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Abstract: APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on sin-

gle-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and 

retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-

crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length 

APOBEC3G have been solved recently, there is little structural information available about ssDNA 

interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investi-

gated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified 

ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) imme-

diately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cy-

tosine deamination, the target 2-deoxycytidine embedded in 40-mer ssDNA was replaced by 2-

deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incor-

porated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple 

multimeric species, of which tetramer was the most scattering species. The structure of the tetramer 

was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the 

tetrameric interface does not. This explains why dimers completely disappeared, and monomeric 

protein species became dominant, when ssDNA was added. Data analysis of the monomeric species 

revealed a full-length APOBEC3G–ssDNA complex that gives insight into the observed “jumping” 

behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the 

first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide 

further structural and enzymatic work on APOBEC3–ssDNA complexes. 
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1. Introduction 

APOBEC3 (A3) enzymes deaminate cytosine to uracil on single-stranded DNA [1] 

(ssDNA) or RNA [2]. There are seven family members in humans that act as part of the 

innate immune response against viruses and retrotransposons where ssDNA deamination 

is the primary substrate [1,3–5]. The presence of 2’-deoxyuridine in ssDNA templates re-

sults in the addition of thymidine during DNA replication, causing C→T mutations. Due 

to their promutagenic nature, this enzyme family is a double-edged sword. For example, 

some members of this family, such as A3A and A3B, can become dysregulated and induce 

mutation of host DNA and are linked to cancer development, cancer evolution and drug 

resistance [6,7]. However, the seven human A3 enzymes (A3A-A3G, except for E) are pri-

marily known for their ability to restrict the replication of HIV. A3G was the first member 

discovered from this family and is a potent anti-HIV restriction factor [8]. Its significance 

is so great that the HIV protein, Vif, among other functions, mimics the substrate receptor 

of a Cullin 5 ubiquitin ligase to target A3G, and other A3s, for degradation [9–11]. A3G 

potently restricts Vif-deficient HIV [12] and can also induce mutations in Vif + HIV, but 

the contributions of the mutations to viral inactivation or virus escape and drug resistance 

are not clear [13–16]. A3G and other A3 enzymes restrict their relevant pathogens using 

both a deaminase-dependent and a deaminase-independent mechanism [8,17]. The deam-

inase-dependent function is based on the deamination of cytosine, and the deaminase-

independent function is based on physically inhibiting reverse transcriptase activity by 

oligomerizing on ssDNA or RNA or, additionally for A3G, by a direct interaction with the 

reverse transcriptase itself [18–21]. Complicating in vitro studies, A3G is usually purified 

as a high-order multimer with low activity, which dissociates after RNAse A treatment to 

a mixture of lower-order oligomeric states with higher activity [22]. The oligomerization 

of A3G and other A3 proteins was recently reviewed by Chen [20]. 

A3G contains two zinc(II)-binding deaminase domains, of which only the C-terminal 

domain (CTD) is catalytically active and responsible for deamination of cytosine. On the 

other hand, the N-terminal domain (NTD) is in charge of RNA binding, virion encapsula-

tion [23], processivity on ssDNA [24] and interaction with Vif [24,25]. For long DNA frag-

ments (>60-mer), A3G shows a processive behavior [22,24,25], where it scans its substrate 

for the deamination motif (-CCC-), preferentially located near the 5 end of DNA, by a 

sliding and jumping [22] mechanism, as well as by inter-segmental transfer [26]. A re-

markable, approximately 30-mer “dead zone” for nucleotides 3 of the CCC deamination 

motif had been revealed earlier [27]. A3G is also shown by Förster resonance energy trans-

fer (FRET) to hover over the deamination hotspot [28]. The CTD of A3G by itself is weakly 

active, whereas the activity and processivity are greatly enhanced by the presence of the 

catalytically inactive but structurally homologous NTD in full-length A3G [23,27,29–31]. 

Recently, the crystal structures have been published of two-domain full-length A3G, 

denoted A3Gfl. One set of structures is from human A3Gfl (PDB: 6WMA, 6WMB, 6WMC) 

[32]; the other set of structures is from rhesus monkey (PDB: 6P40, 6P3Z, 6P3X, 6P3Y) [33]. 

Both sets of A3Gfl structures are heavily modified for stability and solubility, and only one 

structure has both Zn2+ binding sites occupied (6P40). Individual domains of A3G, both 

with [34] and without ssDNA [35–40], have also been structurally characterized. So far, 

however, there have not been any experimentally based models and structures of full-

length two-domain active enzymes with ssDNA bound. 

The effect of ssDNA on A3G oligomerization has been identified biochemically and 

under single-molecule conditions to be dynamic [19,41,42]. Analytical centrifugation has 

shown that apo A3G is mostly dimeric with smaller number of monomers and tetramers 

present, depending on concentration [43], but the structure of tetramers is not known. 

Extensive prior research has been conducted on the interaction of A3G with RNA and 

how this affects DNA interaction, but this is not the focus of this study. Here, we apply 

small-angle X-ray scattering (SAXS) with co-flow [44] combined with size-exclusion chro-

matography (SEC-co-flow-SAXS) to study full-length A3G in the presence and absence of 

ssDNA. In addition to model-free biophysical parameters, such as the radius of gyration 



Viruses 2022, 14, 1974 3 of 20 
 

 

(Rg), maximum dimension and molecular weight of the protein that are derived from the 

SAXS scattering data [45], we also derive from the data a model for the primary species in 

solution and present a model on how A3G interacts with ssDNA. The data support a 

model in which A3Gfl is composed of multiple oligomeric states in solution and bound to 

ssDNA [19,41–43]. However, binding to ssDNA converts the free multimeric apo-A3Gfl to 

a state in which there are relatively more monomeric species bound to ssDNA. There is 

some discussion in the field with respect to which oligomeric state is more active [19,42]. 

Our data confirm that ssDNA is an active player in altering the oligomeric state of A3Gfl 

[19,41,42] and show that ssDNA initiates the formation of the catalytically active monomer 

[27]. 

2. Materials and Methods 

2.1. Protein Preparation for SAXS 

Glutathione S-transferase (GST) fused to A3Gfl, GST-A3Gfl, was produced using a re-

combinant baculovirus and Sf9 cell system as described previously [22,27]. Sf9 cells were 

infected with recombinant A3Gfl-expressing virus at a multiplicity of infection of 1 and 

harvested after 72 h. Cells were lysed as described previously in the presence of 100 μg 

mL−1 of RNase A. Cleared lysates were then incubated with glutathione-Sepharose resin 

(GE Healthcare, Chicago, IL, United States) and subjected to a series of salt washes (0.25–

1 M NaCl) before on-column cleavage of the GST tag with 40 units of thrombin (Calbio-

chem, San Diego, CA, United States) for 16 h at 21 °C. Cleaved wild-type A3Gfl fractions 

were further purified by size-exclusion chromatography (SEC) using a G200 Increase (GE 

Healthcare) column with the following running buffer: 50 mM HEPES, pH 7.2, 200 mM 

NaCl, 10% glycerol, 1 mM DTT and 150 mM L-arginine HCl. Fractions were concentrated 

using Amicon Ultra Centrifugal Filter units and stored at −80 °C. 

