
Citation: Patil, S.S.; Catanese, H.N.;

Brayton, K.A.; Lofgren, E.T.;

Gebremedhin, A.H. Sequence

Similarity Network Analysis

Provides Insight into the Temporal

and Geographical Distribution of

Mutations in SARS-CoV-2 Spike

Protein. Viruses 2022, 14, 1672.

https://doi.org/10.3390/v14081672

Academic Editor: Benjamin M. Liu

Received: 15 June 2022

Accepted: 28 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Sequence Similarity Network Analysis Provides Insight
into the Temporal and Geographical Distribution of Mutations
in SARS-CoV-2 Spike Protein
Shruti S. Patil 1, Helen N. Catanese 1, Kelly A. Brayton 1,2 , Eric T. Lofgren 3 and Assefaw H. Gebremedhin 1,*

1 School of Electrical Engineering and Computer Science, Washington State University,
Pullman, WA 99164, USA; shrutisunil.patil@wsu.edu (S.S.P.); helen.catanese@wsu.edu (H.N.C.);
kbrayton@wsu.edu (K.A.B.)

2 Department of Veterinary Microbiology and Pathology, Washington State University,
Pullman, WA 99164, USA

3 Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA;
eric.lofgren@wsu.edu

* Correspondence: assefaw.gebremedhin@wsu.edu

Abstract: Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), which still infects
hundreds of thousands of people globally each day despite various countermeasures, has been
mutating rapidly. Mutations in the spike (S) protein seem to play a vital role in viral stability,
transmission, and adaptability. Therefore, to control the spread of the virus, it is important to gain
insight into the evolution and transmission of the S protein. This study deals with the temporal
and geographical distribution of mutant S proteins from sequences gathered across the US over a
period of 19 months in 2020 and 2021. The S protein sequences are studied using two approaches:
(i) multiple sequence alignment is used to identify prominent mutations and highly mutable regions
and (ii) sequence similarity networks are subsequently employed to gain further insight and study
mutation profiles of concerning variants across the defined time periods and states. Additionally, we
tracked the variants using visualizations on geographical maps. The visualizations produced using
the Directed Weighted All Nearest Neighbors (DiWANN) networks and maps provided insights
into the transmission of the virus that reflect well the statistics reported for the time periods studied.
We found that the networks created using DiWANN are superior to commonly used approximate
distance networks created using BLAST bitscores. The study offers a richer computational approach
to analyze the transmission profile of the prominent S protein mutations in SARS-CoV-2 and can be
extended to other proteins and viruses.

Keywords: sequence similarity network; SARS-CoV-2; spike protein; mutations

1. Introduction

The COVID-19 pandemic has caused over 230 million infections globally with a
fatality rate of approximately 2% as of September 2021 [1]. The causative virus species
was identified as severe acute respiratory syndrome-related coronavirus and was named
SARS-CoV-2 [2]. The SARS-CoV-2 spike (S) protein is a homo-trimeric protein which is key
to viral entry and consists of two subunits S1 and S2 [3–5]. Subunit S1 forms a budding
head and attaches to host cell angiotensin-converting enzyme-2 (ACE-2) receptors [6,7].
Subunit S2 has a stalk-like structure that fuses the viral and host membrane after which the
viral RNA is released into the host cell. Therefore, the S protein is vital in determining the
infectivity and transmissibility of the virus.

Various studies confirm the major role of the S protein in SARS-CoV-2 pathogene-
sis [5,8]. Hence, mutations in the S protein could have a significant effect on protein stability,
viral transmission, adaptability, and diversification [9]. Multiple mutations, deletions, and
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recombinations have been observed in the S protein as the virus encounters diverse host
immune systems, despite the countermeasures across the world [10]. Additionally, the
mutation rate for RNA viruses is extremely high, increasing the probability of mutations
occurring in the protein. RNA viruses evolve on observable timescales and thus mutations
in the virus can be studied over time. The timely study of viral evolution creates opportuni-
ties to combat viral diseases [11]. Therefore, the study of evolution of SARS-CoV-2 would
be one of the effective ways to provide insights into the regions of the virus to be targeted
by vaccines or treatments.

