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Abstract: A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since
established themselves in live bird markets. The aim of this study was to establish the subsequent
genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls
in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses
were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole
genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with
contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors
in the Middle East. There has since been an increase in nucleotide substitutions and reassortments
among the viruses within and between live bird markets, leading to variations in phylogeny of the
different segments, although overall diversity remained low. The isolates had several mutations
such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V,
and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-
P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers
resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs.
Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a
possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird
markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular
surveillance is necessary to further generate the needed evidence for effective control strategies and
to minimize the threats.

Keywords: influenza; phylogenetics; molecular markers; reassortment

1. Introduction

Avian influenza viruses (AIVs) are negative-sense RNA viruses of the Orthomyxoviridae
family whose natural hosts are birds [1]. They constantly undergo evolution mediated
through mutation and reassortment resulting in viruses with varying pathogenicity, vir-
ulence, host specificity, antigenicity, and drug susceptibility [2]. The incorporation of
mutations is driven by the influenza RNA polymerase which lacks proofreading func-
tions [3]. Reassortment is a result of the segmented nature of the genome and mixing of
genes following coinfections [3–5].
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Of the diversity of viruses in avian hosts, A(H9N2) viruses are of particular interest.
While being of low pathogenicity for birds, they have donated gene segments to novel
influenza strains, such as H5N1, that appear to support infection of mammalian hosts
including humans [6–11].

First isolated in the United States in 1966 [12], H9N2 viruses have been detected in
many regions of the world and those belonging to the G1 lineage have been endemic in
the Middle East (ME) since the late 1990s and in North Africa since the late 2000s. They
were not, however, documented in sub-Saharan Africa until 2017, despite surveillance
activities [13,14].

In Uganda, H9N2 viruses were first detected in poultry in 2017 and have since become
established in live bird markets (LBMs) in part due to poor biosecurity [15]. A recent
study found that H9N2 viruses from Uganda had reassorted more than those from West
Africa [16], warranting further investigation.

Although they only cause mild to moderate illness in birds, H9N2 viruses impart
a substantial economic burden by reducing productivity and performance of affected
flocks. In addition, as of June 2022, there have been 102 laboratory-confirmed cases of
human infection with H9N2 and 2 recorded deaths [17] in various countries including
China [10,18], India [19,20], and Egypt [13], and the same in Senegal as of 2021; the human
virus from Senegal was genetically similar to Ugandan H9N2 viruses [21]. In almost all
reported human cases, previous contact with poultry was identified as a risk factor so
H9N2 viruses remain a constant zoonotic threat [1,22]. In this study, we investigated H9N2
virus evolution in Uganda, identified further reassortment events and detected several
mutations of interest.

2. Materials and Methods
2.1. Sample Collection

Cloacal–oropharyngeal samples were collected from birds in LBMs around Kampala
city (Kalerwe, Kasubi, Nakasero and Nakawa markets which receive birds from all over the
country) from 2017 to 2019. Samples were collected once a month on the same day, from up
to 20 birds that were randomly selected from multiple stalls in each of the four markets. A
total of 80 samples were collected each month. Samples were collected using Dacron swabs
and stored in antibiotic enriched virus transport media.

RNA was extracted from swabs by using a QIAamp Viral RNA extraction kit (Qiagen,
Germany) according to the manufacturer’s instructions, and they were tested for Influenza
A by real time RT-PCR as previously described [16]. Positive samples were further tested
for various subtypes including H9 subtype by RT-PCR.

Samples that were H9 positive were inoculated into 9-day old embryonated chicken
eggs. These were incubated at 37 ◦C for at least 72 h. The eggs were then refrigerated for at
least 4 h before allantoic fluid was harvested.