2.2. Protein Purification for Activity Assay 

A3Gfl was produced as previously described [46,47]. Briefly, HEK293-6E cells were 

grown planktonically, following transient transfection, as described previously [47], using 

a pTT5 protein expression plasmid coding for GST-tagged A3Gfl. Soluble A3Gfl for activ-

ity/inhibition assays was purified from lysed HEK cells using a 5 mL GSTtrap FF column 

(Cytiva Marlborough, MA, United States). After removal of the GST tag with PreScission 

protease, the sample was then further purified using a Superose 12 column. 

2.3. DNA Synthesis 

The substrate 5’-ATTCCCAATT and inhibitors 5’-ATTCCdZAATT (abbreviated 

CCdZ-oligo) and 5’- ATTCC5FdZAATT (5FdZ is 5-fluoro-2’-deoxyzebularine; abbrevi-

ated CC5FdZ-oligo) were prepared as previously described [48]. Higher oligomeric 40-

mer DNAs, 5’-ATTCCdZAATT-T30, 5’-ATTCC5FdZAATT-T30, 5’-T30-ATTCCdZAATT 

and 5’-T30-ATTCC5FdZAATT containing dZ and 5FdZ were similarly synthesized (and, 

respectively, abbreviated CCdZ-T30-oligo, CC5FdZ-T30-oligo, T30-CCdZ-oligo and T30-

CC5FdZ-oligo). 

2.4. NMR Inhibition Assay 

The NMR inhibition assay was performed at 298 K, as previously described [48], us-

ing a 700 MHz Bruker NMR spectrometer equipped with a 1.7 mm cryoprobe. The initial 

speed of deamination of 500 μM 5’-ATTCCCAATT (target dC underlined) by ~450 nM 

A3Gfl in the absence or presence of 50 μM CCdZ- or CC5FdZ-containing oligos (10-mer 

and 40-mer) was measured. NMR experiments were conducted in a pH 6.0 kinetic buffer 

(100 mM NaCl, 50 mM sodium phosphate buffer, 10 % D2O, 1 mM citrate, 50 μM sodium 

trimethylsilylpropanesulfonate (DSS)). 
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2.5. SAXS Data Acquisition and Analysis 

A3Gfl was initially assessed at 2.5 mg/mL (slight aggregates formed), and SEC caused 

a dilution, so a new concentration of approximately 1.3 mg/mL was calculated based on 

the absorbance at 280 nm. SAXS measurements were conducted at the Australian Syn-

chrotron on the SAXS/WAXS beamline equipped with a Pilatus-2 1M detector as de-

scribed [45]. Samples were run at 25 °C through a SEC column (Superdex™ 200 Increase 

5/150 GL, GE Healthcare) at a flow rate of 0.2 mL/min in A3Gfl SAXS buffer (50 mM phos-

phate, pH 6.0, 200 mM NaCl, 2 mM β-mercaptoethanol (β-ME), 5% glycerol, 200 µM Na2-

EDTA). 

Glucose isomerase data were collected as control to confirm that that SAXS setup 

worked correctly, and water was run to provide calibration for the absolute intensity of 

scattering. SAXS measurements were obtained at 25 °C using a camera length of 1.6 m, 

and frames were taken at one-second intervals. SVD and EFA modules (SVD/EFA BioX-

TAS RAW [49]) were used to elucidate the number and boundaries of the scattering com-

ponents for the ligand-free A3Gfl and A3Gfl with a 40-mer ssDNA as described in Barzak 

et al. [45]. The only difference is that the Gaussian analysis was performed afterward to 

discriminate between overlapping species using US-SOMO [50–52], as described in great 

detail in the Supplementary Information of Brookes et al. [50]. The Gaussians that pro-

duced good scattering data were analyzed using PRIMUSQT (ATSAS 2.8.3 suite) to iden-

tify the species present as described previously in Barzak et al. [45]. In addition, SAXS 

data were collected on the 40-mer ssDNA by itself. All deconvolution methods have lim-

itations, which we largely mitigated by using two independent approaches to deconvo-

lute the data SVD/EFA and Gaussian analysis, where SVD ignores the time dimension of 

the data set, and Gaussian decomposition relies entirely on the time profiles of the scat-

tered intensities [51]. For further discussion on the limitations, see Brooks et al. [50,51]. 

3. Results 

3.1. SEC-SAXS Analysis of Apo A3Gfl: Deconvolution of Scattering Data 

The initial characterization of the catalytically active full-length wild-type ligand-free 

A3G protein using both the UV elution profile and the SAXS profile indicated that the 

sample had multiple components that were incompletely resolved by size-exclusion chro-

matography (SEC) (Figures 1A,B and S1A,B). Superimposing the radius of gyration, the 

Rg, trace values over the elution and SAXS profiles revealed a large variability in these 

values from ~30 to 50 Å across this peak, indicating that multiple scattering species were 

present in the sample (Figures 1A and S1A,B). Therefore, before further analysis, the spe-

cies were separated by deconvolution as detailed elsewhere [45] (see also Supplementary 

Materials and Materials and Methods.) 

(A) 

 

(B) 
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Figure 1. Deconvolution of the SEC-SAXS data of A3Gfl. (A) SAXS profile superimposed with Rg 

trace values. (B) Gaussian decomposition analysis using US-SOMO. Experiments were conducted 

at 25 °C using 2.5 mg/mL A3Gfl in A3Gfl SAXS buffer (50 mM phosphate, pH 6.0, 200 mM NaCl, 2 

mM β-ME, 5% glycerol, 200 µM Na2-EDTA). See text below and Figure S3 (Supplementary Materi-

als) for evidence supporting Gaussian decomposition and assignment of multimers and monomer. 

The derived scattering curves had a low signal–noise ratio because of deconvolution 

and the resultant low concentration of each species. Although the data were fitted with 

five species, only Species-B and -C (magenta and orange) produced acceptable scattering 

curves and showed higher intensities than the other species, indicating their greater con-

tribution to the overall scattering pattern of the sample. Therefore, these two curves were 

further analyzed to identify the corresponding oligomeric states. 

3.2. SAXS Analysis of Apo A3Gfl: Analysis of the Scattering Curves 

The initial analysis of the derived scattering curves revealed that the A3Gfl scattering 

species were homogeneous, illustrated by the plateau at low q in the double log graph (see 

Figure S2B in Supplementary Materials, see also text below). From the P(r) plot [53], A3Gfl-

Species-B was estimated to have an Rg ~ 60 Å and Dmax ~ 160 Å. However, as the scatter-

ing data of this species had a low signal-to-noise ratio, the accurate derivation of the struc-

tural parameters for this species was difficult (see Figure S2A,B in Supplementary Mate-

rials). 