The role of S protein as an antigen and the rising number of mutations in the S protein
have resulted in vaccines that focus on targeting this protein [12,13]. Some vaccines focus
on the full-length S protein while others use only parts of the protein, mostly the highly
immunogenic regions such as the receptor binding domain (RBD) [14,15]. For instance,
the Pfizer-BioNTech vaccine is a mRNA vaccine packed as a lipid nanoparticle and works
against the S protein. It is of paramount importance to closely monitor evolution of the
S protein in the circulating virus. Many mutations have been reported in the S protein
but only a few of them persist over time and influence the virus infectivity. The D614G
mutation has been reported to be common and is known to increase viral infectivity and
transmissibility [16]. Several other variants have also been reported, among which the
Delta and Omicron variants are known for their most severe effects [17–19].

Variants are commonly studied using phylogenetic tree analysis. The Pango network
is a highly regarded tool to identify and name lineages of SARS-CoV-2 and uses a hier-
archical system to study the virus evolution [20]. Another popular tool, NextStrain [21],
also uses phylogenetic tree analysis to study pathogen evolution [22]. Phylogenetic tree
analysis provides a high-level overview of the evolution and spread of the virus. Sequence
alignment and phylogenetic trees are good tools to study differences among sequences,
however, Sequence Similarity Networks (SSNs) can visualize sequence relationships better
and additionally identify complex relationships. These networks enable visualization of
large sequence sets and allow for better analysis using customizations such as defining
a similarity cut off for sequences [23]. Protein sequences and protein families have been
widely studied using SSNs to assist in identifying function of uncharacterized proteins,
unexplored families and intermediate steps in evolution [24–27]. Additionally, SSNs have
also been used to study SARS-CoV-2, mainly to determine sequence similarities between
SARS-CoV-2 and other viruses [28–30]. This work shows how SSNs prove to be good tools
to study distribution of variants of the virus.

To understand the distribution of mutations in the S protein, we carried out an exten-
sive analysis of S protein sequences reported in the US in 2020 and 2021. In this work, using
the large amount of data available in the NCBI Virus repository [31], we perform multi-
ple sequence alignment and network analysis to identify prominent S protein mutations
and study their distribution across the US over time. The analysis examines more than
100,000 sequences collected across the US from January 2020 to July 2021. Our network
analysis approach uses a variant of a SSN, where the distance (dissimilarity) between se-
quences is used to construct the networks [23]. In particular, we use the Directed Weighted
All Nearest Neighbor (DiWANN) model [32] to analyze the temporal and geographical
distribution patterns of the mutant S proteins.

The DiWANN model was applied on short sequence repeats in a previous study
and has proven to be more effective than threshold based networks for short sequences.
This study deals with much longer sequences (about 20–25 times longer) comprising of
amino acids. Additionally, we apply various network visualization techniques to elucidate
transmission of the virus. The results were supplemented by maps created using Tableau to
show the distribution of variants across the states. Taken together, the analysis demonstrates
a new approach to study the transmission of variants across a geographical area over time.
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1.1. Spike Protein Structure

The SARS-CoV-2 S protein is 1273 amino acids (aa) in length. It consists of a signal
peptide (aa 1-13), the S1 subunit (aa 14-685), and the S2 subunit (aa 686-1273) [5]. The
S protein is cleaved into the S1 and S2 subunits at a furin cleavage site during viral infection.
This activates the membrane fusion domain allowing the virus to enter the target cells.
Subunit S1 comprises an N-terminal domain (NTD: aa 15-261) and a receptor-binding
domain (RBD: aa 319-541) that binds to the cell receptor ACE2 [33,34]. The RBD is a
critical target for neutralizing antibodies and contains a receptor-binding motif (RBM)
which makes direct contact with ACE2 [35,36]. The S2 subunit is comprised of a fusion
peptide (FP: aa 788-806), heptapeptide repeat sequence 1 (HR1: aa 912-984), heptapeptide
repeat sequence 2 (HR2: aa 1163-1213), transmembrane domain (TM: aa 1213-1237) and
cytoplasmic tail domain (CT: aa 1237-1273). S2 is responsible for viral entry and fusion.

1.2. Network Analysis of Spike Protein

Mutations in the S protein can be observed by aligning sequences or calculating distance
(dissimilarity) between the reported sequences. There are various distance metrics and
algorithms to determine similarity, including Levenshtein distance (edit distance) [37,38],
Hamming distance [39,40], Needleman-Wunsh [41,42] and Smith-Waterman [43]. These
metrics tend to be computationally expensive to calculate. Similarity scores can be obtained
from faster heuristic (approximate distance) methods such as Basic Local Alignment Search
Tool (BLAST) [44] and its variants [45]. In this work, (exact) edit distance is used to
compute the pairwise distance between the S protein sequences, thanks to an efficient
implementation available in the DiWANN model we used [32]. We compared the DiWANN
networks created to the threshold-based networks created using BLAST scores.

