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Abstract: In the late 1970s, global vaccination programs resulted in the eradication of smallpox. The
Monkeypox virus (MPXV), which is closely related to the smallpox-inducing variola virus, was
previously endemic only in Sub-Saharan Africa but is currently spreading worldwide. Only older
people who have been vaccinated against smallpox are expected to be sufficiently protected against
poxviruses. Here I will summarize current knowledge about the virus, the disease caused by MPXV
infections, and strategies to limit its spread.
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1. The Poxvirus Family

Poxviruses are large DNA viruses that infect a wide range of hosts, including mam-
mals, birds, reptiles, and insects. The poxvirus family is subdivided into two main families,
the Chordopox, which infect vertebrates, and the Entomopox, which infect insects. Chor-
dopox are further divided into eight genera. The Orthopox genus encompasses the human
pathogens variola virus (VARV), the causative agent of smallpox, and the monkeypox virus
(MPXV), as well as the cowpox virus, the camelpox virus, and the vaccinia virus (VACV),
which has been used as a smallpox vaccine. All Orthopoxviridae generate cross-reactive
humoral and cellular immune responses. Therefore, 200 years ago, Edward Jenner was
able to use cowpox inoculations that do not cause disease in humans, as a smallpox vac-
cine [1]. This first successful vaccination campaign resulted in the eradication of VARV in
the late 1970s.

Orthopoxviruses are large, enveloped, double-stranded DNA viruses with a genome
of 180–220 kb encoding 180–200 genes. They replicate exclusively in the cytoplasm of
the infected cell and consequently encode all enzymes needed for DNA replication and
transcription. Virions are brick shaped and have a size of approximately 250 nm × 220 nm.
Cell entry occurs through low-pH-dependent macropinocytic uptake, which releases the
viral core into the cytoplasm [2]. In the viral core, early gene expression takes place and the
virus uncoating is initiated [3]. This leads to DNA replication followed by intermediate
and late gene expression. Progeny DNA molecules, enzymes packaged into virions, and
structural proteins assemble to form the viral particles that undergo extensive maturation
steps [4]. Poxviruses have two infectious mature forms: extracellular enveloped virus (EEV)
and intracellular mature virus (IMV). It is believed that EEVs mediate the spread of the
virus in an infected organism and IMV mediate host-to-host transmission [4–6].

2. Monkeypox (MPX)

After the eradication of VARV, MPXV became the most prevalent zoonotic orthopoxvirus
infection in humans. MPXV was first identified in 1958 during an outbreak of a pox-like
disease in macaque monkeys in a research institute in Denmark [7]. Later, in 1970, human
cases were discovered in the Democratic Republic of Congo (DRC) [8]. MPXV infections
that occur mainly in children were, until recently, only sporadically identified in DRC
and other Central and West African countries where MPXV is endemic. The first MPX
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case outside Africa was a zoonotic transmission from a pet prairie dog to humans in the
USA [9,10]. While VARV persisted only in primates including humans, MPXV is more
promiscuous and can infect many species. The natural reservoirs of MPXV described so far
are African squirrels, rodents, and non-human primates [11–13]; however, the susceptibility
of other animal species outside Africa still needs to be determined in more detail.

There are two distinct genetic clades of MPXV, the Central African or Congo Basin
(CB) clade, now called clade I, and the West African (WA) clade, now clade II. Both clades
show different case fatality rates, with 10.6% for clade I and 3.6% for clade II [14]. Genomic
analysis of the two clades identified a 10 kbp deletion in the less virulent clade II MPXV [15].

3. The 2022 MPXV Outbreak

Currently, an unusual outbreak of MPXV of the less virulent clade II is occurring
outside Africa. Starting in May 2022, independent cases of MPXV infections with local
transmissions have been reported. The WHO (World Health Organization) had described
25,047 confirmed cases outside Africa by 2nd August 2022. Of these, 99% were males, with
a median age of 36 years. When sexual orientation was reported, 98% were men who have
sex with men (MSM) [16]. In July 2022, the WHO declared the global spread of MPXV a
public health emergency of international concern (PHEIC).

4. Orthopoxvirus Physical Stability and Transmission

Orthopoxviruses are present in lesion crusts and secretions of infected individuals and
can remain infectious in this environment for extended periods of time [17]. For instance,
VARV survived in crusts for several weeks in a temperature- and humidity-dependent
manner: 3 weeks at 35 ◦C and high humidity, and up to 12 weeks at 26 ◦C and low
humidity [18]. VARV could be reisolated from dried crusts obtained from smallpox patients
after several years [19]. Even in aerosols, VACV could survived for 23 h, depending on
the temperature and humidity [20]. A high stability in food and in the environment has
also been demonstrated for VACV [21]. However, common disinfectants are effective and
orthopoxviruses including VARV can be inactivated by 70% ethanol, 50% isopropanol,
0.1–2% sodium hypochlorite, or 1% formaldehyde within one minute or by heating at 65 ◦C
for 15 min [21,22].

