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Abstract: The aim of this study is to follow the gp production in IBDV-vaccinated and challenged 
birds. The progress of IBDV infection was monitored using anti-VP2 immunocytochemistry, light 
and transmission electron microscopy. In the medulla of the bursal follicle, the Movat pentachrome 
staining discovered an extracellular glycoprotein (gp) produced by bursal secretory dendritic cells 
(BSDCs). The secretory granules of BSDCs either discharge resulting in extracellular gp or fuse to-
gether forming intracellular corpuscles. The double fate of granules suggests a dual function of 
BSDCs: (a.) For the discharged granules, gp contributes to the medullary microenvironment (ME). 
(b.) The intracellular corpuscles may be the sign of BSDC transformation to a macrophage-like cell 
(Mal). Infectious bursal disease virus (IBDV) infection accelerates the BSDC transformation to Mal. 
The decreased number of BSDCs is feedback for the precursor cells of BSDCs lodging in the cortico-
medullary epithelial arches (CMEA), where they proliferate. Opening the CMEA, the precursor cells 
enter the medulla, and differentiate to immature BSDCs. The virus uptake in the corpuscles pre-
vents the granular discharge resulting in the absence of gp and alteration in ME. In vaccine-take 
birds, the mitotic rate of BSDC precursor cells cannot restore the precursor pool; therefore, in the 
case of IBDV challenge, the number of newly formed BSDCs is too low for outbreak of clinical dis-
ease. The BSDCs, as a primary target of IBDV, may contribute to the long-lasting immunosuppres-
sive status of IBDV-infected chickens. 

Keywords: bursal secretory dendritic cell (BSDC); glycoprotein (gp); IBDV infection; vaccination 
effect on gp production 
 

1. Introduction 
Chickens are highly susceptible to infectious bursal disease virus (IBDV) during their 

whole life; however, clinical disease occurs most frequently between 3 and 17 weeks of 
age, which is similar to the steady state condition of bursa of Fabricius (BF). It has been 
reported that in newly hatched chickens the virus can replicate without clinical symptoms 
[1]. The age-related susceptibility may be dependent on the lymphocyte population in the 
medulla of bursal follicles [1–6]. It is suggested that a large number of highly susceptible 
cells, lymphocytes, are crucial for clinical IBDV infection [1,4,7]. Okoye et al. [8] also de-
clared that “healthy bursa is essential for the development of clinical disease (IBD)”. This 
statement is based on experiments, in which embryonal bursectomized and cyclophos-
phamide (Cy)-treated chickens do not develop clinical IBD; both experiments result in B 
cell depletion. The IBDV is bursa specific; therefore, Hitchner [9] suggested that in adult 
chicken clinical IBD does not develop, because of normal involution of BF. However, 
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Rautenschlein et al. [10] did not find age-related differences in outbreaks of clinical disease 
between 12- and 28-day-old birds, but they observed tissue-specific differences in cyto-
kine production (IFNγ and IL-1β). In ovo vaccinated birds (18 days of incubation) recov-
ered from bursal lesion faster than post-hatched vaccinated chickens [11]. 

The maternally derived antibodies (MDAs) are insufficient to protect against disease, 
but not for bursal lesions [12]. The MDAs interfere with vaccination [13–15], namely, if a 
bird is receipted for live virus vaccination, the individual MDA level may prevent the 
replication of vaccine virus, while not sufficient to prevent field infection, as the break-
through titers of different IBDV strains show considerable variations. There is a critical 
period, the length of which may be different from chick to chick, when a chick can be 
infected but is still refractory to immunization [12]. 

In the medulla of bursal follicle—where the first IBDV-infected cells appear—the 
BSDC is the only secretory cell type, which produces different-sized, electron-dense gran-
ules. The granules either discharge [16] or fuse together forming large, dense, intracyto-
plasmic bodies [17]. The formation of intracytoplasmic bodies, corpuscles, is possibly the 
first sign of BSDC transformation to macrophage-like cells (Mal) [17]. In normal birds, the 
Mal is the terminal maturation of BSDCs, which migrate out from the medulla to the fol-
licle-associated epithelium (FAE) and occasionally to the cortex. The discharged granular 
substance (by exocytosis) attaches in a high concentration to the cell membrane of BSDCs 
and appears as a membrane-bound substance [16]. The membrane-bound substance can 
be gradually detached from the cell membrane and a fine, flocculated substance appears 
in the extracellular space of the medulla. Movat pentachrome staining shows that the sol-
ubilized substance is a glycoprotein (gp), which fills up the intercellular space of follicular 
medulla [17,18]. The gp may provide a unique microenvironment (ME) for medullary, but 
not cortical, B cells. This secreted, flocculated, and solubilized substance is bursa-specific, 
and can bind to medullary lymphocytes [19]. 