Distance measures are used by SSN-based approaches to compute the dissimilarity
between sequences. The most similar sequences are then connected by edges. Sequence
similarity can, for instance, be used to identify homologous proteins or genes [46] that
share a common evolutionary ancestor and sequences with similar functions [47,48]. In
this study, sequence similarity is used to form a network in which nodes represent the
S protein sequence and edges indicate dissimilarity (distance) in aa sequence. The network
is modeled using the Directed Weighted All Nearest Neighbor (DiWANN) network [32]. In
this network representation each sequence is denoted by a node. A directed edge is drawn
from every node to the node it is the closest to in terms of edit distance. In scenarios where
multiple sequences tie for being the closest to a sequence considered, all the edges are kept,
ensuring important structural data is not lost.

The DiWANN network is much sparser than a basic SSN, while still capturing the core
structural elements of the sequence dataset [32]. The underlying algorithm to construct
DiWANN is relatively simple and uses a pruning and bounding technique for efficient
distance calculations. The distance calculations that are not needed are pruned and the
calculations that are needed are bounded.

DiWANN has several modeling and algorithmic strengths that make it a preferable
approach for constructing SSNs compared to k-nearest neighbors (kNN) and all nearest
neighbors (ANN) approaches. The kNN approach relies on selection of a threshold which
can be difficult to determine. A threshold too large creates a dense network, which can
be computationally expensive to work with, while a threshold too low can lose important
structure. The ANN approach avoids these threshold issues, however, computing distances
for large sequences can still be prohibitively costly, leading to similarity networks to be built
with approximate distance metrics, which can be unreliable. The DiWANN network is both
inherently sparse (for most datasets) and does not rely on approximate distance metrics.
In this study, we create DiWANN networks to visualize the distribution of prominent
mutations across the US in a manner that facilitates analysis of the spread of the virus
over time.
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2. Materials and Methods
2.1. Dataset Preparation

In this study, we extracted over 100,000 complete nucleotide sequences for the S protein
from the NCBI Virus repository [31]. The SARS-CoV-2 Data Hub provided by NCBI
Virus made filtering and downloading desired data convenient. We extracted only the
S protein sequences from the repository using the Proteins filter. Additional filters including
Geographic Region and Collection Data were useful for data collection. The sequences
were reported from US states over a period of 19 months (1 January 2020 to 31 July 2021). A
significant portion of the data had repeated sequences, so we extracted only the unique
sequences to make the SSNs. A few of the sequences were unique due to ambiguous
sequence resulting in unresolved residues (X, any aa).

To better visualize and understand the variations in the protein and the transmission
pattern, we divided the dataset into eleven time periods. The divisions were made to
correspond to the spread of the virus and measures taken to control the spread in the
country. The first time period ranged from 1 January 2020 to 20 March 2020 (T1) and
represented the initial stages of the pandemic. The second time period ranged from
21 March 2020 to 30 April 2020 (T2) and represents the stay-at-home order which lasted
for more than a month. Many states started reopening in the first week of May. Therefore,
we considered the third time period from 1 May 2020 to 20 September 2020 (T3). The
fourth time period extended from 21 September 2020 to 31 December 2020 (T4). The fifth
time period lasted from 1 January 2021 to 31 January 2021 (T5). There were many new
mutations arising every month after T5 and hence, every month has been considered
as a time period after T5 for better analysis of distribution of the mutations. Therefore,
the month of February 2021 was considered as T6, March 2021 as T7, April 2021 as T8,
May 2021 as T9, June 2021 as T10, and July 2021 as T11.

This temporal division allowed for more useful analysis of the transmission profile of
the virus in the US compared to an analysis that does not use temporal divisions. Relevant
statistics of the sequences in our dataset are provided in Table 1. Along with the unique
sequences, we also considered the number of repetitions of each sequence in the SSNs.

Table 1. Dataset description.

