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Abstract: In the COVID-19 epidemic the mildly symptomatic and asymptomatic infections generate
a substantial portion of virus spread; these undetected individuals make it difficult to assess the
effectiveness of preventive measures as most epidemic prevention strategies are based on the detected
data. Effectively identifying the undetected infections in local transmission will be of great help in
COVID-19 control. In this work, we propose an RNA virus transmission network representation
model based on graph attention networks (RVTR); this model is constructed using the principle of
natural language processing to learn the information of gene sequence and using a graph attention
network to catch the topological character of COVID-19 transmission networks. Since SARS-CoV-2
will mutate when it spreads, our approach makes use of graph context loss function, which can
reflect that the genetic sequence of infections with close spreading relation will be more similar than
those with a long distance, to train our model. Our approach shows its ability to find asymptomatic
spreaders both on simulated and real COVID-19 datasets and performs better when compared with
other network representation and feature extraction methods.

Keywords: COVID-19 transmission network; graph attention network; asymptomatic spreader;
graph context loss function

1. Introduction

The COVID-19 epidemic has caused the most serious threat to global health since
the early twentieth century. In this pandemic, health care authorities relied on preventive
measures to reduce the spread of SARS-CoV-2 [1]. However, assessing the effectiveness
of these preventive measures was difficult due to the presence of mildly symptomatic
and asymptomatic individuals. These undetected individuals generated a substantial
portion of disease spread due to SARS-CoV-2 viral shedding and transmission before the
onset of symptoms [2,3]; thus, effectively identifying undetected patients in COVID-19
transmission networks will be of great help in disease prevention and control, especially in
China, in which a dynamic zero-COVID-19 strategy was adopted. The cost of achieving this
goal will be very high without the help of advanced technology to find these asymptomatic
spreaders in local transmission when facing the Omicron mutant [4], although the rest of
the world has mostly adopted a strategy of living with SARS-CoV-2 [5].

Recent advances in next-generation sequencing (NGS) platforms emphasize their
application value in tracking emerging infectious disease outbreaks [6]. The combined
approach of using genomic sequencing data with epidemiological data has successfully
revealed transmission events for various viral outbreaks [7,8]. In determining critical
features in the transmission pattern, such as the origin and the emergence of variants, viral
sequencing can infer closely related isolates in an outbreak and identify unsampled cases in
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ongoing outbreaks [9]. Rapid viral sequencing can therefore provide real-time surveillance
of transmission events and circulating viral variants in the ongoing COVID-19 pandemic.
Network modeling tools such as Bayesian phylogenetics [10] and TransPhylo [9] have been
utilized to capture the evolutionary and infection dynamics of SARS-CoV-2. Research using
these tools have been able to establish phylogenetic pipelines using published SARS-CoV-2
genomic data to examine reasonable estimate transmission networks with the inference of
unsampled infection sources. However, the computational cost is high for the calculation
of Bayesian inference when dealing with large amounts of data.

Viral genomic approaches, including viral genomic sequencing and phylogenetic
analyses, allow us to investigate fundamental characteristics in the transmission of an
infectious disease. This is made possible by detecting the genetic variation in the viral
genomes of infected individuals as a result of high rates of mutation and replication
in transmission events [11]. Since RNA viruses have high mutation rates when they
spread [12], the genetic sequence of the virus carried in each patient will be different;
pertinently, SARS-CoV-2 is also one kind of RNA virus. As the mutation rate of SARS-CoV-2
is low [13], these species signatures of different subtypes are then passed on to those they
infect, and all of the individuals in a local module in a network share common signatures.
Our approach makes use of sequence variation within individuals. It is obvious that the
genetic sequence of infections with close spreading relationships in a transmission network
will be more similar than those with long distances. Based on this, the similarity of two
neighbor nodes having asymptomatic or undiagnosed nodes between them must be lower
than those without undetected nodes. Therefore, the main idea for finding asymptomatic
spreaders in a COVID-19 transmission network is based on the similarity of each pair of
neighbor nodes in the network.

By using a long short-term memory (LSTM) network, which is a deep neural net-
work for modeling sequential data [14,15], the proposed model can learn the sequential
information contained in these subgraphs for each target node. This information will be
combined into a new embedding by an attention mechanism [16,17], and the embedding
also captures information of the graph structure. As we expect nearby nodes to have
similar representations and distant nodes to have dissimilar representations, graph context
loss function, which is well matched with the characteristics, is used to train this model.
By using our trained model to measure the similarity—the distance in the embedding
space—between pairs of nodes via their representations, we can discover which pairs are
unusually different for their given location in the transmission network, indicating that
there are undetected nodes in between.

We first test our model on simulated datasets. The simulation transmission network
is generated based on the rule of virus spread and the corresponding genetic sequence is
simulated according to the characteristics of the SARS-COV-2 gene and the mutation when
it spreads. The transmission network and gene sequence datasets are used to train our
model. Then we randomly remove a certain proportion nodes and reconnect it to form a test
network, the new connected edges, being removed nodes, form the test label set. Through
different kinds of experiments, RVTR can effectively find undetected nodes in simulation
transmission networks. We further show the model’s performance in real situations by
training and testing the model on a COVID-19 dataset from Australia. The prediction of our
proposed model is better than other comparison algorithms. Of note, more experiments
have been performed on datasets from Canada, Alberta, New York State and New Zealand;
all these experimental results indicated the model’s ability to find asymptomatic spreaders
in SARS-CoV-2 transmission networks.