It is generally accepted that the major target cell of IBDV is the bursal IgM-positive, 
medullary B cell [1,20–22], but IBDV can replicate in lymphocytes, macrophages, and 
granulocytes [4,6,23–25], but not in “immature” lymphoblasts [26]. The “immature” lym-
phoblast-like cells lodge in the cortico-medullary epithelial arches (CMEA) [27] and do 
not express chB6-positive membrane antigens and surface IgMs. In the medulla, the Mal, 
which is actually a transformed BSDC, pack up the virus particles in the former fused 
BSDC granules. Packaging the virus particles inhibits the granular discharge of BSDCs 
resulting in extracellular shortage or absence of gp in the medulla. The altered medullary 
ME subsequently results in lymphocyte death [17]. 

In non-vaccinated birds, the IBDV infection abolished the Movat-positive, extracel-
lular gp in the medulla, but gp emerged in the Mal [17,18]. The aim of this paper is to 
provide evidence for the effect of IBDV infection on the gp producing BSDCs and the 
alteration of Movat-positive, bursa-specific gp in infected, vaccinated, and vaccinated plus 
challenged chickens. 

2. Materials and Methods 
2.1. Animals 

White Leghorn layer type chickens of SPF status were used in the trials. The chickens 
were hatched and reared at Ceva Phylaxia Animal housed for 4 weeks under SPF condi-
tions. The chickens were randomly placed into four groups: non-vaccinated non-chal-
lenged (NV-NC), non-vaccinated challenged (NV-C), vaccinated non-challenged (V-NC), 
and vaccinated and challenged (V-C) groups (Table 1). 
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Table 1. Outline of the animal phase of the trial. Dates indicate the age of the chickens at the given 
action in days. Abbreviations: days post-vaccination (dpv) and days post challenge (dpch). 

 Group Number of 
Chickens Vaccination Challenge Infec-

tion Sampling 

1. NV-NC (control) 5 No No At D35 

2. 
NV-C-a (vvIBDV) 15 No at D31 

At D32.5 (36 h post-infection, at D33 (48 
h p-i) and at D35 (4 dpch) 

NV-C-b (Delavare E) 15 No at D31 
At D32.5 (36 h post-infection, at D33 (48 

h p-i) and at D35 (4 dpch) 
3. V-NC 10 at D28 No At D31(3 dpv) and D35 (7 dpv) 

4. V-C-a (vvIBDV) 5 at D28 at D31 At D35 (4 dpch) 
V-C-b (Delavare E) 5 at D28 at D31 At D35 (4 dpch) 

After live IBDV vaccination at 4 weeks of age, all groups were placed into isolator 
units and kept there until termination. Conditions were set according to the need of chick-
ens: 26 °C ambient temperature, 150 mPa overpressure, 30–40 m3/h air exchange, 12–12 h 
light/dark cycle; food (sterilized commercial broiler grower feed) and water (tap water) 
were available ad libitum; environmental enrichment was provided by ladders and sand 
containers. During the trial, all actions performed conform to the regulation of the EU 
decree No. 40 of 2013. The chickens were euthanized by overdosed pentobarbital injection 
at 4 days post-infection (35 days of age). In the NV-C group, additional sampling was 
included at 36 and 48 h post-infection to monitor the progression of IBDV infection. 

After challenge infection, chickens were frequently monitored for IBDV clinical 
symptoms and a humane endpoint was provided to moribund specimens by overdosed 
pentobarbital injection. 

2.2. IBDV Strains 
For vaccination, the 228E-attenuated classical IBDV strain was used at a dosage of 3.0 

lgEID50/chicken, diluted in 0.2 mL sterile PBS, applied individually per-os. Vaccination 
was performed at 28 days of age in V-NC and V-C groups. In NV-C and V-C groups, the 
challenge infection was performed at 31 days of age (3 days post-vaccination), by the time 
the vaccine virus replication spread through it was spreading through the entire bursa. 
Challenge strains used in the trial were the very virulent IBDV isolate D407/2/04/TR [28] 
and variant Delaware-E ([29]; [GenBank: AF133904]) strains. 