Time Period Total Number
of Sequences

Number of Unique
Sequences

Number of
States Reported

T1: 1 Jan 2020 to 20 Mar 2020 4047 221 48
T2: 21 Mar 2020 to 30 Apr 2020 5384 456 37
T3: 1 May 2020 to 20 Sep 2020 5876 622 30
T4: 21 Sep 2020 to 31 Dec 2020 5379 1035 49
T5: 1 Jan 2021 to 31 Jan 2021 2932 787 46
T6: 1 Feb 2021 to 28 Feb 2021 17,112 688 49
T7: 1 Mar 2021 to 31 Mar 2021 26,375 736 50
T8: 1 Apr 2021 to 30 Apr 2021 54,883 1478 50
T9: 1 May 2021 to 31 May 2021 31,815 762 49
T10: 1 Jun 2021 to 30 Jun 2021 8598 700 48
T11: 1 Jul 2021 to 31 Jul 2021 5732 786 47

2.2. Alignment of Spike Protein

We performed multiple sequence alignment (MSA) to observe mutations in the
S protein sequences of SARS-CoV2. The alignment tool Clustal Omega [49] was used
for MSA, and the tool MView [50] was used to visualize the MSA results. The tool MView
reformats multiple alignments by adding HTML markups for coloring and web page
layout. It also provides annotation columns such as percent identity, enabling us to identify
mutations more conveniently. The mutations were checked within each period as well as
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across the time periods. Most mutations were found only in a single isolate, that is, they
occurred only in one of the analyzed unique sequences. We focused on the mutations that
were prevalent over time, or across geographic regions. Some of these mutations were
present from T1, but most of them were encountered in the later time periods.

2.3. Network Analysis

Sequence alignment tools are ill-suited for visualizing distance (dissimilarity) among
all the sequences in the dataset while also taking the temporal and geographical information
into consideration. In contrast, sequence similarity networks can provide meaningful
insights into the relationship between the sequences and can also be used to depict temporal
and geographical distribution. SSNs are networks in which the nodes are sequences and
edges depict a closely related pair of sequences. This class of networks can aid biologists
in finding useful starting points for analyzing sequences belonging to different groups or
families [23]. In this work, we use a variant of SSN, the DiWANN network. To analyze and
visualize the networks we used the igraph package in Python [51].

We created a DiWANN network for the sequences in each time period. The nodes are
colored to indicate the geographical source of the sequences. In particular, we color the
sequences reported from the same geographical area (state) the same color. Since some
states had only a few samples reported, we colored only the states that had sufficient
data. Consequently, the colored states are Florida, Washington, California, Wisconsin,
Massachusetts, Michigan, and New York. The other states are simply divided into East and
West. We consider the states to the west of Minnesota as the West region and the rest as East.
There were a few sequences without a state label; we included these in our analysis as they
still contain pertinent information about the sequences in the country. Those sequences
have been labeled as ‘USA’ for the purpose of coloring the nodes.

An important note is that the location assigned to a node (sequence) is the state where
the sequence first occurred. There could be more than one state where a sequence was
reported, but for this network analysis, we considered only the first occurrence. However,
the count of the occurrence of each sequence is taken into consideration, utilizing the whole
dataset. The entire dataset is also considered while visualizing the distribution of variants
across the US.

Both the temporal and geographical distribution of the prominent mutations obtained
from the sequence alignment were studied using the DiWANN networks. A network was
created for each time period. The individual time period networks were visualized to show
the location and the variant using different node colors and node shapes, respectively. We
supplement the SSN models with geographic maps for each time period, showing where
particular spike protein mutations appeared across the country over time. The maps were
created using Tableau [52].

Finally, we create SSNs using a threshold-based approach and compare them to the
DiWANN networks. The thresholds for creating the SSNs are the bitscore values obtained
by using Basic Local Alignment Search Tool (BLAST) [53]. The BLAST tool is a program
to find regions of similarity between biological sequences. There are many variations of
BLAST, and for our study we have made use of Protein BLAST (blastp).

3. Results
3.1. Variations in Spike Protein

We encountered more than 400 mutations while performing MSA of the S protein
sequences. The mutations in T1 were mostly found in single isolates. T2, T3, T4 and T5 had
a significant number of mutations that occurred in more than one sequence, and periods T6
and later had many occurrences of several mutations. The earliest most notable variant in
the S protein was D614G (aspartic acid at residue 614 replaced by glycine). Residue 614 of
the spike protein is part of the carboxy(C)-terminal region of the S1 subunit and belongs to
the region that directly associates with S2. This variant occupied a large portion of detected
mutants in the US since March 2020.