2. Methods
2.1. Background

The goal of finding asymptomatic spreaders is to infer undetected nodes in a COVID-19
transmission network, and our approach is based on the representation of the transmission
network. In this paper, the goal of network representation is to correctly express the gene
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sequence information and network transmission characteristics of nodes in low dimensions,
and then use the new representation information to discover undetected nodes.

2.1.1. COVID-19 Transmission Network Representation

In a COVID-19 transmission network, virus transmitters are regarded as the network
nodes, and the genetic sequence of SARS-CoV-2 can be regarded as the attribute of each
node. A COVID-19 transmission network can be expressed as G = (N, E, A), where N
is a set of nodes in the network. E represents the set of connected edges, and each edge
(ni, nj) ∈ E means that the virus is transmitted from node ni to node nj. A represents the
node attribute set, ai ∈ A represents the gene sequence of node ni.

2.1.2. Undetected Nodes and Abnormal Edges

Due to these asymptomatic or unsampled patients, the amount of detected COVID-19
infections is smaller than the actual number in the transmission network. Figure 1 shows
a complete transmission network, but mostly it could not detect unsampled or asymp-
tomatic spreaders, which are marked by red dotted circles. In this paper, we name these
asymptomatic or unsampled infections undetected nodes for convenience.

Figure 1. A complete COVID-19 transmission network. The dotted nodes marked with red circles are
unsampled or asymptomatic spreaders.

These undetected infections lead to abnormal connections in an observed transmission
network. As shown in Figure 2, the parent nodes and child nodes that should not have a
direct relationship but produce the connection are marked by red edges. Finding asymp-
tomatic or unsampled infections could be seen by finding abnormal edges in a transmission
network. In our approach the representation of an RNA virus transmission network is
learned first and then node similarity, which has a connection, is calculated. Finally, we
use these similarity scores to find abnormal edges and locate the undetected infections in a
transmission network.

Figure 2. The observed COVID-19 transmission network. The red edges are abnormal transmission
relations with undetected nodes in it.

2.2. Model

In this section, we introduce the RNA virus transmission network representation
model based on the graph attention network (RVTR). The framework of the RVTR is
depicted in Figure 3, in which a red node serves as an example of how this model generates
a new representation by learning the information of neighbor nodes.
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Figure 3. The framework of RVTR.

2.2.1. Subgraph Extraction

Subgraph extraction aims to create a node set with the highest correlation for the
target node, to ensure that the model can extract enough topology information from the
transmission network. Previous studies [18,19] showed that the influence between nodes
with a distance of more than three steps in a network is small, and we select nodes less
than three steps from the target node ni to form subgraphs for the target node in the RVTR
with computing efficiency. As shown in Figure 3, nodes, except the target node, are divided
into two categories—forward set FSn and backward set BSn, based on the propagation
relationship. The forward set FSn contains the second-order afferent nodes of the target
node, namely the parent node and the grandfather node of the target node. The backward
set BSn is the second-order efferent nodes of the target node, namely the child nodes and
the grandchild nodes of the target node.

2.2.2. Subgraph Representation

As shown in Figure 3, subgraph representation aims to learn a lower dimension
vector for the incoming node set and outgoing node set. In the calculation of forward
representation, due to the propagation relationship between nodes, we used LSTM to
aggregate forward information, and selected the last hidden layer of LSTM as the forward
vector VF. When calculating the backward representation, we adopted the backward
LSTM method similar to the forward representation for each child branch. The last hidden
layer of LSTM was selected as the representation vector for each branch, and we took the
mean value of all branch vectors as the backward representation vector VB. For the target
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node itself, the self-representation VS was converted to the specific dimension through a
multilayer full connection layer.

VF(n) =
−−−−→
LSTMF(BN(FC(eF))), n ∈ FSn

VB(n) =
←−−−−
LSTMF(BN(FC(eB)))/|S(n)|, n ∈ FSn

VS(n) = BN(FC(eS)).
(1)

Among these variables, BN represents the batch normalization operation, FC rep-
resents the full connected layer, and these three vectors are denoted as V, which have
the same dimension. Through this operation, the model obtains the representation of the
structural information extracted from the network subgraph for each node.

2.2.3. Information Aggregation Based on Graph Attention Mechanism

Information aggregation aggregates the representation of each part in the subgraph.
We used the self-attention mechanism [16] to learn the aggregation weight of the forward,
self and backward representation vectors Vk, and k ∈ {F, S, B}; then, we can obtain an
aggregated vector Vn for each node.

V = AGGREGATION(VF, VS, VB)

= αF ·VF + αS ·VS + αB ·VB.
(2)

The corresponding attention values αk, k ∈ F, S, B and αk are learnable parameters
as follows:

αk =
exp(σ[aT · (VS

⊕
Vk)])

∑l∈F,S,B exp(σ[αT
l · (VS

⊕
Vl)])

, (3)

where
⊕

is the concatenation operation and aT ∈ R2d×1 and aT
l ∈ R2d×1 are the learnable

attention parameters. σ is the LeakyReLU function.

