Nanjing City, Jiangsu Province. RT-PCR results showed that these
tree leaf samples were infected with PPV-D strain (Figure 2b). These leaf samples were then
used to prepare PPV virions. Under a transmission electron microscope, the purified virion
sample was found to have filamentous particles of about 750 nm in length and 15 nm in
diameter, similar to potyvirus virions (Figure 2c).
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Figure 2. Disease symptoms, RT-PCR detection of PPV infection, and virion morphology. (a) Disease
symptoms on Japanese apricot tree leaves and fruit. Yellowish ringspots, mosaic, leaf distortion,
and a deformed fruit with ringspots and necrotic areas are shown. (b) RT-PCR detection of PPV
infection in Japanese apricot tree leaf samples. Lane M is a 1 kb DNA ladder. Lane 1–3 represent
three Japanese apricot tree leaf samples with PPV-like symptoms. The 243 bp product band were
obtained through PCR using the conserved PPV primer pair PPV-F and PPV-R. Lane 4–6 represent
three Japanese apricot tree leaf samples with PPV-like symptoms. The 558 bp product band was
obtained through PCR using the PPV-D strain specific primer pair PPV-D-F and PPV-D-R. Lane 7
represents a Japanese apricot tree leaf sample without virus-like symptoms (the negative control).
(c) An electron micrograph showing PPV-like virions. Bar, 200 nm.
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Two murine hybridoma lines (i.e., 13H4 and 4A11) were then prepared using the
purified PPV virions as the immunogen. Isotype and subclass analysis results showed that
these two MAbs belonged to IgG1, κ light chain. Indirect ELISA result showed that the
titers of the two MAbs were up to 10−7. The concentrations of IgG in the 13H4 and 4A11
ascites were 7.15 and 6.58 mg/mL, respectively.

3.2. Characterization of MAbs 13H4 and 4A11, and Detection of PPV Using Dot-ELISA

Western blot assay was performed to determine the specificities of MAbs 13H4 and
4A11. The results showed that both MAbs reacted specifically with PPV in an infected
Japanese apricot tree leaf sample and produced a single protein band (~40 kDa) on the
blots. No such protein band was found in the lanes using an uninfected Japanese apricot
tree leaf sample (Figure 3a). The molecular weight of the detected protein matched the
known molecular weight of PPV capsid protein (CP); thus, we suggest that both MAbs
13H4 and 4A11 can recognize PPV CP.
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Figure 3. Specificity and sensitivity analyses of the two MAbs through Western blot assay and dot-
ELISA. (a) Specificity analyses of the two MAbs (13H4 and 4A11) through Western blot assay using
a PPV-infected and an uninfected Japanese apricot tree leaf extract. (b) Specificity analyses of the
two MAbs (13H4 and 4A11) through dot-ELISA using crude extracts from PPV-, PVA-, PVY-, EAPV-,
PNRSV-, and CMV-infected leaf samples, respectively. Known PPV-infected Japanese apricot (CK+)
and uninfected Japanese apricot tree leaf tissues (CK-) were used as the positive and negative controls.
(c) Sensitivity analyses of the two MAbs (13H4 and 4A11) through dot-ELISA. The PPV-infected and
uninfected extracts were two-fold serially diluted, respectively, in the extraction buffer. Each dilution
(2 µL) was loaded onto two nitrocellulose membranes and detected by the two MAbs (13H4 and
4A11), respectively. Purple dots indicate positive reactions, while green or no color dots indicate
negative reactions. (d) Specificity and sensitivity evaluations of the one-step RT-PCR. Total RNA
(30 µL) from 100 mg of PPV-infected Japanese apricot tree leaves was two-fold serially diluted from
1:10 to 1:20,480 (v/v) in DNase/RNase free ddH2O, and the diluted RNA samples (1 µL each) were
used for the assay.

The results of tree phalanx assays revealed that PPV in the infected apricot tree
leaf extracts could be accurately detected through dot-ELISA using 1:5000 (v/v) diluted
13H4 or 4A11 MAb (primary antibody) and 1:8000 (v/v) diluted AP-conjugated goat anti-
mouse IgG (second antibody). To further confirm the specificities of these two MAbs, we
performed dot-ELISA using five plant virus-[potato virus A (PVA), potato virus Y (PVY),
East Asian passiflora virus (EAPV), prunus necrotic ring-spot virus (PNRSV), and cucumber
mosaic virus (CMV)] infected plant tissues as samples. In this assay, a PPV-infected and



Viruses 2023, 15, 169 7 of 11

an uninfected apricot tree leaf sample were used as the positive and negatives controls,
respectively (Figure 3b). The result showed that only PPV was detected in this assay using
MAb 13H4 or 4A11, suggesting that these two MAbs are indeed PPV specific.