2.2. Whole Genome Sequencing and Sequence Identification

Following a confirmatory PCR for H9, isolates with a CT value below 30 were selected
for whole genome sequencing; in total, there were 150. RNA was extracted and all eight
gene segments were amplified in an RT-PCR with SuperScript III One-Step RT-PCR System
with Platinum® Taq High Fidelity DNA Polymerase (Invitrogen, Waltham, MA, USA).
Duplicate multiplexed paired-end sequencing libraries were generated using an Illumina
Nextera XT library prep kit (FC-131-1096). The libraries were then fragmented and tagged
with Illumina MiSeq-compatible barcode adapters using the NEBNext Ultra DNA Library
Preparation kit (New England Biolabs, Ipswich, MA, USA) as previously described [16].
Paired-end sequencing was conducted on the Illumina MiSeq platform. Sequences were
deposited into GenBank under accession numbers MW205009 to MW205198, MZ542846 to
MZ543305, OP388450 to OP388679 and OP388789 to OP388827.
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2.3. Sequence Analysis

Consensus sequences for each segment were generated. A BLAST search was con-
ducted to find the most related sequences by E-score. In order to determine whether the
isolates carried any specific Sequence Features (SF) of importance, SF variant type analysis
was performed in the Influenza Research Database (IRD) [23].

Groups of sequences were aligned using the MUSCLE alignment tool offered in the
MEGA11 software along with calculations of maximum composite likelihood, pairwise and
overall mean distances [24]. Phylogenetic analysis was performed using BEAST v1.10.4.
This was carried out with a relaxed (uncorrelated lognormal) molecular clock for a constant
population size coalescent tree prior. Other pre-set conditions were a Hasegawa–Kishino–
Yano (HYK) + Gamma (4 categories) nucleotide substitution model, a consideration of
3 codon positions and an unlinked base frequency across all codon positions. The length of
Markov chain Monte Carlo (MCMC) was set at 100 million states.

The output was assessed in Tracer v1.7.1 to determine various evolution parameters
such as the annual mean rate of nucleotide substitution per site in the segments, their time
to most common recent ancestor (tMRCA) as well as the number of lineages through time.
Maximum Clade Credibility (MCC) trees with a 10% burn-in were generated using the
TreeAnnotator v1.10.4 and visualized using FigTree v1.4.4 [25].

2.4. Assessment of H9N2 Susceptibility to Baloxivir (BXA)

Full plaque reduction EC50 analysis was performed on randomly selected PA-E199D
H9N2 viruses to determine susceptibility to BXA. MDCK cells (1 × 106) were plated in
six-well plates, inoculated with influenza viruses (multiplicity of infection [MOI] of 0.001),
cultured in MEM containing 1% bovine serum albumin (BSA), 1 µg/mL TPCK trypsin,
and BXA (0, 1, 10, or 100 nM). At 1 h post-virus inoculation, cells were washed, overlaid
with MEM containing 0.45% immunodiffusion-grade agarose (MP Biomedicals, Santa Ana,
SC, USA), 1% BSA, 1.8 µg/mL TPCK trypsin, and BXA (0.001 nM to 500 nM). At 72 hpi
to 120 hpi, the overlays were removed, and the cell monolayers were stained with 1%
crystal violet–10% formaldehyde. The number of PFUs per well was calculated, and EC50s
were determined by using the log (inhibitor) versus response logistic nonlinear regression
equation in GraphPad Prism 8.0 software.

2.5. Hemagglutination Inhibition (HI) Assay

Antigenic analysis was also carried out on the selected viruses with additional antigens
and serum samples that were provided by members of the World Health Organization
Global Influenza Surveillance and Response System. A total of 25 µL of PBS was dispensed
into each well of a 96-well microtiter plate. A total of 25 µL of reference anti-serum was
added to the first well the plate and two-fold dilutions made. Four hemagglutinating units
of virus was added to each well and left for a minimum of 30 min at room temperature,
then 0.5% (v/v) turkey RBCs were added to each well and allowed to settle for 40 min
at room temperature. The HI titer recorded was the highest dilution of serum causing
complete inhibition of hemagglutination [26].

3. Results
3.1. H9N2 Detection

A total of 2670 samples were collected between 2017 and 2019. The overall prevalence
of H9N2 virus was 49%, with a steady increase from 47% in 2017 to 61% in 2019. Positivity
rates in individual markets ranged from 33% to 68% [16].