2.2.4. Graph Context Loss Function

Considering the mutation of SARS-CoV-2 when it spreads, it is obvious that the similar-
ity of neighbor nodes’ gene sequences is higher than that of non-neighbor nodes. To achieve
this goal, the graph context loss function [20] is well matched with the characteristics of the
virus transmission network. The loss function transformation is defined as:

loss = − ∑
<n,i,j>

[logθ(Vn ·Vi) + logθ(−Vn ·Vj)] + β||w||22, (4)

where Vn is the output node embedding formulated by the RVTR. Among them, 〈n, i, j〉 is
a triple, n ∈ N is the target node, i ∈Wn is the context neighbor in graph G, j ∈ N are the
negative sampling nodes, ||w||22 is the L2 regularization function, β is the weight parameter.
Specifically, we used a random walk to obtain the set of context nodes for each node, with a
restart probability of pr, and a walk length is Lw. Then a negative node j(j /∈ Wn) was
sampled randomly from the network. To improve the computational efficiency, we chose a
specific proportion of nodes for sampling during each generation of training.

2.2.5. Similarity Calculation

After obtaining the new representation V for each node, we can evaluate whether the
edge is abnormal by calculating the similarity of its two corresponding nodes. For nodes i
and j, the similarity is calculated as follows:

Sij = Vi ·Vj. (5)

After obtaining the similarity scores for all the edges in the transmission network,
these edges whose scores are relatively low are more likely to be abnormal.
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2.3. Experimental Design
2.3.1. Two Kinds of Test Experiments

To show the performance of the RVTR, we performed two kinds of test experiments.
One was training and testing on the same network, and the other was training and testing
on different networks. In the simulation experiment, first, we generated and trained our
model in this network. Then, we randomly removed certain nodes from it and rebuilt the
network. The new reconstructed network was our test work. In the other experiment, some
different networks were generated for testing; the steps to generate the test label were the
same as those in the first one. Similar to the simulation experiment, we first trained and
tested on the Australia dataset in the real data experiment, and then we tested the RVTR on
different datasets.

2.3.2. Comparison Algorithms

The RVTR is based on a virus transmission network that encodes both the graph
structure and features of nodes. It is one kind of network representation method; therefore,
two network representation methods, graph convolutional neural network (GCN) [21]
and structural deep network embedding (SDNE) [22], were selected for comparison. In
this work, we used a two-layer GCN model, in which the dimension of the hidden layer
and the dimension of the output layer were the same as those of the RVTR. We used
a three-layer neural network in SDNE, the dimensions of two hidden layers are 1024
and 512, and the dimension of the output layer is the same as that of the RVTR. Besides,
RVTR also reduces the dimension of the attributes of the network, so we also chose to
perform principal component analysis (PCA) [23] and autoencoder (AE) [24], which can
reduce the dimension and extract features for high-dimensional gene sequences. In PCA,
the principal component of the gene sequence was used as the input of the task of finding
undetected nodes. The output dimension of PCA was the same as that of the RVTR
model. AE was used to learn a representation for a gene sequence directly without
considering the network structure. We first trained the AE model in a manner similar
to that used for our model, and then the middle layer of the trained AE model, namely,
the sequence representation after dimensionality reduction, was used as the input of the
task of finding missing nodes. In addition, we used a ‘DIRECT’ method, which means that
the high-dimensional gene sequence was used for calculation directly without any loss.
The description of the comparison algorithms is shown in Appendix A.1 of Appendix A,
the setting of RVTR is described in Appendix A.2 of Appendix A.

2.3.3. Evaluation Metrics

It should be noted that, as the RVTR is an unsupervised learning method, it cannot
directly predict the number of abnormal edges. To calculate the prediction accuracy, we
set the model to predict the same number of abnormal edges as the label set, and then we
compared the prediction results with true labels. Precision is calculated by comparing the
prediction with the true label and the proportion of correct predictions in all labels.

Precision =
m
k

, (6)

where m is the amount of correct prediction, and k is the number of abnormal edges in the
label set.

As RVTR is a kind of network representation method, we also calculated the AUC
value [25], which is commonly used to measure the effect of algorithms in link prediction,
to evaluate the performance of different models.

3. Materials
3.1. Simulation Data

First, we needed to design a simulation experiment to evaluate the performance of the
RVTR model as it was difficult for us to obtain a complete COVID-19 transmission network



Viruses 2022, 14, 1659 7 of 24

to train our model in real situations. The simulated dataset was generated based on the
character of the SARS-CoV-2 virus gene and spread to test our model first.

3.1.1. Training Data Generation

• Sequence simulation

We set the length of the simulated SARS-CoV-2 gene to L. According to the in-house
filter present in GISAID, complete sequences were comprised of genomes with lengths
greater than 29,000 nucleotides [26]; here, we set L as 30,000. For the value of each gene,
we used A, T, G and C to generate the whole gene sequence at each position randomly.
Although there were missing symbols ‘ ’ or gap symbols ‘-’ in a real sampled sequence in a
real situation as a limitation of high-throughput genome sequencing, we did not consider
this situation for simplicity in simulation experiments. Assuming that each variation per
gene is independent, the mutation rate of the whole sequence at each transmission was p.
Regarding the mutation rate of SARS-CV-2 being low when it spreads [13], here, we set
p = 0.1%.

• Transmission network simulation

As the value of the basic reproduction number (denoted R0) of SARS-COV-2 is ap-
proximately three in the early stages, here we set the range of R from 0 to 6, in which R
represents the number of child nodes created when we simulate the transmission network
in one generation. The value of R at each transmission belongs to a Poisson distribution.
To simplify, we set a fixed value, the probability p(R=0), p(R=6) = 5%, p(R=1), p(R=5) = 10%,
p(R=2), p(R=4) = 20%, p(R=3) = 30%. Assuming that all nodes in the network start from
“patient 0”, the pseudocode of generating a simulated COVID-19 transmission network and
its corresponding gene sequence is described in Algorithm 1. A simulated transmission
network that has 1000 nodes is shown in Figure 4. We generated three training networks
with 1000, 2000 and 3000 nodes.