According to current classification of IBDV [30] the 228E strain [GenBank: AF457104] 
belongs to genogroup 1 (classical IBDV), Delaware-E strain to genogroup 2 (antigenic var-
iant IBDV), and D407/2/04/TR to genogroup 3 (very virulent IBDV), based on genetic anal-
ysis of the hypervariable region of the VP2 gene. The pathogenicity of challenge strains 
was characterized by previous trials at Ceva-Phylaxia Ltd. Budapest, Hungary and the 
D407/2/04/TR isolate was found to cause clinical symptoms, high mortality, and serious 
bursal lesions in susceptible chickens [28], consistently with vvIBDV, while the Delaware-
E strain (reference strain of the antigenic variant group) caused milder bursal lesions and 
no clinical symptoms (unpublished data). 

Each strain was used by dosage of 4.0 lgEID50/chicken, applied individually per-os, 
diluted in 0.2 mL sterile PBS. Virus strains (vaccine and field) were propagated and ti-
trated in embryonated SPF chicken eggs; the end point titer was determined using the 
Spearmann–Kaerber method. 

2.3. Antibodies 
The anti-IBDV monoclonal antibody (mAb) 5A10 was received from Ceva-Phylaxia, 

Hungary. The antibody was produced against the VP2 protein of IBDV. Cleaved (active) 
Caspase3 mAb (Cell Signaling No9660) was used for identification of apoptotic cells. 
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2.4. Immunocytochemistry for Demonstration of IBDV-Infected Cells 
From each chicken, the tissue samples were embedded in their own liver and frozen 

in liquid nitrogen. The blocks were stored in a capped tube at −80 °C until cryostat sec-
tioning. The 10 µm cryostat sections were fixed in cold acetone for 10 min and rehydrated 
in PBS. The sections were incubated with primary antibody for 45 min at room tempera-
ture. After washing, the isotype-specific biotinylated secondary antibody was used. The 
endogenous peroxidase reaction was blocked by 3% H2O2 for 10 min. The ABC kit en-
hanced the signals of the primary antibody, which was detected by 4-chloro-naphtol. For 
control staining, PBS replaced either the primary or secondary antibodies and occasion-
ally an irrelevant isotype-specific antibody also employed. 

Caspase3 immunocytochemistry was used for identification of apoptotic cells. In-
fected BF samples were paraffin embedded. After deparaffinization, antigen retrieval with 
citrate buffer (pH = 0.05%, 10 mM) and permeabilization with PBS containing 1% Tri-ton-
X were used. The endogenous peroxidase activity was blocked with 3% H2O2 (Sigma, 
H1009) for 10 min The primary antibody was diluted 1:100 in PBS-BSA and the samples 
were incubated overnight at 4 °C. The secondary antibody, botinylated goat anti-rabbit 
IgG(H + L) was diluted 1:200 (Vector Laboratories BA-1000) followed by ABC (avidin-
biotin-peroxidase complex) (Vectastain Elite ABC kit, Vector Laboratories, PK-6100) for 
30 min. After washing, the binding sites of the primary antibody were visualized by DAB 
(ImmPACT DAB EqV Substrate Kit Peroxidase, Vec-tor Laboratories, SK.4103). After the 
immunostaining, the samples were counterstained with hemalaun solution. 

2.5. Glycoprotein Demonstration 
Russell modification of Movat pentachrome staining was used [31]. 

2.6. Transmission Electron Microscopy 
Tissue samples were fixed in 4% phosphate buffered glutaraldehyde at 4 °C over-

night. PBS removed the excess fixative and the samples postfixed in 1% osmium-tetroxide 
for 2 h. After dehydration in graded ethanol, the bursal tissue was embedded in a mixture 
of araldite and epoxy-resin (Polysciences, Warrington, PA, USA). Ultrathin sections were 
contrasted by lead citrate and uranyl-acetate, studied using a Hitachi H-7600 electron mi-
croscope. 