3.2. Phylogenetic Analyses

In total, 150 isolates were selected for whole genome sequencing. Of these, 48 were
from Nakawa market, 42 from Nakasero market, 25 from Kalerwe market, and 35 from
Kasubi market. All were from chicken and belonged to the G1 lineage. Phylogenetic
analysis of the HA segment showed that the Uganda H9N2 viruses clustered in the same
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genetic clade as viruses from Kenya, (Figure 1) and were similarly related to viruses from
Saudi Arabia, the United Arab Emirates and those from Western and Northern Africa:
Algeria, Benin, Burkina Faso, Ghana, Libya, Morocco, Senegal, Togo and Tunisia.
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this time period. 

Figure 1. Phylogenetic tree for HA. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink, and the Middle East in the green clade. Posterior probabilities
are shown on the branches. The top scale represents the estimated number of substitutions and the
bottom scale shows time of divergence. HKY + G (4) nucleotide substitution model and an MCMC of
100 million states was applied in BEAST to generate this tree.

The other gene segments had similar patterns of relatedness as the HA as shown
in Figures A1–A7 (Appendix A) of other segments, respectively. The segments had very
similar trees with no major differences in the sequences they were most closely related to.
There were, however, minor differences in clade arrangement and general tree topology.
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3.3. Molecular Clock Analysis

The tMRCA of the Uganda H9N2 HA gene as calculated by BEAST was March 2014 (in-
terval from 2013 to 2015 for 95% of the samples). The tMRCA range for all the segments also
fell within the same time range of 2013 to 2014. It was, however, difficult to pinpoint a true
ancestor as the most closely related sequences (from A/Pheasant/United_Arab_Emirates/
D1307/2011) were quite distant from the Uganda clade in terms of branch length and
isolation date. This suggests a gap in surveillance over this time period.

The genetic diversity of the Ugandan viruses calculated by maximum composite
likelihood ranged from 0.02% to 0.1%. The annual mean rate of substitutions per site was
higher overall in the Ugandan virus subtree than in the rest of the H9N2 viruses with
the HA segment having the most substitutions, while the MP had the lowest under the
uncorrelated lognormal clock (Figure 2). When plotted against time, there was evidence of
an increasing substitution rate as shown for the HA segment (Figure 3).
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Figure 3. Mean rate of nucleotide substitution per site in the HA segment of Uganda H9N2 viruses
over time. Each dot represents a branch in the tree and the age(root) corresponds to time of divergence.

3.4. Reassortment

Pairwise distances between the Ugandan H9N2 viruses gave rise to multiple clusters
in different gene segments; however, the specific clustering differed from one segment
to another and did not segregate by LBM of origin. This was also evident in the tree
topology with multiple sub-clades within the Ugandan clusters that differed from segment
to segment. Together, these findings are consistent with reassortment between H9N2 viruses
within Uganda. To investigate this possibility, all clades containing branches of lengths < 1
were collapsed, and a representative taxon (the oldest) was picked from each clade. The
clades in HA were used as points of reference and color-coded in creating Figure 4, to
visualize reassortment events. All twelve representative isolates had unique constellations
(different patterns). Only two isolates, A/Chicken/Uganda/MUWRP/713/2017 and
A/Chicken/Uganda/MUWRP/756/2017, showed no reassortment at all. Besides HA
(the reference segment), the PB2 segment had the most reassortment, with the greatest
number of unique clades, while the NP segment had the least reassortment, with only four
clades, all from the same market. This complexity is consistent with introduction of genetic
diversity from different markets. These findings suggest that there is a significant level of
reassortment within and between the different LBMs in our study.
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Figure 4. Reassortment within Ugandan H9N2 viruses. Clades were created in each segment by
collapsing all branches with length < 1. From these, the oldest virus isolate was selected and those
from the HA segment were given a color code. Representative isolates were cross-referenced to see if
they fell within the same clades across all segments. Symbols for markets of origin were also assigned
and overlaid.

3.5. Molecular Marker Analysis

A detailed examination of sequence features within the Ugandan H9N2 virus se-
quences revealed multiple substitutions in the H9N2 viruses that are associated with
increased virulence in both mammals and avian species, increased virus replication, and
reduced sensitivity to antiviral drugs. Details of the relevant substitutions in the different
segments found in each segment are presented in Table 1.