Algorithm 1 Generating procedure of simulated data.

Input: Model parameters N, Rn, L, p
Output: Transmission network and the corresponding gene sequence
while i < L do

randomly choose A, T, G or C
end while
Return gene sequence for node n0
while j < N do

generate child nodes by choosing an R0 value from the range of R0 values following
the probability for each value
while k < Rn do

copy the gene sequence of node n0
Randomly change the p× L gene to generate a gene sequence for child nodes

end while
Return gene sequence of each node

end while
Return transmission network
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Figure 4. A simulated COVID-19 transmission network with 1000 nodes.

3.1.2. Test Data Generation

To show the performance of the RVTR model, we simulated a test network similar to
the transmission network detected in a real situation. We randomly chose and removed
some nodes from a transmission network, and these removed nodes were considered
undetected nodes. Then, the network was rebuilt, and the reconnected edges were abnormal
edges and marked as our true labels to calculate the prediction accuracy. As nodes at the
margin of the network indicate the end of virus spread, it did not make sense to choose
these nodes as undetected nodes. The pseudocode of test data generation is shown in
Algorithm 2. The red nodes in Figure 5 are the nodes selected to be removed from the
network in Figure 4. We removed 10% of the nodes from the network, and the number
of red nodes is 100. Figure 6 shows the reconnected network after removing the red
nodes. The red edges are abnormal edges, and they form a label set to test the accuracy of
RVTR’s predictions.

Algorithm 2 Test transmission network and label data generation.

Input: a transmission network, the proportion of removed nodes pr
Output: a test network, label data set
while i < pr × N do

randomly choose pr × N nodes in the network
end while
if the selected node is at the margin of the network then

retain it in the network
else

remove it from the network
connect the parent node of the removed node to its child nodes
Add new connected edges into the label set

end if
Return a test network and label data set
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Figure 5. Ten percent of the nodes are selected as undetected nodes that are marked by red. They
will be removed from the network.

Figure 6. Reconnected network, red edges are abnormal edges with undetected nodes in them.

3.2. Real Data
3.2.1. Data Resource

As it is difficult to obtain a complete transmission network with undetected infections
in real situations, we used the transmission networks inferred by Perera’s work [27], which
used published SARS-CoV-2 genomic data to estimate reasonable transmission networks
with the inference of unsampled infection sources. For the gene sequence data, we used the
FASTA data, which was also used to infer the transmission network. The selected FASTA
sequence data of Canada, New Zealand, New York State and Australia were downloaded
from GISAID (https://www.gisaid.org/ Accessed on 1 September 2020) [26]. The Alberta
dataset was obtained from the Provincial Laboratory of Alberta. The details of these
datasets can be seen in Appendix A.3 of Appendix A.

https://www.gisaid.org/
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3.2.2. Real Data Processing

There are sequences with labels that contain complete collection dates and locations
in the FASTA data. Before putting the FASTA sequence data into our model, we needed
to transfer the labels corresponding to the inferred transmission network. In addition,
the symbols ‘,’ between each gene also needed to be cleaned before being put into the
models. Moreover, the assumption is that all infections have a common ancestor [28]
that uses the Bayesian program TransPhylo, which is a dedicated software designed to
reconstruct transmission networks from timed phylogenetic data to infer transmission trees.
Therefore, the inferred spread started from patient “0”. However, it is almost impossible to
find patient “0” in an area during the pandemic, so we needed to create a gene sequence
for it. Moreover, as the length of the sequence in the FASTA data is slightly different for
different datasets, we needed to adjust the sequence of different datasets for alignment.
The details of the real data process and figures of these transmission networks can be seen
in Appendix A.4 of Appendix A.

The spread of SARS-CoV-2 varies from region to region due to the different control
measures in the COVID-19 pandemic, and the distribution of transmission data, such as
the reproductive number, differs. We initially evaluated the inferred transmission data of
Canada, Australia, Alberta, New Zealand, and New York State for testing the methodology.
The details of these datasets are shown in Table 1. As the undetected infections of the
Australia dataset are relatively small in these datasets, we chose the Australian dataset,
for which the transmission network is relatively complete, as our training dataset. Figure 7
shows the inferred transmission network of Australia.

Table 1. The number of sampled nodes, inferred undetected nodes, and inferred abnormal edges
in real datasets. Australia is represented as AU, New Zealand is represented as NZ, Canada is
represented as CA, Alberta is represented as AB, New York State is represented as NY.

Dataset AU NZ CA AB NY

Nodes 1031 618 964 1847 1581
Undetected nodes 100 845 539 733 3031
Abnormal edges 113 439 526 828 1412

Figure 7. The inferred Australia transmission network, the red nodes are inferred undetected
infections in Australia.
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Considering the inferred transmission networks contain undetected nodes, we needed
to remove the inferred unsampled infections before using them to test. Similar to the
process in the simulation experiment, the reconstructed network was our test network,
and the new reconnected abnormal edges constituted our label set. Figure 8 shows the
inferred transmission network of Australia.

Figure 8. Abnormal edges in Australia transmission network.

