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Abstract: Porcine deltacoronavirus (PDCoV) is a recently discovered enteropathogenic coronavirus
and has caused significant economic impacts on the pork industry. Although studies have partly
uncovered the molecular mechanism of PDCoV–host interaction, it requires further research. In this
study, we explored the roles of Stromal Antigen 2 (STAG2) in PDCoV infection. We found that
STAG2-deficient cells inhibited infection with vesicular stomatitis virus (VSV) and PDCoV, whereas
restoration of STAG2 expression in STAG2-depleted (STAG2−/−) IPEC-J2 cells line restored PDCoV
infection, suggesting that STAG2 is involved in the PDCoV replication. Furthermore, we found that
STAG2 deficiency results in robust interferon (IFN) expression. Subsequently, we found that STAG2
deficiency results in the activation of JAK-STAT signaling and the expression of IFN stimulated
gene (ISG), which establish an antiviral state. Taken together, the depletion of STAG2 activates
the JAK-STAT signaling and induces the expression of ISG, thereby inhibiting PDCoV replication.
Our study provides new insights and potential therapeutic targets for unraveling the mechanism of
PDCoV replication.

Keywords: PDCoV; STAG2; replication; interferon signaling pathway

1. Introduction

Porcine deltacoronavirus (PDCoV) is a recently discovered enteropathogenic coronavirus
and has caused significant economic impacts on the pork industry [1–3]. PDCoV, similar to
other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV)
and porcine epidemic diarrhea virus (PEDV), have caused frequent occurrences of diarrhea,
vomiting, and dehydration in piglets [2,4–8]. Clinically, PDCoV infection commonly occurs
in the form of co-infection with PEDV or TGEV, which has caused significant economic
losses to the global swine industry. PDCoV have the potential for cross-species transmission
and are causing huge economic losses in the pig industry in China and the world, which
therefore needs to be urgently addressed [9].

Innate immunity plays a crucial role in host defense against invading pathogens [10,11].
During viral infection, the innate immune response is often activated, leading to the induction
of the type I interferon (IFN-I or IFN α/β). IFN-I is the potent cytokine of critical importance
in controlling viral infections and priming adaptive immune responses [12,13]. Following
production, IFN-I initiates a positive feed-back loop by binding to their cognate receptors
on the cell surface in an autocrine and paracrine manner [14,15] and activates JAK protein
tyrosine kinases (JAK1 and Tyk2) which phosphorylate signal transducers and activators
of transcription (STAT) 1 (STAT1) and (STAT) 2 (STAT2). STAT1 and STAT2 together
with interferon regulatory factor 9 (IRF9) form a transcription factor complex termed IFN-
stimulated gene factor 3 (ISGF3). Then, ISGF3 is translocated into the nucleus and binds to
the IFN-stimulated response elements (ISRE) to induce the expression of IFN-stimulated
genes (ISGs), which establish an antiviral state [15–18].
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Cohesin is a highly-conserved protein complex that plays important roles in sister
chromatid cohesion, chromatin structure, gene expression, and DNA repair [19]. In humans,
cohesin is a ubiquitously expressed, multi-subunit protein complex composed of core
subunits SMC1A, SMC3, RAD21, STAG1/2 and regulatory subunits WAPL, PDS5A/B,
CDCA5, NIPBL, and MAU2 [20]. Recent studies have demonstrated that genes encoding
cohesin subunits are somatically mutated in a wide range of human cancers [21,22]. Stromal
Antigen 2 (STAG2) is the most commonly mutated subunit, and in a recent analysis was
identified as one of only 12 genes that are significantly mutated in four or more cancer
types. Numerous studies have demonstrated that STAG2 mutation is a common and
important event in the pathogenesis of diverse human cancers [21,23,24]. Studies have
demonstrated that cohesion STAG2 also has the function of transcriptional coactivation,
which can enhance NF-κB-driven transcription. Meanwhile, the activity of the tumor
necrosis factor alpha, the CD69, and the human immunodeficiency virus long terminal
repeat promoters were enhanced by STAG2. And analysis was identified that recruitment
of other components of the transcriptional co-activation complexes also depends on the
interaction between STAG2 and the NF-κB subunit p65 [25]. Above all, it is apparent that
the effects of STAG2 on transcriptional activation and the occurrence of some cancer types.