Sensitivities of the two MAbs were also tested in this study through the dot-ELISA
described above using two-fold serially diluted PPV-infected and uninfected Japanese
apricot tree leaf samples. The results showed that the PPV detection endpoints using these
two MAbs were up to 1:5120 (w/v, g/mL) dilution for PPV-infected tree leaf crude extracts,
equivalent to 0.39 µg of PPV-infected leaf tissues (Figure 3c). To compare the detection
sensitivity between dot-ELISAs developed in this study and conventional RT-PCR, total
RNA (30 µL) extracted from 100 mg of PPV-infected tree leaves was two-fold serially diluted
from 1:10 to 1:20,480 (v/v) in DNase/RNase free ddH2O, and 1 µL of each RNA dilution
was subsequently used to determine the sensitivity of one-step RT-PCR. The results showed
that PPV could be detected in the 1:320 (v/v) diluted total RNA isolated from PPV-infected
leaves or in 10.5 µg of infected tree leaf tissues (Figure 3d). Surprisingly, the detection limit
of the developed dot-ELISA was ~26 times higher than that of RT-PCR, which broadened
our knowledge about the detection limit of dot-ELISA for PPV monitoring.

3.3. Development of the CGICS for PPV Detection

Our preliminary test showed that the intensity of the detection signal was positively
correlated with the concentration of MAb 4A11 used. Because the uninfected control
sample produced a weak red band at the T line position when the concentration of MAb
4A11 was above 1.5 mg/mL, we considered that 1.5 mg/mL MAb 4A11 was the optimal
concentration for this test. To determine the optimal concentration of the CGNP-conjugated
MAb solution, we diluted it in different volumes of 0.02 mol/L PBS (pH 7.4) containing
3% sucrose, 2% BSA, and 0.02% NaN3. The test result showed that the 1:30 (v/v) diluted
CGNP-conjugated MAb solution produced a weak false-positive reaction at the T line,
whereas the 1:60 diluted CGNP-conjugated MAb solution reduced the detection limit of
the strip. Therefore, we considered the 1:50 diluted CGNP-conjugated MAb solution was
best for the test.

3.4. Specificity and Sensitivity of the CGICS for PPV Detection

To determine the specificity of the CGICS, crude extracts were made from a PPV-
infected and an uninfected Japanese apricot tree leaf sample, respectively. Crude extracts
of an additional five virus-infected leaf samples were also included in this study. The strip
test result showed that the PVA-, PVY-, EAPV-, PNRSV-, and CMV-infected samples, and
the uninfected control sample all produced a red band at the C line. As expected, the
PPV-infected sample produced two red bands at both T and C lines (Figure 4a), indicating
that this CGICS can be used to detect PPV infection in plant tissues specifically. To further
determine the detection limit of this strip, we serially diluted the crude extracts from a
PPV-infected and an uninfected Japanese apricot tree leaf sample in a 0.01 mol/L PBS
(1:200 to 1:12,800, w/v). The diluted samples (60 µL each) were used in this test. The
result showed that this CGICS could consistently detect PPV infection in the infected
crude extracts diluted up to 1:6400 (w/v). Therefore, the detection limit of this strip was
considered as 1:6400 (w/v), equivalent to about 9.6 µg PPV-infected leaf tissue (Figure 4b).
It is noteworthy that the detection limit of CGICS is the same as that (10.5 µg infected
tissues) of one-step RT-PCR performed in this study (Figure 3d).

3.5. Detection of PPV Infection in Field-Collected Japanese and Common Apricot Tree Leaves

To determine the usefulness of the newly developed dot-ELISA and CGICS for PPV
detection, we collected 19 Japanese and 3 common apricot tree leaf samples showing
PPV-like disease symptoms from seven cities in China (i.e., Beijing, Shanghai, Wuhan,
Nanjing, Wuxi, Hangzhou, and Yuncheng) in 2021 and 2022. The do-ELISA result showed
that 16 of the 22 samples were infected with PPV (Figure 5a). This result agreed with the
result obtained through the CGICS test (Figure 5b). To validate this finding, we analyzed
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these 22 field samples through RT-PCR using primer set PPV-F and PPV-R or PPV-D-F
and PPV-D-R. The RT-PCR results confirmed that the 16 PPV positive samples identified
through CGICS and dot-ELISA were indeed infected with PPV (Figure 5c). The other six
samples plus the uninfected control sample did not give positive products (Figure 5c). The
result of RT-PCR using the PPV-D strain specific primer pair also demonstrated that the
16 positive samples were infected with PPV-D strain (Figure 5c, upper panel).
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Figure 5. Detection of PPV infection in field-collected tree leaf samples through the newly developed
dot-ELISA, CGICS, and RT-PCR, respectively. (a) A do-ELISA test using two dots per sample on
the same membrane and MAb 13H4 as the detection antibody. Field-collected Japanese apricot tree
leaf samples (samples 1 to 19) and common apricot tree leaf samples (samples 20–22) were tested for
PPV infection. CK+ and CK− were a known PPV-infected and a known uninfected Japanese apricot
leaf sample, respectively. (b) The CGICS test of field-collected samples, the same as in Figure 5a.
(c) RT-PCR analyses using a conserved PPV primer pair PPV-F and PPV-R (lower panel) or the PPV-D
strain specific primer pair PPV-D-F and PPV-D-R (upper panel). The RT-PCR products were about
250 bp and 600 bp, respectively.
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4. Discussion