2.7. Image Processing 
Images were processed using Adobe Photoshop CC 2017 v.18 (Berkeley, CA, USA). 

3. Results 
3.1. Non-Vaccinated, Non-Challenged (NV-NC) Group of Chickens 

The BSDCs locate in the medulla of the bursal follicle. Immature and mature (Figure 
1a) forms of BSDCs can be recognized. The immature BSDC have few cytoplasmic gran-
ules of different sizes, and express FcR [32] that binds maternal IgY. The mature form of 
BSDCs produces one or two processes and the granules occupy one of the cell processes, 
but vimentin filaments fill up the whole cytoplasm [32,33]. The location of the granules 
and the eccentrically locating nucleus endow polarity to the cell. The granules may show 
an electron lucent spot, at the center of which there is a small electron dense dot. The 
granules either discharge by exocytosis or fuse together creating large irregular-shaped 
electron-dense intracytoplasmic corpuscles (Figure 1b). The fused granules may indicate 
the first sign of BSDC transformation to macrophage-like cells (Mal), which is the result 
of terminal maturation of BSDCs [17]. The surface of the mature cell, immediately after 
exocytosis, is covered by a spotted, moderately electron-dense material, which gradually 
solubilizes in the medulla (Figure 1a). Thus, the granular substance appears in membrane-
bound and solubilized forms. The Movat pentachrome staining revealed that the solubil-
ized extracellular substance is a gp (Figure 2a). The amount of gp varies from follicle to 
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follicle, indicating that in the individual follicles the secretory cycle of BSDCs is not syn-
chronized (Figure 2a); therefore, the actual functional stage of the follicles could be differ-
ent. The mucin-producing interfollicular epithelial cell (IFE) is highly Movat positive, un-
like the cells of follicle-associated epithelium (FAE) (Figure 2a). Precursors of BSDCs lo-
cate in the CMEA, where they histologically appear as lymphoblasts, large and small lym-
phocyte-like cells, and they slowly proliferate (Figure 1c). Occasionally, young, immature 
BSDCs in the mitotic phase are found in the medulla. 

 
Figure 1. Transmission electron microscopy showing the BSDC and cortico-medullary (CM) border. 
(a) Mature BSDCs. The eccentrically located nucleus and the electron-dense granules collect in one 
of the cell processes endowed with polarity of the BSDCs. The substance of discharged granules 
attaches to the BSDC membrane. (b) The irregular-shaped, fused cytoplasmic granules are around 
the Golgi zone and centriole (C). (c) In the cortico-medullary epithelial arches (CMEA), lympho-
blasts (Lb), medium-sized lymphocyte-like cells (L), and mitotic figures (m) are found. The clamp 
shows the opening of a CMEA and two lymphoid-like cells enter the medulla Basal lamina: dashed 
line; E: cell of CMEA; M: medullary; C: cortex; m: mitosis; Mal: macrophage-like cell (with apoptotic 
lymphocytes outlined). 
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Figure 2. Movat pemtachrome staining of bursa of Fabricius (a) Non-vaccinated, non-challenged 
(NV-NC) group of chickens. The cells of IFE and FAE are Movat positive and negative (arrows), 
respectively. In the medulla, the staining intensity of extracellular gp is variable. (b) Non-vac-
cinated, challenged (NV-C) group of chickens. Four days pi, a very virulent IBDV-infected bird. 
Detail of a bursal fold. The follicles shrank, in several follicular medulla, different stages of segrega-
tion emerged, and the interfollicular connective tissue (ICT) remarkably increased. (c) At 36 h pi. 
The follicular medulla shows an area (outlined) where the cell density may be lower. The cortex is 
intact. (d) Four days pi. The segregated area is densely packed with cells and large, Movat-positive 
cells (Mal) found around the segregated area. Cortex is highly depleted. (e) The surface epithelium 
is wavy, and the gp production ceased in the IFE, but a large number of Movat-positive Mal(s) oc-
cupy the medulla. Mal may be fused with the segregated area which is filled with a Movat-positive 
substance. Mal are also present in the depleted cortex. 

3.2. Non-Vaccinated, Challenged (NV-C) Group of Chickens 
In this group of birds, the Movat staining shows highly variable morphology in the 

medulla between 36 h and 4 days pi. By day 4 pi, all follicles became smaller (Figure 2b) 
and between the shrinking follicles a remarkable amount of interfollicular connective tis-
sue (ICT) emerged (Figure 2b). At 36 h pi, the sign of segregation appears as an area con-
taining moderately loosely packed cells in the medulla (Figure 2c) while the cortex seems 
to be intact. By day 4 pi, the follicular medulla shows variable stages of segregation (Figure 
2d,e). First, the segregation shows densely packed cells, to which several Movat-positive 
Mal may be joined (Figure 2d). The segregated area is isolated from the other part of the 
medulla, resulting in a “cell-free” area, which is filled with gp (Figure 2e). The surface 
epithelium became wavy and in the IFE the mucin (gp) production remarkably dimin-
ished (Figure 2e), although virus was not present in the cells of IFE. By day 4 pi, the extra-
cellular gp disappeared, and gp emerged in the virus containing Mal. The Movat-positive 
Mal either join to the segregated area or migrate into the cortex (Figure 2e). 
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In the early stage of infection (2 days post-infection, pi), the number of infected cells 
depends upon the virulence of the virus. Much more infected cells were present in the 
very virulent strain than in the mild and vaccine strains (Figure 3a–c). In the very virulent 
virus-infected chickens, the central area of the follicular medulla shows a few virus-posi-
tive cells (Figure 3a). The majority of 5A mAb-positive cells locate close to the CMEA and 
at the periphery of cortex. Between these two locations, single, virus-containing cells were 
found, which may migrate into the periphery of the cortex (Figure 3a). It is necessary to 
note that there are follicles that show only a few infected cells, if any. The topography of 
the first infected cells is identical to that of BSDCs (Figure 3b,c). In the mild and vaccine 
strain infected birds, the virus-containing cells locate mainly in the medulla and only a 
few cells emerge in the cortex (Figure 3b,c). Many follicles are free of virus-positive cells, 
but in the mild (Delaware-E) strain, heavily infected follicles may also occur (Figure 3b). 
In the mild and vaccine strain infected birds, the bursa shows many follicles, which con-
tain only 2–5 scattered virus-positive cells (Figure 3b,c). 