A novel role of STAG2 as a crucial component of the innate immune response was
reported, suggesting STAG2 deficiency induces interferon responses via cGAS-STING
pathway and restricts virus infection. Cohesion deficiency can cause host genomic DNA
damage and increase the levels of cytoplasmic DNA, then which enter the cGAS-STING
DNA-sensing pathway to stimulate IFN production and induce the activation of JAK-STAT
signaling pathway. Ultimately, these processes induce the expression of ISG, they also
make the host cells enter a state of antiviral and render cells resistant to rotavirus and
other RNA virus infection [26]. Based on these related studies, whether STAG2 also has
an effect on coronavirus replication. In the present study, we confirmed that the loss of
STAG2, an important component of the cohesin complex, confers resistance to vesicular
stomatitis virus (VSV) and PDCoV replication in cell culture. Mechanistically, STAG2
deficiency results in robust IFN expression and ISG expression via the activation of JAK-
STAT signaling, thereby inhibiting PDCoV replication.

2. Materials and Methods
2.1. Cell Culture and Viruses

HEK293T cells (human embryonic kidney epithelial cells; ATCC) (CRL-3216) and
IPEC-J2 cells (porcine small intestine epithelial cell clone J2, donated by Yanming Zhang of
Northwest A&F University, Yangling, China) [27] were cultured in Dulbecco’s minimum
essential medium (DMEM) (Life Technologies, Carlsbad, CA, USA) supplemented with
10% heat-inactivated fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA), 100 U/ml
penicillin, 100 µg/ml streptomycin in an incubator with 5% CO2 at 37 ◦C (Thermo Scientific,
Waltham, MA, USA). PDCoV strain NH (GenBanK: KU981062.1) was prepared and titrated
as previously described [28].

2.2. Plasmids and Antibodies

The full-length sequence of STAG2 was constructed into the pCAGGS-HA vector
to obtain the recombinant plasmid of pCAGGS-HA-STAG2. The PCR primers were de-
signed by Primer 5. SgRNAs were designed according to the website http://crispr.mit.edu
(accessed on 7 January 2020). The primer sequences and sgRNAs are listed in Table 1.
All plasmid construct was confirmed by sequencing.

The listed antibodies were used in this study including the STAG2 rabbit monoclonal
antibody (mAb) (5882) and a phospho-STAT1 (Tyr701) (D4A7) rabbit mAb (7649) were
purchased from Cell Signaling Technology, IRDye-conjugated secondary antibody (926-
32213 and 926-68072) was purchased from Li-Cor Biosciences and β-actin mouse mAb
(A5441) was purchased from Sigma (St. Louis, MO, USA).

http://crispr.mit.edu


Viruses 2022, 14, 1783 3 of 11

Table 1. Primers used in this study.

Primer Forward (5’→3’) Reverse (5’→3’)

qIFNβ CCATCTATGAGATGCTCCAG TCCTTAGGATTTCCACTCTG
qIFNλ1 CCACGTCGAACTTCAGGCTT ATGTGCAAGTCTCCACTGGT
qIFNλ3 CCAAGGATGCCTTTGAAGAGT CTGCTGTGCAGGGATGAGTT
qISG15 ATCACCCAGAAGATCGGCG TCGAAGGTCAGCCAGAACAG
qISG54 CATTGACCCTCTGAGGCAAG AGCGTGTCCTATTAGTTCC
qISG56 CATACATTTCCACTATGG TACTCCAGGGCTTCATTCA
qOAS1 CTAGTCAAGCACTGGTACCA ATCACAGGCCTGGGTTTCGT
qOASL TCCCTGGGAAGAATGTGCAG CCCTGGCAAGAGCATAGTGT
qSTAT1 CAGAACGGAGGCGAACCTTA AGGTTCTGGGGCTTCCTTTG
qPDCoV AGCAACCACTCGTGTTACTTG CAACTCTGAAACCTTGAGCTG
qGAPDH CCTTCCGTGTCCCTACTGCCAAC GACGCCTGCTTCACCACCTTCT