The comparison of the Kratky plots [53] of the derived scattering species showed that 

the position of the peak maximum of the A3Gfl-Species-B (at q ~ 0.025 Å−1) was half that of 

the A3Gfl-Species-C (q ~ 0.05 Å−1) (see Figure S2C in Supplementary Materials), indicating 

that the A3Gfl-Species-B was about double the size of the A3Gfl-Species-C. The higher 

value here indicates the smaller size, as scattering vector q is related to the inverse size. 

The same trend was also observed in the elution pattern, as the bigger particles elute off 

the SEC column earlier than smaller ones; A3Gfl-Species-B elutes before A3Gfl-Species-C 

(Supplementary Figure S1D). Finally, notwithstanding the similar intensity of X-ray scat-

tering from the two species, this intensity is biased by the sixth-power relationship be-

tween the particle size and the scattering of electromagnetic radiation. Thus, A3Gfl-Spe-

cies-C was present in higher concentrations than A3G-Species-B, leading to a better signal-

to-noise ratio (Figure S2). 

We then focused on the more prominent A3Gfl-Species-C, for which we found a sat-

isfactory Guinier plot indicating a monodisperse sample (see Figure S2B insert and Figure 

S2E in Supplementary Materials). Both the Rg and I(0) derived from the Guinier and the 

P(r) plots were very similar, confirming the relative size of the species as listed in Table 

S1. The Kratky plot showed a nice bell-shaped curve with a peak maximum q ~ 0.05 Å−1; 

however, the plot at higher q did not completely return to the baseline, suggesting that 

the structure may contain flexible regions (see Figure S2C in Supplementary Materials). 

The Rg-normalized Kratky plot [54] shows that the peak maximum sits at the position 

indicative of a well-folded globular protein (( 3, 1.104); Figure S2F). Noticeably, the esti-

mated values of Rg and Dmax of this A3G-Species-C (Rg ~ 42 Å, Dmax ~ 146 Å, Table S1) 

were found to be similar to a previously reported elongated dimer for A3Gfl derived from 

SAXS data [55]. However, our molecular weight was estimated to be ~208 kDa (derived 

from the Porod volume, not from I(0) [56], as each species is overlapped, as discussed 

above), which was double the molecular weight previously reported, using non-deconvo-

luted data, for an A3Gfl elongated dimer of ~100 kDa [55]. This suggested that our A3Gfl-

Species-C is not a dimer but a tetramer under our conditions, in which four two-domain 

A3Gfl molecules oligomerize together. The DAMMIF-derived ab initio envelope calcu-

lated from the SAXS data for the tetramer species, and the structural model derived, will 

be discussed below in context with the complex between the tetrameric species and 

ssDNA (see also Supplementary Materials, Figure S4). 
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To identify the oligomeric states of the other deconvoluted species (and as an orthog-

onal by-product to validate the deconvolution into potentially five multimeric species of 

A3Gfl), we plotted the logarithm of the oligomerization number as a proxy for molecular 

weight (log1 for a monomer, log2 for a dimer, etc.) as a function of the frame number at 

the maximum of scattering for each of the species deconvoluted (frame number is propor-

tional to the elution time in SEC (Supplementary Figure S3)). As we already identified 

Species-C as a tetramer, the smaller species were assigned to a dimer and monomer; the 

bigger are likely to be 8-mer and 16-mer, as the simplest explanation for oligomers would 

be the multiples and fractions of the tetramer. The resulting plot, effectively an SEC cali-

bration plot, should be linear if our assumption of multimeric A3Gfl species is correct. Our 

plot clearly shows linear dependency, confirming our assignment of oligomerization 

states (Figure 1B), especially for the dimer and monomer species. As a logarithmic scale 

“flattens” the data, the assignment of 8-mer and 16-mer, while tentative, is, for lack of a 

better adverb, oligomerizationally sensible. Taken together, our SEC-SAXS experiments 

show that the ligand-free double-domain A3Gfl exists in multiple quaternary states in so-

lution, and one of the two dominant scattering species, Species-C, is a tetramer. The other 

dominant species in scattering, Species-B, with a much larger Rg, is a higher-order multi-

mer (likely 8-mer). Our deconvolution data are roughly similar to the analytical ultracen-

trifugation data of Salter at al. [43], where dimers were prevalent, but tetramers and mon-

omers were also present, and their amounts depended on the protein concentration. As 

SAXS is biased toward high molecular weights (the intensity is biased by the sixth-power 

relationship between the particle size and the scattering of electromagnetic radiation), the 

scattering is heavily dominated by larger molecules. Accordingly, the tetramer becomes 

the prevalent scattering species. We cannot completely exclude that a residual amount of 

RNA may be responsible for the higher-order multimers, but the prevalence of higher-

order oligomers should be very low, as higher-order multimers dominate the scattering. 

3.3. SAXS Model of A3Gfl in Complex with ssDNA 

Selection of ssDNA for SAXS Studies 

To prevent deamination of ssDNA during SAXS experiments on active A3Gfl, we de-

cided to use chemically modified DNA [57], that is, an inhibitor species. A similar ap-

proach was used by us to study the catalytically active C-terminal domain (CTD) of A3B, 

A3B-CTD, in complex with ssDNA, where dZ replaces the target dC [45]. A3Gfl has an 

intrinsic preference toward deamination of dC at the 3’-end of a CCC-motif (Km ~ 570 µM 

for A3G-CTD acting on the 10-mer substrate 5’-ATTCCCAATT, abbreviated CCC-oligo 

[57]). The incorporation of dZ or its 5-fluoro derivative (5FdZ) at the 3’-end of the CCC-

motif on the 10-mer oligonucleotide (5’-ATTCCdZAATT, abbreviated CCdZ-oligo, and 

5’-ATTCC5FdZAATT, abbreviated CC5FdZ-oligo) led to significant inhibition of A3G-

CTD activity on the CCC-oligo by CCdZ-oligo [46,58] (and somewhat less so by CC5FdZ-

oligo), as dZ and FdZ cannot be deaminated. dZ and FdZ form a tetrahedral intermediate 

in the active site of A3, as evidenced in the recent crystal structures of FdZ oligo with wild-

type A3A [59] and dZ oligo with A3G-CTD [60]. The observed deamination was a result 

of the residual activity of A3G-CTD on the 10-mer CCC-substrate. The cytosines in our 

CCdZ- and CC5FdZ inhibitors are not deaminated by A3 enzymes because the Ki for dZ 

in CCdZ-containing oligos is much lower than the Km for the remaining cytosines in these 

motifs [48,58]. 