The transmission electron microscope shows that the crystalline arrangements of vi-
rus particles are packed in the fused BSDC granules, now called corpuscles of Mal. During 
binding and packing of the virus particles, the BSDCs transforms to Mal and the virus-
containing corpuscles appear as large spherical bodies (Figure 3d,e). The rest of the elec-
tron-dense substances of corpuscles break up into small nodules and myelin figures, 
which possibly come from BSDC granules. The actual size of a virus-containing corpuscle 
can be 5–6 microns, which size is identical to that of a small lymphocyte and at the periph-
ery of Mal a remarkable number of neutral lipid droplets accumulate (Figure 3d). In the 
corpuscles, the virus particles gradually become hazy and indistinct (Figure 3e). In the 
segregated area of several follicular medulla, the caspase reaction reveals accumulating 
apoptotic cells (Figure 3f,g). In other follicles, the segregated area shows many newly 
formed BSDCs, besides the virus containing Mal, demonstrating that individual follicles 
are in different functional stages (Figure 3f). 
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Figure 3. Immunocytochemistry of anti-IBDV; 5A10 mAb, 2 days pi. (a) In the very virulent virus 
infected birds, the majority of 5A10 positive cells are located close to the CMEA(s) and they are able 
to assemble in the periphery of the cortex. Many individual cells are between the CMEA(s) and 
periphery of the cortex. Follicles are still found without infected cells. (b) The Delaware-E strain 
shows much fewer infected follicles, but occasionally a heavily infected follicle occurs, which differs 
from that of very virulent virus infected follicles. Many IBDV-positive cells are in the medulla and 
the cortex is homogenously covered by IBDV-positive cells. (c) The vaccine 228E virus positive cells, 
seem to be similar to that of the Delaware-E strain. (d) Macrophage-like cells (Mal) from a vaccine-
strain virus inoculated chicken. The cell has two corpuscles (fused BSDC granules, outlined) and 
the periphery of the cytoplasm is full of neutral lipid droplets. (e) Higher magnification from a Mal. 
The corpuscles (outlined) are full of virus particles and the dark nodules and myelin—the rest is 
corpuscles material. (e′) is an inset of (e). The rectangle shows higher magnification of the virus 
particles. (f) At 36 h pi, the caspase3 staining shows a highly variable number of apoptotic cells in 
the follicles. (g) Higher magnification shows that the caspase3-positive cells are found in the me-
dulla and a few cells occur in the periphery of the cortex. 

3.3. Vaccinated Non-Challenged (V-NC) Group of Chickens 
The Movat staining shows a remarkable difference between the early vaccine-take 

(Figure 4a–c) and chronic stage of bursa (Figure 4d,e). In early-stage vaccine-take group 
of chickens, the most remarkable feature is the absence of extracellular gp, the numerous 
moderately Movat-positive Mal, and the decreased number of BSDC precursors in the 
CMEA, the cortex is highly depleted and there is no neutrophil granulocyte and monocyte 
invasion (Figure 4c). The CMEA mainly transformed to a cuboidal-shaped epithelial cell 
layer because of the majority of BSDC precursor cells are gone, they differentiated to im-
mature BSDCs. The bursal folds are moderately shrunken, the follicles are close to one 
another and the amount of ICT somewhat increased (Figure 4a). The surface epithelium 
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of the fold is slightly wavy, and the mucin (gp) production decreased in the IFE. Mucin 
appears only in the most apical portion of IFE cells (Figure 4a,b). 