STAG2-sgRNA CACCGGTTAATTGTATATACTGTGG AAACCCACAGTATATACAATTAACC

2.3. Virus Infection

Monolayers of IPEC-J2 cells were infected with PDCoV at an MOI of 1 for 1 h at 37 ◦C.
Unbound virus was removed, and cells were maintained in complete medium for various
time points until samples were harvested.

2.4. Transfection

Cells were transfected with indicated plasmids using X-tremeGENE transfection
reagent according to manufacturer’s instruction (Roche, Indianapolis, IN, USA). At the
indicated times, cell samples were collected and lysed in RIPA buffer (Beyotime, Nantong,
China) for Western blot analysis of target proteins.

2.5. CRISPR-Cas9 Knockout Cells

STAG2-Cas9 knockout cells were generated by using the CRISPR/Cas9 system. Briefly,
the designed single guide RNA (sgRNA) targeting the porcine STAG2 gene was cloned into
the Lentiviral vector2 vector. pMD2.G and psPAX2, producing the VSV-G glycoprotein and
envelope proteins of the lentivirus, respectively, combined with lenti-guide-puro-sgRNA-
STAG2 were co-transfected into HEK293T cells to produce the recombined lentivirus.
IPEC-J2 cells were infected with lentivirus, and puromycin (2.5 µg/mL) was added to select
the positive clones. The monoclonal cells were obtained with the limited dilution method.
Finally, the knockout of STAG2 was confirmed by Western blot at the protein level.

2.6. IFA

IFA was performed as described previously with slight modification [17]. Briefly, STAG2-
depleted IPEC-J2 cells lines or WT cells were infected with PDCoV for 24 h, and the cells
were fixed and stained with anti-PDCoV-N mouse monoclonal antibody [29] for one hour.
After the removal of unbound antibodies, the cells were stained with FITC-conjugated goat
anti-mouse IgG for another hour, followed by nuclei staining with DAPI (4,6-diamidino-
2-phenylindole; Sigma). After washing the cells, the fluorescence was visualized with an
Olympus inverted fluorescence microscope equipped with a camera.

2.7. Western Blot

Western blot analysis was performed as previously described [30]. Treated samples
were lysed in RIPA buffer containing protease inhibitor cocktail and phosphatase inhibitors
(Roche) and separated by SDS-PAGE under reducing conditions and transferred onto a
PVDF membrane (Merck Millipore, Temecula, CA, USA). After blocking, the membranes
were incubated with a primary antibody and then probed with an appropriate IRDye-
conjugated secondary antibody (LiCor Bio-Sciences, Lincoln, NE, USA). The membranes
were scanned using an Odyssey instrument (Li-Cor Biosciences) according to the manufac-
turer’s instructions.
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2.8. Quantitative RT-PCR

Quantitative RT-PCR analysis was carried out as described previously [31]. Total RNA
was extracted from cells and subjected to quantitative RT-PCR using specific primers as
listed in Table 1. Relative gene quantification was performed by the method of 2(-Delta
Delta C(T)) [32].

2.9. TCID50 Assay

Collected virus samples were frozen and thawed three times and clarified by centrifu-
gation at 8000× g for 10 min prior to titration. TCID50 assays were performed according to
the method of Reed & Muench as previously described [32]. Briefly, cell monolayers were
inoculated with 10-fold serial dilutions of each virus stock and incubated for 4 days prior
to observation of the presence of cytopathic effect.