Noting that 20-mer oligonucleotides had been reported to have higher binding affin-

ities to a single-domain A3A/A3B chimeric construct than shorter oligonucleotide se-

quences [48], we therefore thought a 40-mer oligonucleotide would better accommodate 

binding to double-domain A3Gfl. A 40-mer oligonucleotide containing the sequence of 10-

mer CCdZ-oligo or CC5FdZ-oligo preceded by a poly T30 tail at the 5’-end (T30-CCdZ-

oligo and T30-CC5FdZ-oligo) decreased the deamination rates of the substrate CCC-oligo 

by A3Gfl by a similar factor to the control oligonucleotides CCdZ-oligo and CC5FdZ-oligo 



Viruses 2022, 14, 1974 7 of 20 
 

 

(Figure 2) [46]. However, the placement of the CCdZ- or CC5FdZ- motif near the 5’-end 

of the 40-mer ssDNA (CCdZ-T30-oligo and CC5FdZ-T30-oligo) led to a more pronounced 

inhibition of A3Gfl, consistent with the reported polarity of A3G-induced deamination 

[41]. 

 

Figure 2. Qualitative screen of modified oligos on the inhibition of the A3Gfl-catalyzed deamination 

of the preferred dC substrate 5’-ATTCCCAATT (CCC-oligo). Plot of the initial speed of deamination 

of 500 μM 5’-ATTCCCAATT (target dC underlined) by the A3Gfl in the absence or presence of 50 

μM CCdZ- or CC5FdZ-containing 10- and 40-mer oligos. Experiments were performed using the 
1H-NMR-based inhibition assay in pH 6.0 kinetic buffer (100 mM NaCl, 50 mM sodium phosphate, 

10 % D2O, 1 mM citrate, 50 μM DSS) at 298 K. Experiments with 10-mer oligonucleotides were re-

peated multiple times, and the mean values were plotted with error bars reported as SD, whereas 

single experiments were performed on the 40-mer oligos. Full inhibitor sequences are given in Ma-

terials and Methods. 

The 5FdZ-containing ssDNA did not further improve the inhibition of A3Gfl over dZ-

containing ssDNA, neither by the 10-mer [46] nor by the 40-mer oligo (Figure 2). There-

fore, to study the structure of the double-domain A3Gfl in complex with ssDNA using 

SAXS, the 40-mer CCdZ-T30-oligo was selected to ensure binding to the CTD in a produc-

tive conformation to cause inhibition of the catalytically active A3Gfl. 

3.4. SAXS Studies of CCdZ-T30-Oligo 

Initially, the CCdZ-T30-oligo was examined using SEC-co-flow-SAXS to understand 

its dynamic structure in solution and potentially to aid in modeling the A3Gfl–ssDNA 

complex. The CCdZ-T30-oligo eluted off the SEC column as a single monodisperse species 

(Figure 3A), with a steady Rg ~32 Å displayed across the peak in both the elution and 

SAXS profiles (Figures 3A and S5A). The double log plot resulted in a plateau at low q 

values, indicating that the sample was homogeneous (see Figure 3D), which was further 

verified by a good fit with the linear regression in the Guinier plot [53] (Figure 3C). 

The estimation of the Rg and I(0) values from the Guinier slope agreed well with the 

values obtained by the independent P(r) method, further confirming the quality and rela-

tive size of the oligonucleotide listed in Table S3 (Supplementary Materials). From these 

parameters, the estimated MW ~12–13 kDa of the oligonucleotide was found to be com-

parable to the expected MW ~12 kDa. The Kratky profile [53] indicated that the oligonu-

cleotide adopted a highly flexible extended conformation, as the scattering intensity at 

values of q > 0.1 Å−1 did not return to the baseline (see Figure S5C in Supplementary Ma-

terials). This was additionally supported by the P(r) plot [53], which was significantly 
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skewed to the right in comparison to the standard symmetrical bell-shaped histogram for 

a compact quasi-spherical moiety [53] (see Figure S5D in Supplementary Materials). 

As free DNA may have a reasonably long persistence length [61], we performed the 

reconstruction of the scattering profile using 3D envelope modeling. This reconstruction 

of the scattering profile (NSD ~ 0.875) demonstrated, remarkably, a well-defined shape for 

the oligonucleotide. The envelope model mimics a dumbbell, which is consistent with the 

shape of the P(r) curve (see Figures 3E and S5D), as described in the literature [62]. This 

model illustrates that the oligonucleotide is single stranded and is made up of approxi-

mately four helical turns. The model described is likely a representation of a smeared con-

formational distribution, and further work using an ensemble approach with higher-qual-

ity data may provide better elucidation of the conformational space available to the oligo. 

 

Figure 3. SEC-SAXS analysis of CCdZ-T30-oligo. (A) SEC elution profiles (red) of CCdZ-T30-oligo 

(further abbreviated as CCdZ-40mer in the figure), with Rg trace (black dots) superimposed. Only 

the data between the thickened black lines on the x-axis were retained for analysis. (B) Fits of a 

kinked B-DNA model to SAXS X-ray data (blue) for the CCdZ-T30-oligo using FoXS (dashed black 

line) and CRYSOL (solid black line). (C) Guinier plot of CCdZ-T30-oligo scattering data (blue) and 

its fit (dashed black line). (D) Double log plot of CCdZ-T30-oligo scattering data. (E) Averaged en-

velope model of CCdZ-T30-oligo assuming P1 symmetry using DAMMIF and refined with 

DAMAVER and DAMFILT (ATSAS 2.8.3 suite). (F) Envelope model (blue shape) superimposed 

with the B-form of DNA for CCdZ-T30-oligo (centipede cartoon model). 

Based on the envelope model, the CCdZ-T30-oligo adopts, under our conditions in 

solution, an approximately standard B-form DNA conformation (Figure 3E), even though 

it is single stranded. Therefore, the averaged envelope model was superimposed with a 

B-form 40-mer ssDNA structure (designed using the make na server http://struc-

ture.usc.edu/make-na/server.html, accessed on 1 April 2019) and modeled with a kink. 

The 40-mer ssDNA structure gave a remarkably good visual fit with the SAXS-derived 

molecular envelope (Figure 3F). To validate this model, the observed CCdZ-T30-oligo 

SAXS scattering profile was compared with the back-calculated 1D scattering profiles of 

the designed B-form ssDNA. The scattering data showed a good visual fit with this model, 

especially in the q regions between 0.02 and 0.2 Å−1, as illustrated in Figure 3B and sum-

marized in Table S4. Therefore, the in-solution SAXS-based model of the CCdZ-T30-oligo 

is comparable to the rigid B-DNA model structure. 

3.5. SAXS Model of A3Gfl in the Presence of dZ-Containing ssDNA 

To study A3Gfl in complex with ssDNA, SEC-SAXS experiments were performed on 

A3Gfl in the presence of CCdZ-T30-oligo. Like the ligand-free A3Gfl sample, the sample 
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was not homogeneous, and the eluents were not well resolved. Focusing on the elution 

profiles, the Rg trace was observed to be variable across the protein elution peaks, indi-

cating that multiple A3Gfl species were present in the sample (Rg ~ 30–54 Å across 460–

590 s, Figure 4A). 