Orthopoxvirus physical stability accounts for the virus transmission routes. Trans-
mission can occur by direct contact with the blood, bodily fluids, or cutaneous or mucosal
lesions of infected animals or humans. In addition, a large number of respiratory droplets
containing the virus or eating incompetently cooked meat and other animal products
from infected animals are possible risk factors. Human-to-human transmission can also
involve contaminated objects. Therefore, health workers, household members, and close
skin-to-skin contacts of active cases are at greater risk. After the eradication of smallpox, the
population’s immunity to orthopoxviruses is gradually declining and current MPX cases
are mainly in younger people < 45 years of age. The high prevalence of MPXV infections
in MSM in the 2022 outbreak raises the question of whether MPXV can be transmitted
specifically through sexual transmission routes or whether close physical contact is the sole
transmission route [16].

5. Clinical Disease Caused by MPXV Infections

The incubation period, the time from infection with MPXV to onset of signs of disease
(MPX) normally ranges from 5–13 days, but can take up to 21 days. The first signs of
disease are fever, intense headache, lymphadenopathy, sore throat, nasal congestion, cough,
myalgia, and fatigue (Figure 1). Within 1–3 days of the appearance of fever, a rash appears
on the face and extremities, rather than on the trunk. Oral mucous membranes, genitalia,
and conjunctivae, as well as the cornea, are also affected, which can result in loss of vision.
The rash evolves sequentially to papules, vesicles, pustules, and finally crusts, which dry
up and fall off. The number of lesions varies from a few to several thousand. In the current
outbreak, most cases have presented with mild disease symptoms and rash is the most
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frequently reported sign of disease and less lesions were reported [23]. Currently, rash
and lesions appear mainly near the genitals or anus but also on other areas such as the
hands, feet, chest, or face. The disease is usually self-limiting, but severe cases can occur in
children, pregnant women, and immune suppressed people [16,24].

Figure 1. Schematic illustration of clinical signs of a MPXV infection.

The case fatality rate of MPXV infections depends on health care system access and is
lower in non-endemic regions. For the currently circulating clade II, the MPXV case fatality
rate has been determined to be 3.6%. Among the 25,047 infections presently confirmed,
5 deaths have been reported in African regions and 2 outside Africa (2 August 2022).

6. Diagnostics

The disease symptoms seen in MPX are common to many other diseases, such as
chickenpox and measles. The level of poxvirus in blood and body fluids is rather low, but
skin lesion material contains enough MPXV to be used for PCR testing [25]. In addition,
detection of MPXV-specific IgM indicates a recent infection; however, recent vaccination
interferes with serological testing [16].

7. Treatment of MPXV Infections

Vaccination is considered to be the best preventive measure against orthopoxvirus
infections. Orthopoxvirus infections generate humoral and cellular immune responses that
are cross-protective towards other viruses of this genus. Therefore, smallpox vaccines are
regarded to be sufficient to control MPXV outbreaks and vaccination is likely to be 85%
effective [26]. However, data on real world effectiveness are currently not available.

First generation smallpox vaccines were efficacious and their application eradicated
VARV infections, but they no longer meet current safety and manufacturing standards. Two
next-generation vaccines that protect against smallpox and MPX are licensed in Europe
and North America, and one in Japan. Until recently, there was no demand for these
vaccines, so their supply is presently limited [27]. Nevertheless, due to the small number of
infections, mass vaccination is not required nor recommended at this time for the current
outbreak outside Africa [16].

The smallpox vaccine ACAM2000 licensed in North America is a replication-competent
live VACV. It is derived from a clone of a first generation vaccine, Dryvax, and is now
purified and produced using modern cell culture technology [28]. ACAM2000 is applied as
a single dose by scarification with a bifurcated needle. However, as it is a replicating virus,
it cannot be used in immunocompromised people [29]. During the MPXV outbreak in the
United States in 2003, ACAM2000 was demonstrated to reduce the symptoms of MPX [30].

LC16m8 is a third-generation vaccine. It is an attenuated but still replicating smallpox
vaccine derived from the Lister strain of VACV and has an improved safety profile. It is
currently only licensed in Japan [31]. VACV Lister was passaged in primary rabbit kidney
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cells at low temperature (30 ◦C) for 36 generations to obtain the LC16m8 strain, which has
lower neurotoxicity, but is still immunogenic [31]. LC16m8 has been shown to be protective
against MPXV in animal models, but has the same exclusion criteria as ACAM2000 [32].