4. Results
4.1. Simulation Experiment Results

We compared the performance of the RVTR model with that of other methods on
networks in which the initial sizes were 1000, 2000 and 3000. Test networks were generated
by removing specific proportion nodes from initial networks. As the removed nodes were
chosen randomly and the test network was different in each generation of the test network,
we performed test experiments 10 times to prevent an uneven distribution of test data.
The prediction results are shown as the mean value and variance of 10 results. As the RVTR,
GCN and SDNE are all network representation methods, to be fair, we trained and tested
the models on the same network in this experiment. The test results on networks of 1000,
2000 and 3000 are shown in Table 2, Table 3 and Table 4, respectively. The best results are
highlighted in bold

Table 2. The prediction results by different methods tested on the network of 1000. The tests were
performed on 10%, 20% and 30% nodes removed, respectively.

Removed Metric RVTR GCN SDNE AE PCA DIRECT

10% Precision 0.71 ± 0.04 0.31 ± 0.02 0.33 ± 0.04 0.33 ± 0.04 0.62 ± 0.02 0.99 ± 0.00
AUC 0.98 ± 0.01 0.53 ± 0.48 0.50 ± 0.00 0.50 ± 0.00 0.82 ± 0.23 0.98 ± 0.01

20% Precision 0.91 ± 0.01 0.59 ± 0.05 0.59 ± 0.04 0.60 ± 0.03 0.88 ± 0.01 0.99 ± 0.00
AUC 0.97 ± 0.04 0.61 ± 0.41 0.50 ± 0.00 0.50 ± 0.00 0.87 ± 0.17 0.98 ± 0.00

30% Precision 0.98 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
AUC 0.97 ± 0.04 0.57 ± 0.23 0.50 ± 0.00 0.50 ± 0.00 0.93 ± 0.05 0.98 ± 0.01
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Table 3. The prediction results by different methods tested on the network of 2000. The tests were
performed on 10%, 20% and 30% nodes removed, respectively.

Removed Metric RVTR GCN SDNE AE PCA DIRECT

10% Precision 0.68 ± 0.03 0.30 ± 0.02 0.30 ± 0.04 0.30 ± 0.03 0.60 ± 0.02 0.99 ± 0.00
AUC 0.97 ± 0.04 0.52 ± 0.32 0.50 ± 0.00 0.50 ± 0.00 0.53 ± 0.24 0.97 ± 0.01

20% Precision 0.85 ± 0.02 0.60 ± 0.02 0.62 ± 0.03 0.63 ± 0.03 0.87 ± 0.01 0.99 ± 0.00
AUC 0.95 ± 0.05 0.68 ± 0.44 0.55 ± 0.14 0.50 ± 0.00 0.63 ± 0.18 0.98 ± 0.00

30% Precision 0.98 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
AUC 0.98 ± 0.02 0.45 ± 0.40 0.70 ± 0.24 0.50 ± 0.00 0.80 ± 0.11 0.98 ± 0.01

Table 4. The prediction results by different methods tested on the network of 3000. The tests were
performed on 10%, 20% and 30% nodes removed, respectively.

Removed Metric RVTR GCN SDNE AE PCA DIRECT

10% Precision 0.69 ± 0.01 0.33 ± 0.03 0.34 ± 0.01 0.33 ± 0.02 0.58 ± 0.03 0.99 ± 0.00
AUC 0.96 ± 0.09 0.50 ± 0.41 0.50 ± 0.00 0.50 ± 0.00 0.76 ± 0.18 0.96 ± 0.05

20% Precision 0.89 ± 0.01 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.02 0.84 ± 0.01 0.99 ± 0.00
AUC 0.98 ± 0.01 0.75 ± 0.38 0.49 ± 0.01 0.50 ± 0.00 0.76 ± 0.08 0.98 ± 0.01

30% Precision 0.98 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
AUC 0.99 ± 0.01 0.31 ± 0.05 0.50 ± 0.00 0.50 ± 0.00 0.83 ± 0.08 0.98 ± 0.00

After we compared the performance of the RVTR model with that of other methods
through training and testing them on same networks, we tested the RVTR model by using
different datasets to test its ability. We trained two different RVTR models: RVTR-1K,
which was trained on a network with a size of 1000, and RVTR-3K, which was trained on
a network with a size of 3000. Then, the trained model was used to test on networks of
different sizes and the results are shown in Table 5. The best results are highlighted in bold.

Table 5. The prediction results of two RVTR models that were tested on different sized networks
with 10%, 20% and 30% nodes removed, respectively.

Removed Model Network 1000 2000 3000

10%
RVTR-1K Precision 0.68 ± 0.03 0.62 ± 0.02 0.55 ± 0.02

AUC 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.03

RVTR-3K Precision 0.73 ± 0.04 0.70 ± 0.01 0.66 ± 0.02
AUC 0.98 ± 0.03 0.99 ± 0.01 0.91 ± 0.16

20%
RVTR-1K Precision 0.89 ± 0.02 0.83 ± 0.02 0.80 ± 0.01

AUC 0.98 ± 0.02 0.99 ± 0.01 0.98 ± 0.01

RVTR-3K Precision 0.91 ± 0.02 0.88 ± 0.01 0.87 ± 0.01
AUC 0.98 ± 0.02 0.99 ± 0.01 0.96 ± 0.06

30%
RVTR-1K Precision 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

AUC 0.98 ± 0.02 0.99 ± 0.00 0.99 ± 0.00

RVTR-3K Precision 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.00
AUC 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.00

4.2. Real Experiment Results

Although the transmission network with inferred undetected infections implemented
in TransPhylo had been proven reasonable in previous work on an HIV dataset [28], it
is hard to prove the inference is absolutely correct. To show the RVTR’s ability to find
abnormal edges and capture the location of undetected nodes, we first trained and tested
our model on the same network, and we randomly removed some nodes to perform tests
similar to the simulation test experiments. Regarding the parameter settings for the real
dataset experiment, we set the dimension of the output as 256, and the other parameters of
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the RVTR were the same as the parameters used in the simulation experiment. The best
trained RVTR model is achieved among 2400 epochs and 3000 epochs.