 
 

Figure 4. SEC-FLPC profile comparison of apo A3Gfl and A3Gfl/ CCdZ-T30-oligo shows complex for-

mation. (A) SEC-FPLC elution profile of A3Gfl with CCdZ-T30-oligo (red, abbreviated as ssDNA-

40mer in the figure) at a 1 to 2 molar ratio, with Rg trace values (black dots) superimposed. Only 

the data between the thickened black lines on the x-axis were retained for analysis. (B) Superposition 

of SEC-FPLC elution profiles of A3Gfl alone (gray), of CCdZ-T30-oligo (blue) and of A3Gfl with 

CCdZ-T30-oligo (abbreviated as ssDNA-40mer in the figure) at a 1 to 2 ratio (orange). (C) Gaussian 

decomposition analysis using US-SOMO. Experiment conducted using 2.5 mg/mL A3Gfl in a 1 to 2 

molar ratio with CCdZ-T30-oligo in A3Gfl-SAXS buffer at 25 °C (50 mM phosphate, pH 6.0, 200 mM 

NaCl, 2 mM β-ME, 5% glycerol, 200 µM Na2-EDTA). In the text, the descriptor C for complex is 

added to distinguish these species from those identified in SAXS data of A3Gfl alone. 

In contrast, Rg remained constant over the region where the oligo eluted (Rg ~ 33 Å, 

from 597 to 645 s, Figure 4A), very similarly to the CCdZ-T30-oligo by itself. When we 

compared the absorbance maximum of the eluted ssDNA peak from this sample (A280 ~ 

1.02, Figure S6C) to that of ssDNA-only control sample (A280 ~ 1.53, Figure S6B), we found 

that the absorbance decreased by ~30 %. This decrease was complemented by an increase 

in the overall absorbance of the eluted protein fractions (compare Figure S6A,C), estab-

lishing that a protein–ssDNA complex had formed. The superposition of the elution pro-

files (Figure 4B) clearly shows the shift of protein signal to the lower molecular size (shift 

to the right). As apo A3Gfl existed in multiple conformations, it was unclear from the elu-

tion profile which A3Gfl form was in complex with the oligonucleotide (further detailed 

in Figure 5). Therefore, deconvolution was performed (Figures 4C, S7 and S8 in Supple-

mentary Materials) to extract the scattering curves for each A3Gfl component from the 

A3Gfl/CCdZ-T30-oligo sample. Four species were identified (Figure 4C), and then, the four 

1D scattering curves of each component (Figure S9A in Supplementary Materials) were 

extracted (termed Species 1–4). 

Initially, we established using the double log plot [53] that all the derived scattering 

curves contained only one scattering species (see Figure S9B in Supplementary Materials). 

The Kratky plots of Species 1–3 presented characteristic bell-shaped peaks at low q, im-

plying that the species were globular, though the structures also had flexible regions, as 

indicated by higher q data not completely returning to baseline (see Figure S9C in Supple-

mentary Materials). These results were, again, consistent with the skewed shape of the 

P(r) curve from a standard bell-shaped curve, implying these components had elongated 

shapes (see Figure S9D in Supplementary Materials). 

Interestingly, the Kratky plot of Species-4 had a broad peak that downturned at low 

q, as observed for DNA alone (see Figure S9C in Supplementary Materials). Due to the 

low abundance of Species-1, as indicated by its low signal intensity (Figure 4C), no accu-

rate parameters could be derived for this species (see Figure S9B insert in Supplementary 



Viruses 2022, 14, 1974 10 of 20 
 

 

Materials). Therefore, we focused on deriving the structural information for Species-2, -3 

and -4, as listed in Table S5 (Supplementary Materials). 

3.6. Analysis of Species-2 from A3Gfl/CCdZ-T30-Oligo SEC-SAXS 

Based on the estimated MW, we deduced that Species 2 corresponded to an A3Gfl 

tetramer made up of four two-domain subunits (see Table S5, Supplementary Materials). 

The size (MW, Rg, Dmax, see Table S5) of this species was slightly larger (estimate of 4.9 

for free protein subunits) than that of the ligand-free tetrameric A3Gfl species (estimate of 

4.4 free protein subunits, see Table S1 in Supplementary Materials), indicating that this 

component was potentially in complex with an oligonucleotide. To verify this notion, the 

A260/A280 ratio of the A3Gfl sample was compared to that of the A3Gfl/CCdZ-T30-oligo 

sample, as described earlier [45]. Consistent with this notion, this A260/A280 ratio was 

larger than the ratio for the ligand-free protein across the entire elution profile, as dis-

played in Figure 5, illustrating that the A3Gfl Species-2 (A3Gfl tetramer) and other species 

(Species-1 and -3) elute along with the ssDNA. This signified that each of these species is 

a complex of A3Gfl with the CCdZ-T30-oligo. Species-4 is CCdZ-T30-oligo. 

 

Figure 5. Ratio of A260/A280 to assess the presence of DNA in elution of the A3Gfl/CCdZ-T30-oligo 

sample. The A260/A280 ratio of the A3Gfl (blue) and A3Gfl/CCdZ-T30-oligo (green) samples (abbre-

viated as CCdZ-40mer in the figure), overlaid with the A280 elution profile of the A3Gfl/CCdZ-T30-

oligo sample (red) to display the boundaries of each species (Species-1, -2, -3 and -4). The peak max-

ima for the deconvoluted data are shown with a solid line; the peak width with a dotted rectangle 

and shaded box. Note: Peak widths for Species-1 and -4 extend to the left and to the right of the 

chromatograph, respectively. The color scheme is the same as in Figure 4. The overlap between the 

scattering of species results in the mixed colors. 

Based on the differences between the MW of Species-2 (MW ~ 227 kDa, Table S5) and 

the ligand-free A3Gfl tetramer (MW ~ 203 kDa, Table S5), we can deduce, tentatively, that 

two oligonucleotides (24 kDa ~ two 12 kDa CCdZ-T30-oligos, Table S3) form a complex 

with the A3Gfl tetramer. To find the 3D shape of this species, ab initio shape reconstruction 

was performed using P2 symmetry to allow a tetrahedral or flattened tetrahedral arrange-

ment. A mean NSD score of 0.557 for the averaged envelope model was derived, which 

indicated very good self-consistency for the ensemble (acceptable NSD ≤ 0.8) [63] (Table 

S6). The envelope model was somewhat ellipsoidal, as illustrated in Figure 6A. The enve-

lope model of the previously identified ligand-free A3Gfl tetramer (Figure S4 in 
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Supplementary Materials) fits well inside this envelope, establishing that the tetrameric 

arrangement observed for ligand-free A3Gfl is preserved on binding CCdZ-T30-oligo. 

However, for this A3Gfl tetramer with the CCdZ-T30-oligo, two noticeable regions of elec-

tron density appear on either side of the envelope of the ligand-free A3Gfl tetramer, as 

shown in Figure 6B. These regions indicate locations for the binding of two oligonucleo-

tides, confirming earlier interpretations, whereby the A3Gfl tetramer (Species-2) com-

plexes with two CCdZ-T30-oligos in solution, under our conditions. 