Among the sequence feature variants identified were those that have been associated
with infection in mammals such as Q226L in HA, which increases binding to sialic acid
receptors preferred by mammalian-adapted viruses [27]. Others that increase virulence in
mammals were N30D and T215A in M1 [28] and NS-P42S [29].

Multiple mutations that are known to increase replication via enhanced polymerase
activity were also found and included NP-E210D, S37A and N383D in PA, D3V and D622G
in PB1, D9N and K226R in PB2 [30–35].

Sequence markers associated with increased resistance to amantadine were also
present in M2 (S31N) [36]. Eight H9N2 viruses were found to have a PA-E199D mutation,
which is a potential marker associated with reduced sensitivity to Baloxivir (BXA) [37].
Wild-type (WT) E199 and E199D viruses were tested for their susceptibility to BXA. An
almost three-fold reduction in the median EC50 value was observed for H9N2 viruses with
the E199D mutation (0.7–1.2 nM for E119D compared to 0.1–0.5 nM for WT) (Figure 5).
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Table 1. Sequence Feature Variants in H9N2 virus proteins and their phenotypic function.

Protein Sequence Features Phenotype Frequency

HA

T197, G520 Acquisition of respiratory droplet transmission and
human-like clinical symptoms

All

Q226L
Increased virus binding to α2–6, enhanced replication in

mammalian cells and ferrets, enhanced contact
transmission in ferrets

M1 N30D, I43M, T215A Increased virulence in mice
S31N absent in 1

M2 S31N Increased Amantadine resistance

NP
M105V, A184K Increased virulence in chicken [38,39]

All
E210D Increased polymerase activity in mammalian cell line

NS
P42S Increased virulence and decreased antiviral response in

mice
All

I106M Increased viral replication in mammalian cells and
virulence in mice [40]

PA
S37A, N383D Increased polymerase activity in mammalian and avian

cell line All
E199D in 8

E199D Decreased sensitivity to Baloxivir

PB1
D3V Increased polymerase activity and replication in

mammalian and avian cell lines All
D622G Increased polymerase activity in mammalian cell lines

PB2

L89V, G309D, T339K, R477G,
I495V, A676V

Increased polymerase activity in mammalian cell line and
increased virulence in mice

AllD9N Increased virulence in mice

K256R Increased polymerase activity in mammalian cell lines
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Figure 5. BXA Susceptibility of H9N2 viruses from Uganda containing the PA E199D substitution.
The wild type (WT) viruses in (A–C) have EC50s ranging from 0.2–0.5 nM while those with the
ED substitution (E–G) have increased EC50s of 0.74–0.83 nM. (D) shows a virus which had both
PA F105L+E199D had the highest EC50 of 1.28nM, which suggests a synergistic effect. Data is
representative of an average of three independent dose-response curves.

3.6. Antigenic Analysis

Selected viruses were evaluated for their antigenic properties using a panel of reference
antigens and antisera. The selected viruses were antigenically similar to each other and
reacted within four-fold to post-infection antiserum raised against A/Oman/2747/2019
IDCDC-RG66A, a human H9N2 virus (Table 2).
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Table 2. Hemagglutination inhibition assay of recent H9N2 viruses from Uganda (0.5% turkey RBC).
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Reference antigen