In the chronic stage of bursa, there are many transitory forms, which depend on the 
number of the rest of the BSDC precursors in the CMEA and the amount of extracellular 
gp (Figure 4d,e). In lesser affected follicles, the extracellular gp remains, indicating that 
the structural integrity of stromal components and a considerable number of BSDC pre-
cursors remained intact, allowing B-cell recovery. The CMEA shows variable structure: 
that is, in some places the BSDC precursors are preserved (Figures 4e and 5a), while in 
other places the CMEA is “empty”, namely, there are no BSDC precursor cells (Figures 4e 
and 5b), the CMEA collapsed. 

 
Figure 4. Vaccinated, non-challenged (V-NC) group of chickens sampled at D31 (3 dpv) (a–c) and 
at D35 (7 dpv) (d,e), representing the acute phase and the chronic stage of onset of vaccine virus 
replication, respectively. (a) The follicles are closely packed in the fold and the medulla contains 
many Movat stained Mal. (b) The surface epithelium of the fold is moderately wavy, mucin (gp) is 
found only in most apical part of IFE cells. Some follicles maybe had a small amount of extracellular 
gp. (c) The major part of CMEA consists of cuboidal-shaped epithelial cells. The cortex is thin and 
depleted. ICT moderately increased. (d) The most remarkable finding is the presence of extracellular 
gp in the follicles. (e) Higher magnification shows that in some places, the CMAE is well-retained, 
contains BSDC precursors (arrows). (f–h) Vaccinated, challenged (V-C) group of chickens. (f) The 
fold is densely packed with shrunken follicles, otherwise the histological structure is similar to that 
of the chronic stage group of birds. (g) The cells of CMAE transformed to cuboidal-shaped epithelial 
cells (arrow). In the medulla, several moderately stained, Movat-positive Mal(s) may be found. (h) 
The follicles have few aggregated Movat-positive Mal(s), but generally their number is lower than 
in the vaccine-take (V-NC) birds. 
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3.4. Vaccinated, Challenged (V-C) Group of Chickens 
These birds were inoculated with the vaccine 228E attenuated virus strain at 28 days 

of age, when the vaccine virus started to replicate in the bursa, initiating the onset of the 
active immune response. The general histological structure of the BF basically does not 
differ from that of the V-NC group of birds (compare Figure 4a,f). The extracellular gp is 
absent (Figure 4g,h), the number of Mals/follicles is variable, from a few Mal(s) (Figure 
4g) up to a group (Figure 4h). Generally, the number of Mal/follicles is remarkably less 
than in the V-NC group (compare: Figure 4c,g). The CMEA collapsed and the arch form-
ing cells showed a cuboidal-shaped epithelial layer like in V-NC group and the shape of 
the epithelial cell nuclei is highly bizarre (Figure 5b). 

 
Figure 5. Transmission electron micrographs taken from the V-NC group of chickens. (a) This por-
tion of CMEA retained the BSDC precursors. C: cortex; M: medulla; E: epithelial cell of CMEA; Lb, 
L: lymphoblast and lymphoid-like cells; dashed line: cortico-medullary bursal lamina. (b) A col-
lapsed portion of CMAE, where BSDC precursors are absent and the arch-forming epithelial cells 
transformed to cuboidal-shaped cells. M: medulla; C: cortex; E: epithelial cells of collapsed CMEA; 
Mal: macrophage-like cell; MRC: mesenchymal reticular cell; dashed line: cortico-medullary basal 
lamina. 