Upon binding of the oligonucleotides to the A3Gfl tetramer, we also see that the pro-

tein envelope elongates slightly in comparison to the ligand-free form (Figure 6B), which 

is consistent with a 17 Å increase in Dmax, as well as a substantial increase in Rg (see Table 

S5 Species-2 in comparison to Table S1). The action of binding the pair of CCdZ-T30-oligos 

to the tetrameric protein appears to cause modest structural rearrangements in the A3Gfl 

tetramer, leading to the observed elongation of the molecule. The two CCdZ-T30-oligos 

appear to be closely associated with and flattened onto the surface of the A3Gfl tetramer, 

but equally, the arms on either side of the dZ bound into the active site of two of the four 

CTDs of A3Gfl could be sampling many conformations and hence be undetectable by 

SAXS. However, the data do not permit distinguishing the two possibilities. Moreover, 

the tetrameric arrangement may be perturbed upon DNA binding. 

 

Figure 6. Envelope models of the A3Gfl tetramer with and without CCdZ-T30-oligo. (A) Envelope 

model of the A3Gfl tetramer/CCdZ-T30-oligo (purple) generated under P2 symmetry (DAMMIF, 

ATSAS 2.8.3 suite), with Dmax ~ 162 Å and Rg ~ 47 Å. (B) A3Gfl tetramer/CCdZ-T30-oligo envelope 

model superimposed with ligand-free A3Gfl tetramer envelope model (orange). 
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3.7. Model-Free Analysis of SEC-SAXS Data for Species-3 and -4 from A3Gfl/CCdZ-T30-Oligo 

The parameters shown in Table S5 indicate that Species-3 is monomeric A3Gfl with 

one DNA bound (ratio of the MW from the Porod volume [53] to the mass of monomer 

with one DNA is 1.2, Table S5). As in the case of the free A3Gfl tetramer, the MW derived 

from the Porod volume is slightly higher than calculated and may be attributed, at least 

in part, to strongly associated water molecules. The retention time in SEC and the SAXS-

derived parameters, along with the overall shapes of the plots derived for Species-4, are 

very similar to those of CCdZ-T30-oligo only, with the exception of MW from the Porod 

volume, indicating that Species-4 is a free CCdZ-T30-oligo. The Porod volumes are unre-

liable for non-globular flexible macromolecules, such as DNA. 

3.8. Modeling Species-3 of A3Gfl/CCdZ-T30-Oligo as a Monomer with DNA 

The averaged envelope model for monomeric Species-3 (Figure 7A) resulted in a 

mean NSD score of 0.75 (acceptable NSD ≤ 0.8), indicating that the averaged model was 

acceptable (see Table S6 in Supplementary Materials). Therefore, we used this envelope 

for the modeling (Figures 7 and S10 in the Supplementary Materials) of the A3Gfl mono-

mer in complex with the DNA. The modeling was based on combining the homology 

model with the wild-type human A3G sequence based on the full-length monomer of 

A3Gfl from 6P40 [33] (Figure 7), the catalytically active C-terminal domain of A3G com-

plexed with ssDNA (A3G-CTD/DNA, 6BUX [34]), and the remaining DNA was used to 

fit the envelope. This structural model for the full-length A3G–ssDNA complex gave an 

excellent fit with the SAXS data (χ2 = 0.69) with a random distribution of residuals, in 

sharp contrast to the poor fit of the DNA-free monomers (Figure S10A) showing more 

than 10 times worse χ2 value. Interestingly, this model for the A3Gfl–ssDNA complex 

showed close proximity of the negatively charged phosphate backbone of the DNA with 

the positive patch on the N-terminal domain (NTD) (Figure 7C). 

 

Figure 7. The model of CCdZ-T30-oligo in complex with monomer of A3Gfl (Species-3). (A) Fit of 

model with SAXS-derived envelope (orange dots)_in two orientations. The CTD of A3Gfl is on the 

left, the NTD is on the right; helices are shown in cyan, beta strands in magenta, loops in orange; 

the ssDNA is shown in green. (B) Fit (red solid line) of model with the SAXS profile (black dots), 

with residuals shown below. (C) The surface of the protein colored according to the charge distri-

bution (red, negative; blue, positive) with CCdZ-T30-oligo superimposed (same orientation as right-

hand frame of (A). The modeling was performed with PyMol (https://pymol.org/2/ (accessed on 18 

August 2022)) using (1) the homology model (developed with YASARA (http://www.yasara.org/ 

(accessed on 18 August 2022)), using wild-type human sequence modeled onto full-length monomer 
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from 6P40 [33], (2) the catalytically active C-terminal domain of A3G in complex with ssDNA 

6BUX34 and (3) one DNA strand from B-DNA. The A3G-CTD/DNA complex (derived from 6P40) 

was used instead of free CTD in A3Gfl structure, and the single-stranded DNA was elongated from 

9 nucleotides in the original structure to 40 nucleotides in our experiments. Zinc atoms in active and 

pseudo-active sites are shown as magenta spheres in (A). 

The modeling based on 6P3X [33] gave a very similar structure to that shown in Fig-

ure 7. Using the ssDNA monomers from 6WMA (Figure S10) resulted in a slightly worse 

fit with the SAXS profile (Figure S10C), but, interesting electrostatically, this model made 

more extensive contacts of ssDNA with the positive patches of the NTD. In this case, the 

different parts of ssDNA were interacting with the positive patches of NTD. From this 

modeling, we suggest that, on DNA binding, the protein can rearrange from one confor-

mation to the other, and different positive patches encounter DNA. The confirmation of 

our models will require the higher-resolution methods, such as cryo-EM. Nevertheless, 

our low-resolution models give interesting insights. In the model shown in Figure 7, the 

pseudo-catalytic site of the N-terminal domain is interacting with the 3’ end of DNA, lead-

ing to the testable hypothesis that the NTD may recognize the CCC motif, allowing jump-

ing and inter-segmental transfer. 

Overall, the comparison between the deconvoluted SAXS profiles of Figures 1B and 

4B shows that in the presence of the DNA, the dimers disappear, and the monomeric state 

is much more prominent. The absence of a dimeric species (and the existence of tetrameric 

species) in the presence of a 40-mer ssDNA indicates the existence of (at least) two differ-

ent interfaces, one of which competes with DNA and the other of which does not; namely, 

the dimeric interface that hides access to the active site should be outcompeted by DNA 

binding, but the tetrameric interface should be much less affected by it. 