1 A/Oman/2747/2019 IDCDC-RG66A G1 2560 320 < 40 640 320 640 640 V1E2/E1

2 A/Bangladesh/0994/2011-IDCDC-RG31 G1 1280 1280 < 80 640 640 1280 2560 V1E2/E1

3 A/Hong Kong/1073/99 G1 < < 160 640 < < < < C4

4 A/Hong Kong/33982/2009-PR8-IDCDC-RG-26 G1 < < 160 1280 < < < < V1E3/E2/E1

5 A/quail/Bangladesh/19462/2013 G1 320 40 10 80 320 80 160 160 E2

6 A/chicken/Benin/19-A-01-145-E/2019 G1 1280 320 < 80 640 640 640 1280 E1/E2

7 A/chicken/Bangladesh/46240/2020 G1 80 80 < 40 80 160 640 1280 E1

8 A/chicken/Bangladesh/46129/2020 G1 640 640 < 80 640 320 1280 2560 E1

Test antigens

9 A/chicken/MUWRP-UGANDA/944/2019 G1 1280 2560 < 20 640 320 1280 2560 03/13/19 X/E1

10 A/chicken/MUWRP-UGANDA/951/2019 G1 2560 2560 < 40 1280 640 1280 2560 03/13/19 X/E1

11 A/chicken/MUWRP-UGANDA/957/2019 G1 1280 1280 < 20 320 320 1280 2560 04/24/19 X/E1

12 A/chicken/MUWRP-UGANDA/977/2019 G1 1280 1280 < 20 640 320 1280 2560 06/19/19 X/E1

13 A/chicken/MUWRP-UGANDA/1038/2019 G1 640 1280 < 20 320 320 640 1280 09/25/19 X/E1

14 A/chicken/MUWRP-UGANDA/1064/2019 G1 1280 1280 10 20 640 320 1280 2560 11/20/19 X/E1

15 A/chicken/MUWRP-UGANDA/1082/2019 G1 1280 1280 10 10 640 320 2560 2560 12/19/19 X/E1

Serum production: P = prime CDC P P P P P P P
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birds introduced into cages where unsold birds are kept. These practices create an envi-
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becomes a source of potential zoonotic viruses [42,43]. 
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tinent and identify ancestral viruses. We can, however, infer from the available data that 
H9N2 viruses in Kenya and Uganda most likely originated from the Middle East via poul-
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we sampled, where spread might be localized and not indicative of overall diversity 
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4. Discussion

Non-human Influenza A viruses were first reported in Uganda during a country-wide
survey carried out in 2014 [41] with a prevalence of 1.1% in livestock and poultry. Regular
surveillance did not reveal any remarkable findings until 2017 when H9N2 viruses were
first documented in LBMs. As a consequence of this finding, we conducted monthly
surveillance in four LBMs from 2017 to 2019 as previously reported [16]. It is possible that
infections are amplified in LBMs due to poor biosecurity and management practices that
foster virus maintenance [15]. Ugandan LBMs receive birds from different sources, have
insufficient cleaning practices, and have no all-in-all-out policy with new birds introduced
into cages where unsold birds are kept. These practices create an environment suitable
for AIV maintenance, amplification, and evolution that consequently becomes a source of
potential zoonotic viruses [42,43].

Genetic analysis of the Uganda H9N2 viruses isolated during our studies showed that
they belong to the G1 lineage, more related to Kenyan viruses than to viruses from Northern
and Western Africa. The Ugandan viruses also clustered with viruses from the Middle
East and Asia (Saudi Arabia, Pakistan, Iran and United Arab Emirates). Unfortunately, few
countries in Eastern, Central and Southern Africa conduct regular surveillance for AIVs,
making it difficult to accurately determine the spread of viruses across the continent and
identify ancestral viruses. We can, however, infer from the available data that H9N2 viruses
in Kenya and Uganda most likely originated from the Middle East via poultry movement
or human activities. Viruses were introduced into Uganda around 2014 and became firmly
established in commercial markets by 2017.

The overall genetic diversity in each segment of the Ugandan H9N2 viruses was less
than 0.5%. This is likely influenced by the limited geographic distribution of the markets we
sampled, where spread might be localized and not indicative of overall diversity across the
country. Nevertheless, the nucleotide substitution rate within the H9N2 viruses has been
steadily increasing, and pairwise distance analysis revealed clusters within the different
gene segments that showed a random pattern of distribution by market. The topologies of
the Ugandan H9N2 sequences within the phylogenetic trees differed by segment as did the
rate of substitution. This demonstrates a differing pattern of evolution in the gene segments
in addition to segment-specific differences in rates of nucleotide substitution.

A major driver for evolution and risk of influenza viruses lies in reassortment. Over
the years, multiple novel influenza A reassortants have been discovered that are more
virulent and can infect multiple species [44–46]. In order for reassortment to happen, there
must be co-infection within the host cells [4]. This can be between viruses of different
strains or subtypes, or viruses from different locations or host species [46]. In this case,
we investigated reassortment within the isolates and reassortment by market, and found
significant levels in both instances. Cocirculation of highly pathogenic AIV in the same
population has been demonstrated to provide an opportunity for these viruses to reassort
as has been observed with H5N1 in Cambodia [47] and in Egypt [44,45,48]. With H6N2
viruses having recently been discovered in Uganda [49], monitoring for reassortment must
be intensified. Consistent with the limited genetic diversity in HA, selected H9N2 viruses
were antigenically similar to each other. In addition, they were antigenically similar to
H9N2|A/Oman/2747/2019, a virus responsible for a recent human infection [19].