PPV is the most devastating pathogen of stone fruit trees [1] and is a quarantine
pathogen in China [6]. A recent report has shown that the PPV isolates found in the
Japanese and common apricot trees in six Chinese cities (Beijing, Nanjing, Shanghai, Wuxi,
and Wuhan) belonged to the PPV-D strain [6]. It is well known that PPV invades a new
geographic region through introductions of infected stone fruit tree materials. Once the
initial infection is established, PPV can be transmitted to surrounding trees by aphids
in a non-persistent manner. This transmission chain can be effectively blocked through
early detection and quick elimination of infected trees. Thus, establishment of an easy-to-
use and reliable quarantine technology for PPV detection in stone fruit trees is crucial in
management of sharka disease in China. In addition, this quarantine technique can also
help large-scale productions of PPV-free seedlings in stone fruit tree nurseries.

PPV detection techniques have had significant improvements in the past few decades,
starting from biological tests using indicator plants to serology assays, and then to molecular
technologies [14,21–28]. Because serological methods are easy to use, cost effective, and
most results obtained through serological tests agree with the results obtained through
PCR or RT-PCR, serological methods are often considered as the most economical and
reliable methods for plant virus detections, including PPV [14,37]. During serological tests,
polyclonal antibodies (PAbs) can recognize multiple epitopes on viral proteins or virions
and thus, the specificity of PAbs always create controversy [38]. On the other hand, MAbs
recognize only a single epitope on viral proteins or virions. Thus, high quality MAbs are
now widely used in virus detections [38,39]. PCR-based virus detection methods and ELISA
are also widely used in plant virus detections but require expensive equipment. Therefore,
these two methods are not accessible to farms and local laboratories. In addition, these two
methods require more time to complete. CGICS is a rapid, easy-to-use, and cost-effective
serological method. This method is particularly useful for large-scale field surveys. In 2010,
Byzova and others reported an immunochromatographic strip assay for PPV detection [40].
Maejima and others have also reported an immunochromatographic strip using the PAb
against the recombinant expressed CP of a PPV-D isolate, and the detection limit of the
strip was up to 1:512 dilution for PPV-infected leaf crude extracts [14]. The commercial
immunochromatographic strip made by Agdia Inc. (USA) can be used to detect PPV-D in
1:100 (w/v) diluted infected plant tissue crude extracts [37].

Highly sensitive and specific antibodies are critical for the developments of effective
serological detection assays [38,39]. In this study, we prepared two super-sensitive and
specific MAbs (13H4 and 4A11) using purified PPV virions as the immunogen. Both MAbs
can react with PPV in infected apricot tree leaf crude extracts specifically, but not with the
extracts infected with additional five plant viruses. The dot-ELISA developed in this work
can detect PPV in apricot tree leaf crude extracts diluted up to 1:5120 (w/v, g/mL). Surpris-
ingly, the detection limit of this dot-ELISA was ~26 times higher than that of RT-PCR. In
addition, a highly specific and sensitive CGICS using both prepared MAbs was developed
in this study. The developed CGICS can easily monitor PPV in apricot tree leaf tissues
but had no cross-reaction with the other five tested virus pathogens including PNRSV,
CMV, PVA, PVY, and EAPV, and uninfected plant tissues. The sensitivity analysis indicated
that the CGICS can be used to monitor PPV in crude extracts diluted up to 1:6400 (w/v),
equivalent to 9.6 µg of PPV-infected leaf tissues (Figure 5b). Unexpectedly, the detection
limit of the developed strip is the same as that of the conventional one-step RT-PCR.

Analyses of 22 field-collected samples further confirmed the usefulness of these two
methods and showed that PPV is now widely present in apricot trees in six Chinese cities.
Consequently, we recommend the newly developed dot-ELISA and/or CGICS for large-
scale onsite PPV detection. Because CPs of PPV Chinese isolates share the high aa sequence
identity with that of PPV-D and other PPV strains [6], and PPV in the field-collected apricot
leaf samples was accurately detected through RT-PCR using the PPV conserved or PPV-D
strain specific primers, we speculate that the developed dot-ELISA and CGICS in this study
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may be able to detect PPV-D and other strains. We also consider that these two methods
can help orchard farmers to eradicate PPV-infected orchards.

In conclusion, we have prepared two super-sensitive and specific MAbs, and used
them to develop super-sensitive, reliable, and easy-to-use dot-ELISA and CGICS for PPV
detection. We strongly recommend these two methods for PPV field surveys, certifications
of PPV-free stone tree materials, and phytosanitary inspections.
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