2.10. Cell Viability Assay

Cell viabilities were assessed using a cell counting kit-8 (CCK-8) (Cat NO. GK10001,
GLPBIO, Montclair, CA, USA). Assays were performed according to the manufacturer’s
instructions. Briefly, the WT cells and the STAG2−/− cells were incubated in 96-well plates
and the cell viabilities were measured at 12 h, 24 h, and 36 h. A total of 10 µL of CCK-8
reagents were added to each well of the plates, and the cells were incubated at 37 ◦C for
1 h, then the absorbance at 450 nm was measured by a microplate reader.

2.11. Statistical Analysis

Variables are expressed as mean ± S.D. Statistical analyzes were performed using
student’s t-test. Significance is denoted in the figures as follows: *, p < 0.05 and **, p < 0.01.

3. Results
3.1. Establishment of STAG2-Knockout IPEC-J2 Cell Line

To study the role of STAG2 in PDCoV infection, we then generated a single clonal
STAG2 knockout in IPEC-J2 cells, porcine intestinal epithelial cell (IEC) line commonly
used for PDCoV studies. The knockout effect of STAG2 was determined by Western blot,
and the results revealed that the STAG2 protein was knocked out (Figure 1A). Sanger
sequencing confirmed the presence of 1 bp insert in STAG2-depleted (STAG2−/−) IPEC-J2
cells line (Figure 1B). Meanwhile, knockout of STAG2 had no significant effect on the cell
viability when compared to the wild type (WT) cells (Figure 1C). To study the function of
STAG2 in PDCoV infection, we generated a stable STAG2−/− IPEC-J2 cells line, STAG2−/−

IPEC-J2 cells were propagated and the deletion was confirmed by Western blot up to the
last passage (Figure 1D).

3.2. Confirmation of STAG2 as a Critical Host Factor for VSV Infection

We next used GFP-expressing VSV to infect WT or STAG2−/− IPEC-J2 cells. Fluorescence
microscopy images showed that VSV infection was evident in WT cells, and conversely VSV
infection was significantly inhibited in STAG2−/− cells compared to WT cells (Figure 2A).
Additionally, the loss of STAG2 resulted in decreased VSV replication, as detected by
comparing the level of GFP protein in VSV-infected STAG2−/− cells to that in the WT cells
(Figure 2B), and the results suggested that VSV was reduced in the absence of STAG2.
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Figure 2. Confirmation of STAG2 as a critical host factor for VSV infection. (A) WT and STAG2−/−

were infected with VSV (MOI = 0.1). The VSV-GFP was visualized at 10 h post infection with an
Olympus inverted fluorescence microscope equipped with a camera; (B) WT and STAG2−/− were
infected with VSV (MOI = 0.1). Cell samples were harvested and subjected to immunoblotting with
antibodies as indicated.

3.3. Confirmation of STAG2 as a Critical Host Factor for PDCoV Infection

To assess how STAG2 responds to PDCoV infection, We next used PDCoV to infect
STAG2−/− or WT cells. PDCoV infection was significantly inhibited in the STAG2−/−

cells compared with the infection in the WT cells, according to the IFA, demonstrating
that PDCoV was reduced in the absence of STAG2 (Figure 3A). As shown in Figure 3B,
the viral RNA levels were significantly reduced in STAG2−/− cells compared to WT
cells. Additionally, the inhibitory effect of STAG2 knockout on the PDCoV replication was
confirmed by the reduced level of PDCoV N protein expression as determined by Western
blot analysis (Figure 3C). Importantly, PDCoV infectivity was significantly decreased
(~1 log) in STAG2−/− cells compared to WT cells (Figure 3D), indicating that PDCoV
replication was significantly reduced in STAG2−/− cells.
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Figure 3. STAG2 is involved in the replication of PDCoV. (A) WT and STAG2−/− cells were infected
with PDCoV at an MOI of 1, twenty four hours post infection, cells were fixed and stained with anti-
PDCoV-N mouse monoclonal antibody followed by probe with FITC-conjugated goat anti-mouse IgG.
The representative results were displayed by three different channels (PDCoV-N, DAPI, and overlay)
for each treatment; (B) WT and STAG2−/− cells were infected with PDCoV at an MOI of 1, PDCoV N
mRNA concentration was determined by quantitative RT-PCR at indicated time points post infection;
(C) WT and STAG2−/− cells were infected with PDCoV at an MOI of 1 followed by samples detection
by Western blot at indicated time points post infection; (D) WT and STAG2−/− cells were infected
with PDCoV at an MOI of 1, twenty four hours post infection, virus yield was measured by TCID50.
The results are representative of three independent experiments (the means ± SD). **, p < 0.01. The
p value was calculated using Student’s t-tests.