Table 6 shows the test results on 10%, 20%, and 30% of the nodes removed from the
Australia network, the best results are highlighted in bold. The results show that RVTR
performed the best in finding undetected nodes in a real COVID-19 transmission network.
The DIRECT method, which performed the best in the simulation experiment, cannot
achieve a good performance in the real data experiment; this outcome may be related to
the large invalid gene in the sequence, and it is necessary to extract the key features from
the high-dimensional gene sequence.

Table 6. The results in the Australia dataset (training and testing both on the Australia dataset).
The tests were performed on 10%, 20% and 30% nodes removed, respectively.

Removed Metric RVTR GCN SDNE AE PCA DIRECT

10% Precision 0.40 ± 0.07 0.24 ± 0.04 0.25 ± 0.05 0.23 ± 0.05 0.29 ± 0.03 0.26 ± 0.04
AUC 0.99 ± 0.01 0.85 ± 0.28 0.50 ± 0.00 0.50 ± 0.00 0.45 ± 0.18 0.44 ± 0.22

20% Precision 0.59 ± 0.03 0.46 ± 0.05 0.47 ± 0.04 0.46 ± 0.05 0.53 ± 0.03 0.49 ± 0.02
AUC 0.96 ± 0.03 0.74 ± 0.37 0.50 ± 0.00 0.50 ± 0.00 0.41 ± 0.16 0.33 ± 0.09

30% Precision 0.75 ± 0.04 0.69 ± 0.03 0.70 ± 0.02 0.68 ± 0.04 0.72 ± 0.01 0.71 ± 0.10
AUC 0.95 ± 0.05 0.63 ± 0.43 0.50 ± 0.00 0.50 ± 0.00 0.48 ± 0.22 0.34 ± 0.10

After we trained and tested on the Australia dataset to prove the ability of the RVTR
model to find undetected spreaders in a real transmission network, we tested the proposed
model on four datasets of different regions. The prediction results can be seen in Table 7,
the best results are highlighted in bold. From the test results on different datasets, we
can see that the RVTR model achieves the best performance on transmission networks for
almost all regions except New Zealand. According to the analysis of the New Zealand
dataset, described in Appendix A.3 of Appendix A, the sampled infections in New Zealand
are quite different from those in other datasets. SARS-CoV-2 barely spread in May, June
and July 2020, although the duration of spread lasted more than one year, and the inferred
transmission determined by TransPhylo may be questionable when compared with other
datasets. The results also show that the prediction is better when there are more undetected
nodes in the transmission network, such as in the New York and New Zealand datasets.

Table 7. The test results in different datasets (model trained on the Australia dataset and tested on
other datasets).

Dataset RVTR GCN SDNE AE PCA Direct

NZ 0.7904 0.6651 0.8064 0.6720 0.6720 0.8009
CA 0.6654 0.5000 0.5627 0.5627 0.6103 0.5760
AB 0.5399 0.3599 0.4348 0.4348 0.4855 0.4469
NY 0.9363 0.8916 0.9186 0.8916 0.9143 0.9186

5. Discussion

From the precision value of prediction results in Tables 2–4, we can see that RVTR
performs better than other network representation methods and feature extraction methods,
although the best result was achieved by the DIRECT method. This may be related to
the mechanism of sequence generation; embedding in lower dimensions will reduce the
features of the simulation sequence. From the AUC value in Table 2, we can see that the
AUC values of these models are also good when the precision values are great. However,
good AUC values cannot guarantee fine precision values from the results of the RVTR on
different test networks.

We can see that the model trained on a large network has a better performance when
tested on different networks from the results in Table 5. From these simulation experiments,
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we can see that the performance of all algorithms is better when the removed proportion is
larger, which means that the difference in sequence is larger when the transmission distance
is longer. The more undetected nodes existed between two nodes, the lower the similarity
score of this pair of nodes and it will be much easier for the RVTR to detect the difference.
To show the performance of the RVTR in more detail, we also analyze the training details
of RVTR and the influence of different network structures in this section.

5.1. Training Details of Simulation Experiment

Figure 9 shows the detailed loss change in the RVTR in the training step. We can see
that the loss value drops rapidly at the early training stage, and then the change in the loss
value becomes stable after 1000 epochs.

We also saved the trained parameters of the models every 200 epochs when training;
then, these different trained models were used to test and change the performance of
the different models. Figure 10 shows the test results of different trained models on test
networks with an initial size of 1000 and 10% nodes removed. We can see that the prediction
accuracy increases when the training epoch increases. The changes in the AUC value in
Figure 11 also show a good performance when the RVTR is well trained.

Figure 9. The change in the loss value in 3000 steps of model training.