Molecular markers that have been reported to increase mammalian host susceptibility
were also found in the Ugandan H9N2 viruses. These included the HA Q226L (H3 num-
bering) substitution which changes the flexibility of the 220-loop allowing it to interact
more favorably with receptors on mammalian cells [50,51] and also promoting immune
escape [52,53]. Also present in the HA were T197/G520 (H9 numbering), which have been
associated with increased transmission of H9N2 viruses via respiratory droplets [54,55].
The canonical PB2 E627V/K mutations, responsible for increased virulence and adaptation
in mice [56,57] were absent; however, this is compensated for by the presence of VDKGVV
substitutions at positions 89, 309, 339, 477, 495 and 676 respectively [58,59].
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Mutations that increase drug resistance against antivirals such as Amantadine and
Baloxavir, which are the drugs of choice for treating severe Influenza infections, were
also found in the MP and PA segments. This was in addition to mutations that increased
pathogenicity in avian and mammalian cell lines, and in experimental animals such as
ferrets and mice.

Our H9N2 viruses with PA-E199D demonstrated marginally lower susceptibility to
the endonuclease inhibitor Baloxavir acid as has been reported for other viruses [37]. The
virus with the combined F105L+E199D substitution had the highest EC50 which suggests a
possible synergistic effect warranting further investigation. Many of the markers identified
in the Ugandan viruses seem to be widespread in Africa, having been found in viruses
from Kenya, Tunisia, and Algeria [60–62].

5. Conclusions

Our findings indicate that G1-lineage H9N2 viruses were introduced into Uganda
from the Middle East around 2014. The viruses subsequently became established, quickly
reaching a prevalence of 49%. Through comparative whole genome analysis, the viruses
were found to have evolved extensively through reassortment events within and between
the LBMs in segment-specific manners. There were also multiple molecular markers identi-
fied that have been associated with cross species infection; these include HA Q226L and
those that enhance pathogenicity and reduce antiviral drug sensitivity. The documented
zoonotic capacity of G1-lineage H9N2 viruses highlights the need for regular and exhaus-
tive surveillance of all influenza viruses in circulation within the country and subsequent
risk-assessment to provide a complete picture of prevalence, distribution, and risk.
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Figure A1. Phylogenetic tree for PB2. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink, and the Middle East in the green clade. Posterior probabilities
are shown on the branches. tMRCA for Uganda is November 2014. Scales represent substitutions
and time.
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Figure A2. Phylogenetic tree for PB1. Ugandan viruses are highlighted in blue. Kenyan in red, North
and West African countries in pink, and the Middle East, Asia and a few European viruses in the
green clade. tMRCA for Uganda is August 2013. Posterior probabilities are shown on the branches.
Scales represent substitutions and time.
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Figure A3. Phylogenetic tree for PA. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink, and the Middle East in the green clade Including various non
H9N2 viruses from Asia and Europe tMRCA for Uganda is September 2014. Posterior probabilities
are shown on the branches. Scales represent substitutions and time.
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Figure A4. Phylogenetic tree for NP. Ugandan viruses are highlighted in blue, Kenyan in red, North 
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Figure A4. Phylogenetic tree for NP. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink, and the Middle East and Asia in the green clade. tMRCA for
Uganda is December 2013. Posterior probabilities are shown on the branches. Scales represent
substitutions and time.
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Figure A5. Phylogenetic tree for NA. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink. tMRCA for Uganda is May 2014. Posterior probabilities are
shown on the branches. Scales represent substitutions and time.
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Figure A6. Phylogenetic tree for MP. Ugandan viruses are highlighted in blue, Kenyan in red, North
and West African countries in pink, and the Middle East in the green clade. tMRCA for Uganda is
December 2014. Posterior probabilities are shown on the branches. Scales represent substitutions
and time.
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