4. Discussion 
In the medulla of the bursal follicle, only the BSDCs have classical secretory machin-

ery around the cytocentrum. There is a well-developed Golgi complex with secretory 
granules and a considerable number of free ribosomes, but the granular endoplasmic re-
ticulum (GER) is moderately developed. It is well-known that the structural, non-secret-
ing proteins are made on free ribosomes—like the myofibrils in myoblasts—and the GER 
produces a secretory substance in plasma cells or exocrine pancreatic cells. In BSDCs, the 
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proportion of free ribosomes and GER suggests that the BSDCs may be responsible for 
two kinds of product and function. The function of BSDCs may be found within the fate 
of secretory granules, which either discharge or fuse together forming large, irregular-
shaped, dense bodies, corpuscles: (a.) In the case of the granular discharge, the secreted 
substance appears as a spotted shape, attached to the BSDC membrane, where the granu-
lar discharge is in a high concentration, which possibly makes the BSDCs a primary target 
of IBDV. This statement may be confirmed, that in the medulla, the scattered appearance 
of the first IBDV-positive cells is identical with the topography of the BSDCs. From this 
membrane-bound form, the granular substance gradually detaches, solubilized in the ex-
tracellular space of medulla contributing to the ME of follicular medulla [17,18]. The sol-
ubilized, extracellular gp binds to the medullary B lymphocyte [19] in a much lower con-
centration; therefore, the IgM surface positive B cells are the secondary target cells of 
IBDV. Possibly, the membrane-bound gp on medullary lymphocytes is necessary for 
maintenance of B cell survival and may participate in the binding of the serotype I IBDV 
strain [20]. (b.) In normal uninfected birds, the BSDC granules fuse together, the BSDCs 
transform to Mal, which is the result of terminal maturation of BSDCs. The Mal either 
enters the FAE [34,35] or occasionally migrates to the cortex. In the case of IBDV infection 
(NV-C), the Mal, carrying the virus, enters the cortex, inducing inflammation—in infected 
birds the migratory pathway of Mal is shifted from the FAE to cortex. In the vaccinated 
(chronic stage) challenged (V-C) group of birds, mainly heterophil invasion occurs. A sig-
nificant number of heterophil granulocytes enter the IFE. Depletion of heterophil granu-
locytes, by 5-fluorouracil, prior to IBDV infection resulted in only mild clinical symptoms. 
These observations show that in addition to the BSDCs, the neutrophil granulocyte is the 
major responsive cell for the IBDV infection [36]. The virus uptake and packaging in the 
corpuscle of Mal inhibits the granular discharge resulting in the absence of gp in the ex-
tracellular space of medulla, and subsequently B cell apoptosis. The Mal either accumulate 
in the segregated area of the medulla or migrate into the cortex inducing an inflammatory 
reaction, and they are eliminated. Other segregated areas show many newly formed, vi-
rus-free BSDC. 

The non-vaccinated and non-challenged (NV-NC) control group of birds reveals ex-
tracellular gp in the follicular medulla. The amount of extracellular gp is highly variable 
in the follicles [17,18], indicating some functional stage differences between the follicles. 
The reason for these functional differences is not known, but the actual number of mature 
BSDCs can contribute to the gp differences in the follicles. In the early stage of vaccine 
virus replication (V-NC), the extracellular gp disappears or decreases below the sensitiv-
ity of Movat staining, but in the chronic-regenerating phase, gp reappears in the follicles 
indicating the structural integrity of stromal elements [37] and the rest of the BSDC pre-
cursors, allowing the functional or at least partially histological restoration of the bursa. 
In the (V-NC) group of chickens, the migration pattern of Mal is more similar to that of 
uninfected control birds, namely, the majority of Mal enters the FAE [38] and is eliminated 
in the bursal lumen. The limited number of Mal, which migrate into the cortex, is not 
enough to induce inflammation, because there is no monocyte, heterophil invasion. 

The cell surface of chicken embryo fibroblasts (CEFs) is also covered by gp [17], which 
makes the CEF a common tool for IBDV propagation. If in the case of CEF the membrane-
bound gp has a role in the virus binding and uptake, then the presence of extracellular gp 
should have a crucial role in IBDV infection. The vaccination remarkably diminished or 
closely abolished the extracellular gp in the medulla. In birds, infected with field IBDV, 
the bursal lesion is highly variable between 36 h and 4 days pi, which is also valid for the 
clinical signs. Rauw et al. [39] reported that the overproduction of ChINFϒ by T cells has 
a key role in long-lasting immunosuppression. In place of bursal lesions, T cells must be 
accumulated in a sufficient number for ChINFϒ production. The ChINFϒ activates mac-
rophages to produce inflammatory factors, which further results in overproduction of 
ChINFϒ in the bursa but not in the blood [39]. In normal bursal follicle, T cells rarely occur; 
therefore, from the bursal lesions some type of factor(s) should be released to activate T 
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cells to migrate into bursal lesions and produce ChINFϒ, which activates macrophages. 
The cellular interaction between T cells and macrophages works in the adaptive immune 
response, but the innate immune response is prompt and does not require time-consum-
ing cell-to-cell collaboration. The Mal as a virus containing possibly activated macro-
phage, is capable of inflammatory cytokine production, such as ChIL-6 (and other cyto-
kines), initiating an innate immune response. In the (NV-C) group of chickens, the Mal, 
which is a transformed BSDC carrying the virus, migrate to the cortex, and induce inflam-
mation by recruiting T cells, monocytes, and heterophil granulocytes. The virus-contain-
ing cell can enter the circulation and settle down in the thymus [40], suggesting that the 
circulation can contribute to the virus dissemination. 