3.9. Model of Free A3Gfl Tetramer Based on Disappearance of Dimers and Preservation of 

Tetramers in the Presence of DNA 

We now sought to understand the conundrum, whereby the tetramers of A3Gfl bind 

ssDNA, but the dimers of A3Gfl disappear in the presence of ssDNA. The inspection of 

the available pdb structures shows that full-length A3G from the Macaque monkey (6P40 

[33]), which has a near-identical sequence to human A3Gfl, dimerizes through the DNA-

binding interface of the C-terminal domain and the putative DNA-binding interface of the 

N-terminal domain, suggesting that such a dimer would conflict with binding ssDNA. On 

the other hand, for a slightly different construct of the Macaque monkey A3Gfl (6P3X [33]; 

also 6P3Y and 6P3Z), the observed dimerization interface involves only the pairing of the 

NTD and, in contrast, does not occlude the active CTD sites of the dimer. We built the 

tetramer using two 6P40 dimers, with the tetramer interface corresponding to the 6P3X 

dimer interface. The fit of this tetramer model (Figure 8) with the SAXS scattering profile 

is remarkably good (χ2 = 0.69), especially as it was not based on the simple packing of 

molecules into the 3D reconstructed envelope (Figures S4 and 6B). The radius of gyration 

calculated for this model is 41.7 Å, which is insignificantly different to those experimen-

tally derived values of 41.5 ± 1.5 Å (from Guinier analysis) or 42.0 ± 1.0 Å (from P(r) anal-

ysis) (see Supplementary Materials, Table S1). The maximal length of this model is 148.5 

Å compared to that derived from the P(r) plot of 145.9 Å (Table S1) and that derived for 

the envelope reconstruction of ~150 Å. Interestingly, fitting a tetramer incorporating two 

distinct crystallographically observed dimeric interfaces (Figure 8) gave a superior fit with 

the envelope and the SAXS pattern (χ2 = 0.80) than a simple packing of four monomeric 

A3Gfl molecules into the envelope (χ2 = 1.17). 
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Figure 8. Tetramer model (A) featuring dimer and tetramer interfaces and fitting of this model (red 

solid line) with the SAXS scattering pattern (black dots) with residuals shown below (B). The right-

hand image in (A) is rotated 90o clockwise about the line running from top to bottom to highlight 

the dimer interface. The dimer interface is that observed between pairs of A3Gfl (6P40), and the 

tetramer interface is that observed between the NTD of pairs of A3Gfl in 6P3X/Y/Z. Each monomer 

has its own color. The dimers of 6P40 were duplicated and overlaid with the 6p3x interface to pro-

duce the tertiary interface. 

Our tetramer model (Figure 8A) shows that the dimer interface of 6P40 is in complete 

overlap with the DNA-binding interface (Figure 7). Interestingly, in the dimer interface, 

both NTDs interact with the CTDs of another monomer (Figure 8A). The tetramer inter-

face based on 6P3X, on the other hand, is built through NTD–NTD interactions. A human 

A3Gfl with mutations F126A/W127A to the NTD was shown to produce monomeric A3Gfl 

in solution [27]. Those residues form part of both the dimer and tetramer interfaces [33] 

(Figure 8) and are involved in the interaction with DNA according to our A3Gfl–ssDNA 

model (Figure 7). Those mutations drastically reduce the jumping behavior of A3Gfl [27] 

and, according to our model, should affect the recognition of the CCC motif by the NTD, 

and therewith, affect the jumping. 

4. Discussion 

Here, using solution-state SAXS data, we report the structural models for the ligand-

free tetrameric association of full-length APOBEC3G (A3Gfl) and for A3Gfl in complex 

with single-stranded DNA (ssDNA). These are the first models for the binding of ssDNA 

to a two-domain APOBEC3 enzyme. Specifically, a structural model was derived for the 

interaction of monomeric A3Gfl with a 40-mer oligo, CCdZ-T30-oligo, which contains the 

inhibitor 2-deoxyzebularine near the 5-end. A prior SAXS study on A3Gfl was performed 

using the technology then available, in batch mode without size-exclusion chromatog-

raphy, which obscured the presence of multiple oligomeric associations of A3Gfl species, 

both in the absence and presence of ssDNA [55]. We found the Guinier plots, eschewed in 

the previous study, essential for assessing the homogeneity and lack of aggregation of the 

species partially separated by size-exclusion chromatography (SEC) immediately prior to 

SAXS measurements from which the scattering of individual species was best extracted 

by Gaussian decomposition. 

4.1. Multimeric Associations of A3Gfl 

Under our conditions, ligand-free two-domain A3Gfl eluted from the SEC column in 

multiple oligomeric forms, consistent with the published studies [41]. Scattering was dom-

inated by higher-than-dimer oligomeric forms, scattering from monomeric and dimeric 

species was present, but in relatively low quantities, which precluded detailed analysis 

(Figure 1B). These various multimeric states have been proposed to regulate not only de-

amination-dependent but also deamination-independent functions of A3G proteins 

[18,41,64,65]. Using SAXS-derived parameters, we identified an A3Gfl tetramer as the most 

prominent scattering species. This species is formed from four two-domain A3Gfl 
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molecules that SAXS data indicate are associated together in a compact formation (MW ~ 

200 kDa). The structure of this tetramer was elucidated, based in part on the changes in 

distribution of oligomeric states upon adding the DNA, and in a larger part, on the re-

cently published atomic-resolution A3Gfl dimer structures, which featured two distinctly 

different dimerization interfaces [32,33]. The generated A3Gfl tetramer model fits very 

well with our A3Gfl scattering data and, correspondingly, represents the A3Gfl tetrameric 

structure in solution. A key observation was that one dimerization interface hid the sub-

strate-binding surfaces. The other dimerization interface, labeled the tetramer interface 

(Figure 8A), left the substrate-binding surfaces accessible. The substrate-binding surface 

giving access to the Zn2+ active site was observed in the case of the catalytically active C-

terminal domain (CTD) but inferred for the catalytically inactive N-terminal domain 

(NTD). 

In the presence of the CCdZ-T30-oligo, the monomeric A3Gfl species becomes much 

more prominent, while the dimers and putative 8-mers dissociate completely (see Figures 

1 and 4). Dimers are converted into monomers due to interactions with the ssDNA, and 

all our eluted A3Gfl species were identified to be in complex with ssDNA, as indicated 

upon examination of the A260/A280 ratio (Figure 5). Significantly, with respect to the in-

teraction of A3Gfl with 40-mer ssDNA, the interface that occludes the ssDNA binding site 

(that of 6P40) is substantially more extensive and has a much more favorable free energy 

of association than the other dimerization interface (that of 6P3X). As calculated by PISA 

[66], respectively, the buried surface area is 9.5 % compared to 3.8% of the total surface 

area, and the solvation free energy gain is −90 kJ mol−1 compared to −59 kJ mol−1. From 

this, we propose that the binding of negatively charged ssDNA, bearing dC or dZ in a 

CC(C/dZ) motif, displaces the interface interactions between the A3Gfl molecules of the 

dimeric and 8-mer oligomerizations of A3Gfl. Interestingly, an increase in the relative 

amount of monomeric species was also seen in A3B-CTD upon the addition of ssDNA 

[45]. With the dimer interface of A3Gfl separated, the less extensive tetramer interface be-

comes less stable. The apo-A3Gfl tetramer, however, does form a complex, but with just 

two CCdZ-T30-oligos. A model structure was difficult to elucidate, as the tetrameric struc-

ture may rearrange upon the DNA binding. Moreover, this DNA binding should be non-

specific (in case the tetramer does not completely rearrange), as the substrate-binding 

sites, especially the catalytically active site in the C-terminal domain, are buried in the 

dimerization interfaces. The bulge in electron density observed in the envelope recon-

struction, relative to the ssDNA-free tetramer (Figure 6B), coincides with the region of 

interaction of a pair of NTDs, suggesting that the negatively charged ligand, CCdZ-T30-

oligo, is interacting with the NTDs, each of which is much more positively charged than 

the CTDs. This interpretation contradicts a previously proposed model, whereby tetram-

eric species are more active than monomeric and dimeric ones [42], but our interpretation 

is in line with the similar catalytic activity observed for a monomeric mutant and wild-

type A3G [27] and with the oligomer disruption shown by optical tweezers [19]. 