3.4. STAG2 Is Required for PDCoV Replication

To further confirm the effect of STAG2 on PDCoV infection, the infectivity of PDCoV
was evaluated, followed by exogenous expression of WT STAG2 in STAG2−/− IPEC-J2
cells. The STAG2−/− cells were transfected with HA-tagged STAG2 plasmids (HA-STAG2)
or an empty vector as a control (vector con) for 24 h, and then, the cells were inoculated with
PDCoV and cultured for an additional 24 h. Susceptibility to PDCoV infection was restored
upon exogenous expression of WT STAG2 in STAG2−/− IPEC-J2 cells, suggesting that
the effect was specifically due to the loss of STAG2. (Figure 4A). Additionally, an obvious
increase in PDCoV N mRNA amount relative to the amount in the vector control was proven
by quantitative RT-PCR analysis in STAG2−/− cells transfected with STAG2 plasmids
(Figure 4B). Exogenous expression of WT STAG2 resulted in increase PDCoV replication, as
detected by comparing the level of viral nucleocapsid (N) protein in exogenous expression
of WT STAG2 in STAG2−/− IPEC-J2 cells to that in the STAG2−/− IPEC-J2 cells (Figure 4C).
Furthermore, an apparent increase in progeny virus was determined by TCID50 assay in
the PDCoV-infected STAG2−/− IPEC-J2 cells transfected with HA-STAG2. Taken together,
these data suggest that the loss of STAG2 likely leads to an alteration of signaling pathways
within host cells that is commonly shared by PDCoV.
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with PDCoV (MOI = 1) and viral N mRNA level was measured at 24 h.p.i. by quantitative RT-
PCR; (C) WT, STAG2−/−, and STAG2−/− IPEC-J2 cells transduced with HA-STAG2 were infected
with PDCoV (MOI = 1) followed by samples detection by Western blot; (D) WT, STAG2−/−, and
STAG2−/− IPEC-J2 cells transduced with HA-STAG2 were infected with PDCoV (MOI = 1), virus
yield was measured by TCID50. The results are representative of three independent experiments (the
means ± SD). **, p < 0.01. The p value was calculated using Student’s t-tests.

3.5. Loss of STAG2 Activates IFN and ISG Expression

To identify the mechanism by which the loss of STAG2 leads to a suppression of
PDCoV growth, we first performed an unbiased RNA-sequencing analysis, using two
different platforms, to profile the transcriptome of WT and STAG2−/− IPEC-J2 cells. Gene
ontology pathway analysis revealed a distinct IFN signature in the STAG2−/− IPEC-J2
cells (data not shown). Several antiviral proteins in STAG2−/− IPEC-J2 cells, including
IFN-β, IFN-λ1, IFN-λ3, OAS1, IL-54, IL-15, IL-56, and OASL, were significantly increased,
as determined by quantitative RT-PCR (Figure 5A–H).