It is thought that the virus is released after cell lysis. The VP5 (viral protein) accumu-
lates in the plasma membrane of infected cells and modifies the morphology and mem-
brane permeability of host cells [41]. The altered K+ current may delay the apoptotic pro-
cess and cell lysis [42]. Therefore, the cell lysis theory for viral dissemination may be chal-
lenged. The virus is wrapped in the former BSDC granules (now corpuscles of Mal), which 
represents the first, non-lytic, early phase of virus dissemination [43]. The virus containing 
Mal may migrate to the FAE, but mainly into the cortex, where the cells can enter the 
circulation [40]. The late or second phase of virus replication could be related to lympho-
cyte infection and apoptosis; cell lysis. The lymphocyte apoptosis can be induced by lack 
of extracellular gp [17,18] and the second phase of B cell infection [43]. 

At hatching, the number of BSDCs/follicles is 10 ± 4, and by day 14 it is increased to 
53 ± 11, while at 70 days of age birds reach 197 ± 23 [33]. Rautenschlein and Haase [11] did 
not find age-related differences in outbreak of clinical disease between 12 and 28 days pi. 
By 14 days post-hatching, the number of BSDCs increased more than five times by day 14, 
which may be enough to initiate clinical disease. However, Rautenschlein and Haase [11] 
reported that the chickens recovered from in ovo vaccination faster than the post-hatched 
vaccinated birds. Around hatching, the BSDCs develop FcR [32], that bind maternal IgG. 
Thus, in the in ovo vaccinated birds, the BSDCs are still underdeveloped; therefore, the 
recovery may be faster than post-hatched vaccinated birds, when the FcR of BSDCs al-
ready binds maternal IgG. 

The intracellular, Movat-positive gp appears in every infected group of chickens, 
while in the NV-NC group the gp is in the extracellular space of the medulla. The VP5 is 
a non-structural protein of the IBDV [44], and incorporated in the membrane of infected 
cells, changing the K+ ion current [42]. The VP5 protein alters the cell morphology and 
membrane permeability [41]. These findings raise the issue that in the Mal, the gp may 
originate from the pinocytosis of the extracellular gp. However, in the vaccine-take group 
of chickens, the amount of extracellular gp remarkably decreases below sensitivity of 
Movat staining, and some remaining extracellular gp becomes s solid, electron-dense 
mass, close to the FAE [18]. Thus, in the V-C group of birds, the gp in the Mal cannot come 
from the uptake of extracellular gp. However, these observations raise two possibilities, 
because the gp cannot be seen in the BSDCs of control, normal birds. One option is that 
the BSDCs produce two chemically and functionally different granules: (a.) The granules, 
which discharge contain “hidden” extracellular gp. (b.) The other granules, which fuse 
together consist of classical macrophage lysosomes. The other possibility is that during 
solubilization of granular contents undergo certain changes in molecular configuration 
and the extracellular gp becomes available for Movat staining. If this is true, then the effect 
of virus wrapping can also change the molecular configuration, which results in the ap-
pearance of Movat-positive gp in the Mal. Thus, the determination of granular contents is 
crucial for further studies. 

5. Conclusions 
BSDCs produce secretory granules, which either fuse together or discharge. During 

physiological maturation, the BSDCs transform to Mal and enter the FAE. The granular 
discharge results in extracellular gp, which contributes to the medullary 
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microenvironment and binds to the medullary lymphocyte. The gp is the first recognized 
component of the medullary microenvironment. IBDV is taken up by BSDCs and 
wrapped up into the secretory granules and replicates. The virus packaging into the BSDC 
granules—now called corpuscles of Mal—prevents the granular discharge resulting in the 
absence of extracellular gp, and subsequently alteration in the medullary microenviron-
ment. Movat-positive gp emerges in the virus containing Mal. Electron microscopic anal-
ysis showed that the turnover of the glycoprotein is associated with the life cycle of 
BSDCs. The Movat-positive extracellular gp could be a good indicator of the immunolog-
ical status of the chicken. The follicle can have more mature than immature BSDCs and 
abound in extracellular fine-flocculated substance, namely gp and vice versa. If the num-
ber of immature BSDCs is high and the granular discharge is moderate, the Movat-posi-
tive gp is low; therefore, the medulla shows only weak or no fine flocculated substance, 
i.e., gp. Post-vaccination, the solubilization of BSDC discharge is restricted and accumu-
lates in huge masses on the surface of BSDCs (paper is under preparation). It is surprising, 
that these extracellular masses are not Movat positive, and possibly not “available” for 
IgM-positive, medullary B cells. The identification of the exact molecular nature of the gp 
and the biological function of the glycoprotein in B cell proliferation and/or survival re-
quires further work. 
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