4.2. Modeling the Interaction of CCdZ-T30-Oligo with Monomeric A3Gfl 

An A3Gfl monomer complexed with CCdZ-T30-oligo was observed and character-

ized, revealing the first full-length double-domain catalytically active A3 model structure 

in complex with ssDNA. Our A3Gfl-40mer ssDNA model, based on the reported A3Gfl 

crystal structures [33] and on the extended DNA from an ssDNA complex with the CTD 

of A3Gfl [34], gave a remarkably good fit with the observed (deconvoluted) scattering for 

this species. Our analysis provides a structural explanation for the observation of A3Gfl 

cycling between high molecular weight assemblies and monomeric-ssDNA species, as 

A3Gfl searches and deaminates cognate ssDNA [19], as dimerization, via paired NTD and 

CTD interactions, and DNA binding are mutually exclusive, according to our models. In 

addition, higher activity has been reported [18] for of monomeric A3Gfl as compared to 

high-order species, where active sites are buried. 
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The model shows the interaction of ssDNA with both domains (NTD and CTD) (Fig-

ures 7A and S10B). The models show a DNA looping roughly consistent with the 1 nm 

minimal loop size suggested by the optical tweezers experiments [19]. Interestingly, the 

DNA in the model shown in Figure 7A is close to the pseudo-catalytic zinc-containing site 

of the NTD. As our 40-mer has only one recognition motif (CCdZ), the NTD is likely bind-

ing somewhat non-specifically to the ssDNA. We can speculate that a second CCC motif 

could be bound to the NTD pseudo-active site, which should result in a much larger loop-

ing of the DNA Such looping was inferred from the experiments performed with optical 

tweezers [19] and consistent with DNA bending seen in single-molecule FRET [28]. We 

propose that the conformation seen in our model in Figure 7 is well suited to explain the 

jumping [24] and inter-segmental transfer [26] on ssDNA with multiple CCC motifs. This 

model suggests that the NTD can recognize the CCC motif and thereby contribute to the 

quick search on the longer DNA through jumping, sliding [22] and inter-segmental trans-

fer [26]. The NTD residues shown to affect jumping [24] are interacting with or are close 

to the DNA in our model. The conformation relevant to sliding may be different and could 

be similar to the model in Figure S10B based on the 6WMA structure [32], as a mutation 

in helix 6 of the NTD [24] affects sliding, and helix 6 will be close to the DNA if 6WMA is 

used instead of 6P40 in the modeling (Figure S10B,D). Our modeling is also consistent 

with the interpretation that the observed 30-nucleotide “dead zone” [27] is the minimal 

number of nucleotides required to allow all the necessary structural rearrangements be-

tween the sliding and jumping modes on ssDNA required for efficient searching for CCC 

deamination motifs. This interpretation is supported by the fact that the processivity fac-

tor increases until 30-nucleotide separation between two CCC motifs is reached and is 

constant afterward up to 100 nucleotides [67]. Significantly, our models for the interaction 

of ssDNA with A3Gfl show that ~30 nucleotides lie close to the protein, with the remaining 

nucleotides of the 40-mer ssDNA projected away from the protein. Moreover, consistent 

with the direction of processivity, the residues 3 of the CCC deamination motif (here, 

CCdZ) pass over the non-catalytic NTD. Put another way, the nucleotides in the 3 end of 

ssDNA are necessary to allow a full interaction of A3Gfl with ssDNA for effective search 

for CCC deamination motifs on longer DNA. Our work shows that, at least in our condi-

tions, ssDNA is interacting with both domains of A3G, as this interaction is necessary to 

reasonably fit the SAXS data (see Figure S11 and discussion in the Supplementary Mate-

rials). Based on chemical crosslinking [68], only the C-terminal domain of A3G was sug-

gested for the DNA interaction in the model for A3G functional regulation by the RNA 

[69]. This model can be easily adapted to include additional DNA interaction with the N-

terminal domain of A3G. 

A further consideration to emerge from our structural models is the potential role of 

allostery in the binding of substrate to A3Gfl. Noting the very different positioning of the 

NTD with respect to the CTD for human (PDB: 6WMA) [32] compared to rhesus monkey 

A3Gfl (PDB 6P40, 6P3X) [33], DNA binding to the NTD may cause a conformational 

change to the relative arrangement of NTD and CTD domains, which may help to better 

position dZ (or substrate cytosine) close to the CTD active site. Upon specific binding of 

the dZ into the CTD active site, the dZ is hydrated across the N3-C4 double bond and 

converted into an intermediate state of deamination, in which C4 is tetrahedral, and dZ 

remains bound to the protein [59,60]. The nucleotides flanking the target dZ stack on top 

of one another to stabilize the overall conformation, as observed in the single-domain A3–

ssDNA complex structures [34]. 

5. Conclusions 

Although intrinsically a low-resolution technique, our SAXS results provide cogent 

and coherent insight into the oligomerization of ligand-free full-length APOBEC3G and 

into the de-oligomerization occurring upon binding of single-stranded DNA bearing an 

inhibitor CCdZ motif that targets the catalytically active site of the C-terminal domain of 

A3Gfl. A key result is that ssDNA binding to and dimerization of A3Gfl are mutually 
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exclusive. Our modeling strongly suggests that the intermolecular interactions observed 

in the crystal structures of A3Gfl are maintained in solution. Moreover, the structural mod-

els developed provide an insight into a range of earlier biochemical studies. A somewhat 

unexpected mode of binding of a 40-mer inhibitor species, CCdZ-T30-oligo, to the catalytic 

and pseudo-catalytic sites gives a structural insight into the A3Gfl interaction with ssDNA 

and provides a structural basis for the hitherto unexplained jumping mode of action of 

A3Gfl on ssDNA substrates, as well as for the observed 30-nucleotide “dead zone” where 

at least 30 nucleotides located 3 to the CCC motif are required for full, processive activity. 

An important role for the pseudo-catalytic N-terminal domain of A3Gfl and further con-

firmation of directionality in processivity is revealed by the 40-mer inhibitor CCdZ-T30-

oligo being more potent than the 5-tailed inhibitor T30-CCdZ-oligo or a short 9-mer oligo-

mer in which the CCdZ motif is embedded. These results will help guide further structural 

studies and highlight the use of modified oligonucleotides for studies of active A3 in com-

plexes with DNA. 
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S12: Tetramer model shown in Figure 8 (main text) is superimposed with the A3Gfl tetramer enve-
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