3.6. STAG2 Deletion Triggers IFN Production by Activating the Levels of Phosphorylated STAT1

We next sought to determine mechanistically how the cell-intrinsic IFN activation
occurred in the STAG2−/− cells. We assayed the phosphorylation status of signaling
pathways, based on the IFN-stimulated response elements to induce the expression of IFN-
stimulated genes, which establish an antiviral state. The relative quantities of STAT1 mRNA
in STAG2−/− cells relative to the expression in WT cells were up-regulated by quantitative
RT-PCR (Figure 6A). Strong phosphorylation of STAT1 was observed in STAG2−/− cells by
Western blot analysis (Figure 6B).
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Figure 6. STAG2 deficiency activates the JAK-STAT signaling. (A) WT and STAG2−/− cells were
analyzed by quantitative RT-PCR. The results are representative of three independent experiments
(the means ± SD). **, p < 0.01. The p value was calculated using Student’s t-tests; (B) WT and
STAG2−/− cells were analyzed by Western blot with the indicated antibodies.

4. Discussion

The innate immune system is the first line of the host defense program against
pathogens and harmful substances. Antiviral innate immune responses can be triggered
by multiple cellular receptors sensing viral components. The activated innate immune
system produces IFNs and cytokines that perform antiviral functions to eliminate invading
viruses [33–36]. However, during coevolution with their host, viruses have developed new
strategies to evade host antiviral defense programs [37–40].

Coronaviruses has acquired multiple mechanisms to antagonize the host innate im-
mune system by either targeting viral sensors or blocking downstream antiviral signaling
molecules. For example, Nsp1 proteins of Severe acute respiratory syndrome coronavirus
(SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), murine hepatitis
virus (MHV), TGEV and PEDV suppresses host gene expression [41–43]. Of the several
known viral evasion strategies, the cleavage of crucial innate immune molecules including
adaptors, kinases, and transcriptional factors are considered to be a particularly powerful
way for viruses to escape the innate immune response. The 3C-like protease of PEDV
and PDCoV, disrupts type I IFN signaling by cleaving the NF-κB essential modulator
(NEMO) [44,45]. In addition, PDCoV nsp5 antagonizes type I IFN signaling by cleaving
STAT2, an essential factor for IFN responses [46]. IFNs generate an antiviral state through
ISG induction as a defense mechanism against viral infection. To combat these antiviral
effects of ISGs, many viruses, including CoVs, have evolved elaborate mechanisms, such as
altering subcellular localization or inducing ISG degradation, to antagonize their antiviral
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functions. To our knowledge, some proteins encoded by CoVs, such as PEDV N protein,
PEDV nsp1, PDCoV nsp5, PDCoV nsp6, and MHV nsp15, have been demonstrated to
hijack IFN signaling to reduce ISG production indirectly [47]. However, viruses are not
limited to the aforementioned strategies to antagonize IFN responses.

Cohesin is a multi-subunit nuclear protein complex that coordinates sister chromatid
separation during cell division. Highly frequent somatic mutations in genes encoding
core cohesin subunits have been reported in multiple cancer types, and its loss of function
has been believed to induce aneuploidy [48]. STAG2, a cohesin family gene, is among
the most recurrently mutated genes in cancer [49,50]. In contrast to the implication of
STAG2 in cancer, less information has been reported on the interplay between STAG2
and microorganism infection. It has been reported that the loss of STAG2, an important
component of the cohesin complex, confers resistance to RV replication in cell culture and
human intestinal enteroids. In addition, STAG2 deficiency results in spontaneous genomic
DNA damage and robust IFN expression via the cGAS-STING cytosolic DNA-sensing
pathway. The resultant activation of JAK-STAT signaling and ISG expression broadly
protects against virus infections, including RVs [26].

In the present study, we first identified that PDCoV and VSV replication were signif-
icantly reduced in the STAG2−/− cells by establishing of STAG2-knockout IPEC-J2 cell
line. To identify the mechanism by which the loss of STAG2 leads to a suppression of
PDCoV growth, we first performed an unbiased RNA-sequencing analysis, using two
different platforms, to profile the transcriptome of WT and STAG2−/− IPEC-J2 cells. RNA-
seq dataset revealed that STAG2 depletion elicits an excessive IFN expression. Moreover,
STAG2 deficiency results in robust IFN expression via the JAK-STAT signaling pathway.
Our work may facilitate a better understanding of PDCoV infection and pathogenesis.
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