Viruses 2022, 14, 1672 6 of 19

Other potentially significant mutations observed in the first three time periods include
L5F, V6F, S221L, A570V, and P1263L as shown in Figure 1a. Most of these mutations
occurred only in a single isolate in T1, but the number of sequences containing these
mutations increased in T2 and T3. Although these five mutations were detected in T4
and later time periods, most were not prevalent. Only mutation L5F persisted in all time
periods with high occurrences after T4. The other mutants occurred only a few times in the
later time periods, with S221L and P1263L having higher occurrences in T2 and T3.
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Figure 1. Notable mutations in the S protein of SARS-CoV-2. The arrows show where the mutations
took place. (a) Mutations that were persistent over T1, T2 and T3. (b) Mutations that occurred in a
significant number of isolates in T4 and T5. (c) Mutations that occurred in a significant number of
isolates in T6, T7 and T8. (d) Mutations that occurred in a significant number of isolates in T9, T10
and T11.

We observed several new mutations in T4 and T5 sequences including S13I, W152C,
V382L, L452R, Q677H and P681H as shown in Figure 1b. The number of mutations as well
as the frequency of occurrence of the mutations increased in period T6 and later. The most
common mutations in T6, T7 and T8 are shown in Figure 1c and common mutations in
T9, T10 and T11 can be seen in Figure 1d. Most of the mutations occurred in more than
50 unique sequences, which seems to be a significant number of sequences considering that
most of the mutations occurred in a single isolate. Additionally, many mutations co-occur
with each other. Most of the mutations shown are characteristic mutations of the four
common SARS-CoV-2 variants: Alpha, Beta, Delta and Gamma. There are a few mutations
that occur in more than one variant as shown in Table 2.



Viruses 2022, 14, 1672 7 of 19

Table 2. Variants and their characteristic mutations.

Variant Mutations

Alpha ∆69, ∆70, ∆144, E484K, S494P, N501Y, A570D, D614G, P681H,
T716I, S982A, D1118H, K1191N

Beta D80A, D215G, ∆241-243, K417N, E484K, N501Y, D614G, A701V

Delta T19R, V70F, T95I, G142D, ∆156-157, R158G, A222V, W258L,
K417N, L452R, T478K, D614G, P681R, D950N

Gamma L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G,
H655Y, T1027I

We found over 30 mutations in the receptor binding domain (RBD). Among these,
A344S, V483A and A522V were dominant in the first 3 time periods T1-T3, but were soon
dominated by the mutations V382L, L452R and A520S in T4 and T5. Mutation L452R
became more common after T5 and got characterized as an important mutation in the Delta
variant. Additionally, new mutations became dominant after T5, including K417T, S477N
and S494P in T6, T7 and T8, and R346K, T478K, E484K and N501Y in T9, T10 and T11.
Period T11 had a significant increase in several mutations, including K77T, G142D, A222V,
T478K, T859N and D950N, most of which are characteristic mutations of the Delta variant.
Overall, the number of mutations, especially in subunit S1 increased after T5.

3.2. Distribution of Highly Transmissible Variants

The results from MSA show that the D614G variant became well established by the
period T3 and the Delta variant spread rapidly across the US. The DiWANN networks we
constructed for the D614G and Delta variants provide insight into the transmission trend
of the variants over time and across states. The networks also provide relative occurrences
of sequences depicted via node sizes. Therefore, the central nodes in the large components
(cores) of the networks are larger in size compared to the surrounding nodes due to high
occurrences. These nodes usually represent the D614G or Delta variant sequences. The
D614G variant spread very quickly, and glycine (G) has become the most prevalent aa at
residue 614 over time as shown in the networks in Figure 2.

At the start of the pandemic, in T1, there was a similar distribution of the two variants,
but G started increasing in representation in T2, and became the dominant variant by
T3. The networks corresponding to T1 and T2 had two cores, which represented the two
variants (D and G at residue 614), however, the networks for T3 and T4 have just one large
component representing aa G at residue 614. The emergence of the variant can be observed
well in these 4 time periods, after which there is almost no occurrences of the D variant.
Since we colored the nodes depending on the state in which the sequence first occurred,
the networks depict the transmission pattern in the country over time.