5.2. The Influence of Network Structure

Based on [29], the asymptomatic nodes are connected differently from connections
of other symptomatic nodes. For example, asymptomatic infections usually cause super
spread as they do not show any symptoms and will contact with others as usual, while
symptomatic infections will quarantine themselves and reduce the spread. The sensitivity
of the results may be related to the selected nodes for removal and also the network
structure, we also simulated two different transmission networks based on different R
values to analyze the influence of network structure. The R value of the first one is
approximately equal to 1.7, which is generated based on a fixed probability p(R=1) = 50%,
p(R=0), p(R=2) = 15%, p(R=3), p(R=4), p(R=5), p(R=6) = 5%; we named this network N1.7.
The R value of the second one is approximately equal to 4.8, which is generated based on a
fixed probability p(R=6) = 40%, p(R=5) = 30%, p(R=4) = 15%, p(R=1), p(R=2), p(R=3) = 5%,
p(R=0) = 0%, we named this network N4.8. To be fair, the RVTR is trained on a network
of size 3000 and then tested separately on different networks. From the results shown in
Table 8, we can see the RVTR achieves different performance on test networks with different
transmission structures, the best results are highlighted in bold. The results are bad when
the model is tested on the network with lower R value, while the predictions are good on
networks with a higher R value.
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Figure 10. The prediction accuracy by trained models saved at different training epochs, the blue line
shows the trend of predicion accuracy by trained models saved at different training epochs, the red
line shows the range of standard err.

0.60±0.2

0.75±0.2

0.56±0.24

0.71±0.28

0.61±0.12

0.79±0.11

0.95±0.11

0.97±0.04
0.94±0.11

0.98±0.02

0.99±0.01

0.99±0.01

0.97±0.06

0.99±0.01
0.99±0.01

0.00

0.20

0.40

0.60

0.80

1.00

1.20

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

A
U

C
v
al

u
e

Training epoch

Figure 11. Different AUC values of trained models saved at different training epochs, the red line
shows the range of standard err.

Table 8. The comparison of test results on two networks generated by different R value.

Removed Metric R1.7 R3 R4.8

10% Precision 0.32 ± 0.06 0.73 ± 0.04 0.72 ± 0.05
AUC 0.73 ± 0.17 0.98 ± 0.03 0.80 ± 0.29

20% Precision 0.54 ± 0.06 0.91 ± 0.02 0.98 ± 0.01
AUC 0.81 ± 0.14 0.98 ± 0.02 0.67 ± 0.24

30% Precision 0.74 ± 0.05 0.98 ± 0.01 0.99 ± 0.01
AUC 0.80 ± 0.19 0.99 ± 0.01 0.66 ± 0.24

The reason for the prediction accuracy in Table 7 fluctuating greatly in real dataset
experiments is related to the distribution of the abnormal edges. Figure 12 shows that
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different transmissions result in different kinds of abnormal edges. One outcome is “fewer
edges”, which means that there is more than one undetected node in one abnormal edge.
The outcome of “more edges” means that there is a “superspreader” in the detected trans-
mission network. Although there were many abnormal edges in the sampled transmission
network, there was only one undetected node. From Table 1, we can see that the distribu-
tions of the data for New Zealand and New York was similar; they both were of the “fewer
edges” category. The distribution of the data for Alberta and Australia belonged to the
“more edges” category, which means that there was a “superspreader” in the transmission
network. In the first kind of abnormal edge, the difference in similarity of the two nodes
was large, and the precision of finding the location of undetected nodes in the network is
high. In the second kind of abnormal edge, the similarity value of these abnormal edges
was close to the normal edge, as only one undetected node exists in them.

Figure 12. Two kinds of abnormal edges in real transmission network.

6. Conclusions

In this work, we propose a graph attention-based RNA virus transmission network
representation model, i.e., RVTR, to find asymptomatic spreaders in the COVID-19 trans-
mission network. The RVTR model achieves a good performance not only in simulated
datasets but also in real COVID-19 transmission networks that were inferred by TransPhylo;
we can see the ability of RVTR to find the location of undetected nodes in COVID-19
transmission networks. It means that we can use the RVTR model to find where undetected
infections exist in this network after we construct a real COVID-19 transmission network
by detected infections. For some areas and countries such as China, Singapore and Japan
that take strict epidemic prevention and control measures, the epidemic departments usu-
ally conduct tracing extensively and publish detailed records of more than thousands of
anonymized patients. A huge cost will be taken on to find the asymptomatic or undetected
spreader hidden in transmission networks when some new infections are detected in an
area. Our proposed method can be used to reduce the cost if it can tell where undetected
infections exist in a transmission network, workers of epidemic control can focus on look-
ing for asymptomatic spreaders in specific transmission relationships instead of looking
for undetected spreaders across the entire network. Not only can it reduce the cost of
conducting nucleic acid testing for all people in a region, but it can also save time to find the
undetected spreader more quickly, thereby controlling the spread of COVID-19. However,
as the RVTR is trained based on graph context loss, which entails unsupervised learning,
it has the ability to find the locations of undetected nodes in the network but cannot tell
us how many of them are present. In future work, we will change the loss function to
use supervised learning by giving each edge a label with the number of undetected nodes
in it; then, the proposed model will provide more information to help control the spread
of SARS-COV-2.
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Appendix A

Appendix A.1. Comparison Algorithm Description

We used 2 network representation methods and 3 feature extraction methods as
comparison algorithms.

• GCN uses a low pass filter to generate node embedding; the information of each
node is transferred to the neighbor nodes in the graph, and the graph can transfer
information layer by layer through a convolution operation.