A fourth-generation vaccine is a replication-deficient, attenuated, smallpox vaccine
based on the modified vaccinia virus Ankara (MVA). It is named IMVANEX (Europe, UK),
IMVAMUNE (Canada), or JYNNEOS (USA), depending on the country the vaccine is
licensed in. It has been approved by the Food and Drug Administration (FDA) and recently
by the European Medicine Agency (EMA) for the prevention of MPX in adults aged 18 years
or older. IMVANEX has to be administered via intra-muscular injection, as a prime/boost
vaccination with two doses administered 4 weeks apart. As a replication-deficient virus,
it can be used in patients with atopic dermatitis and immunodeficiency, and has shown
protection against MPXV infections in animal models [33,34].

Smallpox vaccines induced a long-term protection against VARV and, although the
data are not yet available, it is expected that this will also apply to MPXV. Ring vaccinations
of close contacts of MPXV-infected individuals and probable post-exposure prophylaxis
(PEP), ideally within four days of first exposure to prevent onset of disease, in addition
to preventive vaccination of risk groups will serve as immediate measures to contain the
current outbreak.

Passive immunization with vaccinia immune globulin (VIG) isolated from pooled
blood samples of smallpox-vaccinated individuals can be envisioned as an intravenous ap-
plication. VIG supplies are currently very limited, because it was developed as a treatment
for severe smallpox vaccine-induced adverse events. However, it has been shown to be
effective in MPXV infections [35].

Two oral drugs, Brincidofovir and Tecovirimat (ST-246), have been approved for
the treatment of smallpox and have demonstrated efficacy against monkeypox in ani-
mals [36,37]. Tecovirimat interferes with the formation of EEV and thereby virus spread,
and is FDA and EMA approved for emergency use [38]. Brincidofovir is a viral DNA
polymerase inhibitor effective against orthopoxviruses and is approved in the USA [39].

8. Genomic Changes in the 2022 MPXV Genomes

MPXV isolates from the current outbreak are from a single clade and most likely have
a single origin, very similar to viruses previously detected in Nigeria, the UK, Singapore,
and Israel in 2017–2018 [24,40]. As DNA viruses, orthopoxviruses have much lower mu-
tation rates compared to RNA viruses, because their viral DNA polymerase has a 3′–5′

proofreading exonuclease activity [41]. The central region of orthopoxvirus genomes is
highly conserved and encodes essential genes that are required for virus replication. In
contrast, the two terminal areas are hypervariable and may contain deletions and sequence
rearrangements. These variable terminal regions contain the majority of the virulence
and host-range genes [42]. Gene duplications and gene deletions by recombination en-
able double-stranded DNA viruses to adapt to environmental pressures, including host
changes [43]. However, MPXV genome sequences currently show no large reductions in
genome size [44].

Poxvirus genomes are unusually A/T-rich, which is an indication of non-random
mutations. APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) en-
zymes can increase these mutation signatures. APOBEC3s are upregulated upon poxvirus
infection and APOBEC3-G, -F, and -H are located in the cell cytoplasm, where poxvirus
replication takes place. Although APOBEC3G does not affect VACV replication directly,
it might increase the hypermutation rate and the likelihood of producing virus variants
with altered characteristics [45]. Signs of microevolution have been observed in phyloge-
nomic analyses of the 2022 MPXV genomes, indicating a potential adaptation of MPXV to
humans [40]. The 2022 MPXV has been circulating since 2017 [40], but diverges on aver-
age by 50 SNPs (single-nucleotide polymorphisms), showing a mutational bias indicating
APOBEC3 action. The number of SNPs is more than expected from previous substitution
rates of orthopoxviruses [40]. Several point mutations in the 2022 MPXV genome have
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been described recently, but their functional impact on virus spread or human-to-human
transmission is still unknown [46–51].

9. Outlook

The rapid spread of MPXV outside endemic regions bears some risk to global public
health if it is not contained quickly. The main drivers for the present MPXV global spread
include the cessation of smallpox vaccination in 1980 making younger people vulnerable to
MPXV infections, the failure to restrain the spread of MPX cases in endemic regions, and
an increased likelihood of exportation of the virus to other countries due to globalization
and air traffic. Therefore, disease surveillance in endemic and non-endemic regions is
essential to control further spread. At this time, it is not clear if the 2022 MPXV differs in
host change, transmissibility, or pathology compared to previous isolates. This needs to be
urgently established.

Although formal proof of clinical vaccine efficacy is lacking, smallpox vaccines are
expected to induce a long-lasting immunity against MPXV. The 2022 MPXV infections have
been almost exclusively concentrated in the MSM community, most likely through close
skin contacts. To contain the outbreak, vaccinations should to be offered to this community,
health care workers, and close contacts of MPX patients. The infection is not limited to
men, but can be transmitted to anybody by close physical contact. In addition, vaccination
campaigns in endemic regions could be envisioned to save lives and eliminate the source
of future outbreaks.
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