While performing MSA, we observed that the number of mutations and the frequency
of these mutations started to rise in 2021. The four variants: Alpha, Beta, Delta and Gamma
occurred in significant numbers in period T6 and later. Figure 3 shows the occurrence
frequency of the variants. As seen in the figure, the frequency of the variants has been rising
since T6, with the maximum count in T9 according to the reported data. The figure also
indicates that the Delta variant has been the most common since T9 (May 2021), whereas
the occurrence of other variants has been decreasing since T9.
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Figure 2. DiWANN networks for the first four time periods T1–T4. (a) The network for T1 comprised
of 221 nodes, (b) T2 comprised of 456 nodes, (c) T3 comprised of 622 nodes, (d) T4 comprised of
1035 nodes. The shape of the nodes corresponds to the aa at residue 614 and the node color to the
location as depicted by the legend. Nodes labelled as ‘USA’ did not have location information.

The bar plots in Figure 3 show us the occurrence pattern of the variants when we
consider only the unique sequences. The bar plots also indicate the number of mutant
versions. There are many mutations in the variants, in addition to the characteristic
mutations. To see a more detailed distribution of the variants across the states, we consider
the whole dataset, and not just the unique sequences. This ensures the analysis of all
the occurrences of the variants and not just the first occurrence. The geographical maps
showing the distribution of the four variants in the periods T6, T8, T9 and T11 are provided
in Figure 4. Similar maps for the periods T7 and T10 are provided in the Supplementary
Figure S1.
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The Centers for Disease Control and prevention (CDC) had classified variants Alpha,
Beta, Delta and Gamma as variants of concern (VOC). However, CDC downgraded Al-
pha, Beta and Gamma to variants being monitored (VBM) in September 2021; Delta was
downgraded to a VBM in April 2022. The distribution of the Delta variant in the US during
periods T6–T8 can be seen in the DiWANN networks in Figure 5; analogous information
for the periods T9–T11 is given in Figure 6.
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to the variant and the node color to the location as depicted by the legend. Nodes labelled as ‘USA’
did not have location information. The inverted triangular nodes have characteristic Delta variant
mutations whereas the circular nodes might have other mutations in the established D614G variant.
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Figure 6. DiWANN networks for the last three time periods T9–T11. (a) The network for T9 comprised
of 762 nodes, (b) T10 comprised of 700 nodes, (c) T11 comprised of 786 nodes. The shape of the
node corresponds to the variant and the node color to the location as depicted by the legend. Nodes
labelled as ‘USA’ did not have location information. The inverted triangular nodes have characteristic
Delta variant mutations whereas the circular nodes might have other mutations in the established
D614G variant.

The DiWANN networks consider only the unique sequences, that is the first occurrence
of the sequences. This provides us with information about the sequences and the mutations
in the spike protein. However, to analyze the distribution of the Delta variant in the US,
we have created geographical maps for the time periods T6, T8, T9 and T11 that utilize the
entire dataset and not just the unique sequences. Figure 7 shows us the distribution of the
Delta variant in T6, T8, T9 and T11, and Supplementary Figure S2 shows us the distribution
of the Delta variant in T7 and T10.
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Figure 7. Geographical distribution of the Delta variant across the US for four time periods: (a) T6,
(b) T8, (c) T9, and (d) T11. The legend shows the shapes representing the count of sequences that
have characteristic mutations of the Delta variant. The states have been colored to correspond to the
color of the states in the DiWANN networks.

As motivated in the Introduction, we use the network model DiWANN because it is
better suited for our dataset and analysis compared to alternative SSN models. To verify
this, we compare it against the use of SSN based on threshold values and scores using
BLAST [53]. We created threshold-based networks (TBNs) for three time periods, namely,
T6, T8 and T11 as they seemed good breakpoints in the study of the temporal distribution
of the mutations in the S protein. Bit score was used as a threshold value to create the
SSN and the best threshold was obtained by trial. A threshold that did not produce many
singleton nodes and at the same time did not make the network too dense was selected.
The bitscores selected for the networks representing T6, T8 and T11 were 2633, 2632 and
2628, respectively. The networks created are shown in Figure 8 and the network properties
are summarized in Table 3.
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Figure 8. Threshold based networks showing the Delta variant for three time periods. (a) The network
for T6 comprised of 689 nodes, (b) T8 comprised of 1479 nodes, and (c) T11 comprised of 786 nodes.
The shape of the nodes corresponds the variant and the node color to the location as depicted by the
legend. Nodes labelled as ‘USA’ did not have location information. The inverted triangular nodes
have characteristic Delta variant mutations whereas the circular nodes might have other mutations in
the established D614G variant.