• SDNE uses a deep neural network to model the nonlinearity between node representa-
tions. The whole model can be divided into two parts: the modeling module of level 1
similarity supervised by the Laplace matrix and the modeling of the level 2 similarity
relation by an unsupervised deep autoencoder.

• PCA is one of the most widely used data dimension reduction algorithms. The main
idea is to map the possibly correlated N-dimensional feature data to the linearly
unrelated K-dimension through orthogonal change, reconstruct the K-dimensional
features on the basis of the original N-dimensional features, and then achieve efficient
and accurate representation of the original data. The transformed K-dimensional
features are called principal components.

• AE consists of an encoder and a decoder. The encoder can compress the input attributes
into potential spatial representations, and the decoder can reconstruct the data input
from potential spatial representations. Autoencoders are often used for dimensionality
reduction or feature learning.

• DIRECT is to use the gene sequence directly to calculate node similarity. After the
gene sequence of each node was encoded by a one-hot encoder, it was directly used to
calculate the similarity score for each pair node without dimension reduction.

https://github.com/lzylyn/COVID-19-Transmission-Network
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Appendix A.2. Reproducibility

For the proposed model, the training epoch was set as 3000. We started with a learning
rate of 0.01 for training, which was divided by a factor of 2 every 200 epochs. The output
dimension of the RVTR was set as 256, and the dimension of the hidden layer was 512.
Regularization parameter β was 0.001, attention amount nh was 4, the seed of random
was 1, the length of random walk in the network Lw was 10, and the restart probability of
random walk pr was 0.2.

Appendix A.3. Real Data Description

• Data resource: Both FASTA sequence data and the corresponding epidemiological
data of Canadian, New Zealand, New York State, and Australia were downloaded
from GISAID (https://www.gisaid.org/ Accessed on 1 September 2020.) [26]. We
confirmed that the selected data had complete sequences with high sequence coverage.
The length of complete sequence comprised of genoms is greater than 29,000, the pro-
portion of undefined bases for high coverage sequences was less than 1%, while it was
greater than 5% for low coverage sequences.

• Data description: The data collection of the Canadian dataset is from January 2020 to
July 2020, and there was a high sampling rate with over 4 million tests being performed
(with a weekly average of over 55,000 tests at 0.8% positivity), thus ensuring that the
dataset is concise. The sampling time of the Australia dataset was from January 2020
to April 2020. The sampling date of New Zealand is from March 2020 to January 2021,
and the sampling time span was the longest in these datasets. However, half of the
sampled infections were detected in March and April of 2020, and there were quite
few infections sampled in May, June and July of 2020. This spread is unique when
compared with other transmission datasets. During the study period (February 2020
to September 2020), New York State was considered a COVID-19 epicenter with the
second-highest case numbers of COVID-19 in the USA in March 2020; however, it had
a lower sampling rate in comparison to its rate of disease incidence [10]. The sampling
time of the Alberta dataset was from March 2020 to May 2020.

Appendix A.4. Real Data Process

• Sequence generation for patient “0”
As the transmission network inferred by TransPhylo was based on the assumption
that all infections have a common ancestor, we needed to simulate the gene sequence
of patient “0” for each inferred transmission network before we trained and tested our
model on them. If we removed patient “0” from the network, the transmission network
collapsed into several disconnected small networks. The basic idea to simulate the
sequence for patients “0” was also based on the mutation of SARS-CoV-2 virus; all
of the individuals in a local module in a network share a common quasi-species
signature of the gene sequence. We sought the nearest neighbor node of patient “0” in
the inferred transmission network, then copied its sequence and changed some genes
randomly to reflect the difference between patient “0” and its child nodes.

• Sequence alignment for different test data
The length of the sequence in the FASTA data is slightly different from dataset to
dataset, and the different sequence data need to be adjusted for alignment before
being used in the experiments. As our trained model is based on the Australia dataset,
we used ‘-’ to fill the sequence whose length is shorter than that of Aussies. For the
sequences in a common dataset, the number and location of newly added genes ‘-’
were the same, so this operation had no effect on the test dataset.

• Transmission networks of real data
In this section, we show the transmission networks of different regions. Transmission
networks were visualized using Gephi 0.9.2 which is a network analysis software [30].
Gephi’s built-in clustering algorithms Force Atlas 2 [31] is used to identify population
clusters in the transmission network.

https://www.gisaid.org/
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In these figures, the red nodes represent inferred undetected spreaders in a transmis-
sion network. The red edges are abnormal edges with undetected nodes in them and
are also used as test labels. Figures 7, A1, A3, A5 and A7 show the inferred trans-
mission networks of Australia, Canada, Alberta, New York State and New Zealand
respectively. Figures 8, A2, A4, A6 and A8 shows the observed transmission networks
of Australia, Canada, Alberta, New York State and New Zealand respectively, which
were also used as our test network. From these figures, we can see that the spread in
different from region to region, and the distribution of the number of abnormal edges
is different.

Figure A1. The inferred Canada transmission network.
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Figure A2. Abnormal edges in Canada transmission network.

Figure A3. The inferred Alberta transmission network.
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Figure A4. Abnormal edges in Alberta transmission network.

Figure A5. The inferred New York State transmission network.
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Figure A6. Abnormal edges in New York State transmission network.

Figure A7. The inferred New Zealand transmission network.
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Figure A8. Abnormal edges in New Zealand transmission network.
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