Table 3. Network properties of DiWANN and threshold-based networks (TBN) for periods T6, T8
and T11.

Network Property
T6 T8 T11

DiWANN TBN DiWANN TBN DiWANN TBN

Nodes 689 689 1478 1478 786 786
Edges 2408 12,519 67,985 56,006 1995 21,215
Avg. degree 6.98 36.39 91.93 75.78 5.07 53.98
Max degree 688 265 1478 276 353 230
Diameter 9 10 18 11 8 7
Clustering coeff. 0.01 0.64 0.76 0.78 0.1 0.81
No. of Comp. 1 59 1 80 21 67
Largest Comp. 689 569 1478 1217 296 280
Singleton nodes 0 4 0 64 0 56
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4. Discussion

In this study, we analyzed SARS-CoV-2 S protein mutations and studied the temporal
and geographical distribution of some highly transmissible variants in the US. The logical
division of the dataset into time periods depicted a story of how the S protein in the virus
evolved over time, despite the counter measures taken around the world. We initially
divided the time periods by month, which was a finer division for the year 2020, however,
we found that dividing the year according to the stages in the pandemic gave us better
insights into viral transmission across the country. Additionally, during the early months
of the pandemic, there were not many variants and so the chosen time periods depicted a
better story.

The MSA results indicate that the virus mutated faster in the later stages of the pan-
demic than in the earlier stages, making it of paramount importance that we keep track of
the changes that are potentially increasing the viral infectivity and transmissibility. Further,
analysis using MSA showed that there have been more mutations since T6 (February 2021),
which corresponds to the deployment of vaccines, indicating that the virus is adapting to
selective pressure. Additionally, more heavily mutated SARS-CoV-2 variants have been
emerging over time [54]. Overall, the S1 subunit has more mutations than the S2 subunit,
possibly because it attaches to the host through the RBD. There are mutations in the RBD
that have occurred persistently in large numbers of sequences. Most notable ones include
L452R, E484K, and N501Y, and these have been found to have influence on the virus’ fit-
ness [55]. Considering such persistent mutations while developing vaccines or treatments
can be beneficial.

Variant D614G had been established by the end of 2020 as can be seen from Figure 2.
The figure also depicts how the variant evolved over time in the US. The node colors
representing the states in the T1 network clearly show the dominance of triangular nodes,
which are sequences with aa D at residue 614, in the western states. The other component
has very few nodes from Washington and is primarily comprised of circular nodes which
are sequences with G at residue 614 from Florida, New York, and other eastern states. The
figure shows how the 614D version of the virus came into western US while the 614G
version entered on the eastern coast before becoming the dominant variant nationwide.

The networks for T3 and T4 have a single large component primarily represented
by the variant D614G across the states. Studies suggest an increase in viral infection as
a result of the mutation at residue 614 due to the reduction in shedding of S1 and an
increase in the incorporation of the total S protein into the virus [16]. This could have led
to higher transmissibility and infectivity of the D614G variant. By the end of 2020, due to
rapid transmission and dominance, the G614 variant had become the reference to study
other mutations.

Other important variants were studied in a similar manner. From Figure 3, we see that,
out of the four common variants, Delta persists to be the most infective and transmissible
by the end of July 2021. The high number of distinct sequences of the Delta variant in
the bar plot also indicates that the variant has been mutating significantly in addition
to the characteristic mutations. However, most of the additional mutations do not seem
concerning as they occur in relatively low number of sequences, sometimes just in a
single isolate.

The temporal distribution of the Delta variant shows how the occurrence of this
variant increased over time and has been high since T9 (May 2021). The T9, T10, and T11
networks in Figure 6 seem to be more clustered than the T6, T7, and T8 networks in Figure 5,
suggesting the high occurrence of the Delta variant. The Delta variant was reported to
represent only 0.1 percent of the cases in the US in April 2021, but the variant accounted for
1.3 percent of cases in May, and by early June, that number jumped to 9.5 percent [56].

Another interesting observation about the distribution of Delta variant is that the
variant was initially found more in the west (notably in California) and became dominant
across the US by T11. The T6 network in Figure 5a shows that most of the inverted
triangular nodes that represent the Delta variant are from California while the other two
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networks representing T7 and T8 in Figure 5b,c, respectively, have a mixed distribution of
sequences from both east and west states. The networks in Figure 6 show an increase in
Delta sequences, especially in the east states. A notable observation in Figure 6c showing
the T11 network is the component having the Delta variant nodes mainly from the east
states. This indicates that these sequences are more similar to each other than the other
sequences which could be because of similar virus reaction to the regional vaccination or
weather conditions.

The geographical maps in Figure 7 show a similar distribution, with a higher portion
of the Delta variant in the west in T6, especially in California. In the subsequent periods,
we observed the number of Delta sequences decreased in California and increased in the
south east states such as Florida and Louisiana. The observed trends align with the news
reported at the end of summer 2021 [57,58]. This demonstrates that the approach used in
this study is consistent with the way the virus transmitted across the country. A summary
of some of the key observed trends for all the periods is provided in Figure 9.
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Our study involved a large number of S protein sequences collected over a period
of 19 months. The data provided significant insights into the transmission and mutations
of the virus. The approach used is useful in deriving information to be considered while
targeting regions of the S protein for treatments and analyzing pathogenesis of the virus.
However, a limitation of this analysis is that the completeness of the data obtained from
NCBI Virus depends on the states reporting the sequences. There were a good number
of sequences from most highly populated states, but some states reported only a few
sequences or did not report consistently with time. Therefore, our results rely on the
available data, but we believe they provide a picture of the temporal and geographical
distribution of mutations in the spike protein across the US.

The study demonstrates how an approach using the DiWANN model and analysis
can be effective in providing insights about the transmission of a virus. We applied
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this approach to identify trends over time periods (January 2020–July 2021) that had some
established facts regarding the virus, enabling us to verify that our approach provided valid
results. Additionally, studying the pandemic right from the start till July 2021 provided
us with a broad picture of the spread of different variants, especially the Delta variant,
which was the most severe variant among people who were not vaccinated. This effective
approach combines temporal and geographical data and can potentially be used to study
other variants of SARS-CoV-2 or other infectious diseases in future works.

We chose a DiWANN SSN as our model for this analysis over a threshold-based SSN
using either an exact or approximate similarity metrics because it offered better results
while keeping computational cost low; in particular, exact threshold-based SSN is overly
costly to construct and approximate threshold-based SSN can provide inferior results [32].
Additionally, both methods can suffer from a poorly chosen threshold. In our study we have
chosen a threshold by trial such that there is a balance between the density of the network
and the number of singleton nodes. The constructed threshold-based networks using
BLAST bitscores were usually denser than the corresponding DiWANN networks as can be
seen in Figure 8 and Table 3. Moreover, the threshold-based SSNs have singleton nodes.

We found DiWANN to be better suited for this dataset which consists of quite similar
sequences as all are spike proteins and fairly conserved. However, although the DiWANN
network is much faster to construct than a threshold-based SSN using an exact similarity
measure, the approach may still be computationally intensive for large datasets. In such
cases, some approximations may become necessary.

5. Conclusions

With the continuously growing outbreak of SARS-CoV-2, understanding the biology
of the infection is of paramount importance. Study of the spike (S) protein and its mutations
is key to understanding viral transmission and pathogenicity. In this study, we combine
two approaches to study mutations in the S protein, namely, multiple sequence alignment
and network analysis. Prominent mutations were identified by performing MSA on the
collected sequences from the NCBI Virus repository. The temporal and geographical
distribution of two important variants, namely the D614G variant and the Delta variant
were studied using a variant of sequence similarity networks called DiWANN. Each stage
of the pandemic has its own story which we observed in the DiWANN networks, verifying
the soundness of the implemented approach. Our computational approach provided richer
insights into the behavior of the virus over time and can be used to gain insights about
other variants, proteins or viruses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081672/s1, Figure S1: Geographical distribution of the Alpha,
Beta, Delta and Gamma variants across the US at two time period, (a) T7 and (b) T10. The legend
shows the colors representing the four variants and the pie scale used to size the pies. The pie scale
shows the count of occurrences and the pie is sized proportionally. Figure S2: Geographical distribu-
tion of the Delta variant across the US for two time periods, (a) T7 and (b) T10. The legend shows the
shapes representing the count of sequences that have characteristic mutations of the Delta variant.
The states have been colored to correspond to the color of the states in the DiWANN networks.
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