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Abstract: Largemouth bass virus (LMBV), belonging to the genus Ranavirus, causes high mortality
and heavy economic losses in largemouth bass aquaculture. In the present study, a novel cell
line, designated as MsF, was established from the fin of largemouth bass (Micropterus salmoides),
and applied to investigate the characteristics of cell death induced by LMBV. MsF cells showed
susceptibility to LMBV, evidenced by the occurrence of a cytopathic effect (CPE), increased viral
gene transcription, protein synthesis, and viral titers. In LMBV-infected MsF cells, two or more
virus assembly sites were observed around the nucleus. Notably, no apoptotic bodies occurred
in LMBV-infected MsF cells after nucleus staining, suggesting that cell death induced by LMBV
in host cells was distinct from apoptosis. Consistently, DNA fragmentation was not detected in
LMBV-infected MsF cells. Furthermore, only caspase-8 and caspase-3 were significantly activated
in LMBV-infected MsF cells, suggesting that caspases were involved in non-apoptotic cell death
induced by LMBV in host cells. In addition, the disruption of the mitochondrial membrane potential
(∆Ψm) and reactive oxygen species (ROS) generation were detected in both LMBV-infected MsF cells
and fathead minnow (FHM) cells. Combined with our previous study, we propose that cell death
induced by LMBV infection was cell type dependent. Although LMBV-infected MsF cells showed
the characteristics of non-apoptotic cell death, the signal pathways might crosstalk and interconnect
between apoptosis and other PCD during LMBV infection. Together, our results not only established
the in vitro LMBV infection model for the study of the interaction between LMBV and host cells but
also shed new insights into the mechanisms of ranavirus pathogenesis.
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1. Introduction

As intracellular pathogens, viruses require host cell machinery to complete their life
cycle. On the contrary, the host has developed a variety of mechanisms to initiate an
immune response to clear the virus. Programmed cell death (PCD), a key component of
the innate immune response, is not only an effective strategy for the host cell to restrict
virus infection [1] but also plays an important role in the pathogenesis of viral diseases [2].
To date, the most well-defined and studied PCD pathways include apoptosis, autophagy,
necroptosis, and pyroptosis. Numerous pieces of evidence have demonstrated that many
DNA or RNA viruses induce the activation of one or more cell death pathways [2,3]. For
example, Dengue virus infection induces pyroptosis in macrophages and dendritic cells [4].
Respiratory syncytial virus (RSV) infection promotes necroptosis in airway epithelia cells
(AECs) [5]. Apoptosis is the most extensively studied PCD in viral infection. For many
viruses, including human immunodeficiency virus (HIV) [6], hepatitis virus (HCV) [7],
varicella-zoster virus (VZV) [8], influenza virus [9], and West Nile virus (WNV) [10],
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induction of apoptosis may be an important way to release and disseminate progeny
viruses [11]. Recently, a highly interconnected PCD called PANoptosis was defined, and
PANoptosis has been involved in microbial infections and in cancer and autoinflammatory
diseases [12–14].

Iridoviruses are large DNA viruses that cause global amphibian declines and heavy
economic losses in freshwater and marine aquaculture annually [15–17]. Members of the
family Iridoviridae are now classified into two subfamilies: Alphairidovirinae and Betairi-
dovirinae. To date, members in three genera, including Megalocytivirus, Ranavirus, and
Lymphocystivirus, which belongs to Alphairidovirinae, are able to infect lower vertebrates.
Among them, Ranaviruses have a broad host range, including teleost, amphibians, and
reptiles [18]. To demonstrate the mechanism of ranaviruses pathogenesis, the mode of
cell death induced by ranaviruses was gradually investigated, including Rana grylio virus
(RGV) [19], Frog virus 3 (FV3) [20], grouper iridovirus (GIV) [21], epizootic hematopoi-
etic necrosis virus (EHNV) [22], and Chinese giant salamander iridovirus (GSIV) [23].
Interestingly, the outcome of cell death induced by SGIV (fish ranavirus) was cell type de-
pendent [24]. In host cells (grouper cells), SGIV infection induced nonapoptotic PCD while
the infection in non-host cells showed typical biochemical features of apoptosis [24,25].
However, whether more evidence supports the conclusion that ranaviruses modulate the
survival of host and non-host cells differently requires further study [21].

Largemouth bass (Micropterus salmoides), an important freshwater farmed species, has
been widely cultured in China in recent years [26,27]. However, the emergence of viral dis-
eases has caused great economic losses in largemouth bass aquaculture. Largemouth bass
virus (LMBV), belonging to the genus Ranavirus, is the important causative agent, which
causes high mortality rates over 60% in largemouth bass [28–30]. LMBV was successfully
propagated and isolated in epithelioma papulosum cyprini (EPC) and fathead minnow
(FHM) cells. A previous study showed that LMBV induced typical apoptosis in EPC
cells [31]. Recently, the literature revealed that autophagy induced by LMBV suppressed
virus replication and blocked apoptosis in EPC cells [32]. However, limited information is
focused on the cell death induced by LMBV in host cells.

In the present study, a new cell line, designated as MsF, was established from the fin of
largemouth bass. An in vitro LMBV infection model was developed using MsF cells and the
characteristics of cell death induced by LMBV infection in this cell line were investigated.
Our results not only provide a useful tool for studying the interaction between LMBV and
host cells but also shed new insights on the understanding of the mechanisms of ranavirus
pathogenesis.

2. Materials and Methods
2.1. Primary Cell Culture and Subculture

Largemouth bass with a size of 7 cm were obtained from a local farm in Foshan city,
Guangdong province, and were used for primary cell culture as described previously [33].
In detail, fish were anesthetized and then wiped with 70% alcohol. The caudal fin was
cut off aseptically and washed three times in an antibiotic medium (Leibovitz’s L-15 with
400 IU/mL penicillin, 400 µg/mL streptomycin, and 400 µg/mL nystatin). The caudal fin
was cut into small pieces approximately 2 × 2 mm in size. After washing three times with
medium containing antibiotics, the small pieces were transferred to the bottom of a flask
for 1 h. Then, L-15 medium containing antibiotics and 20% fetal bovine serum (FBS) were
added, and placed in an incubator for further culture at 28 ◦C.

Once a confluent monolayer formed in primary culture, cells were trypsinized with
0.25% trypsin-EDTA solution (Invitrogen, Waltham, MA, USA) and subcultured as de-
scribed previously [33]. In brief, the primary cells were subcultured at a 1:2 ratio and
maintained in L-15 medium containing 20% FBS and antibiotics (400 IU/mL penicillin,
400 µg/mL streptomycin, and 400 µg/mL nystatin). The cells were subcultured every
3–4 days.
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2.2. Viral Replication Dynamics

To assess the susceptibility of MsF cells to LMBV, MsF cells were seeded into a 24-well
plate overnight, and then infected with LMBV for several blind passages. The appearance
of a cytopathic effect (CPE) induced by LMBV passage 3 was observed daily for up to
3 days and photographed under a Zeiss microscope.

To further evaluate the replication of LMBV in MsF cells, cells were infected with
LMBV at an MOI of 2 and harvested for the preparation of ultrathin sections as described
previously [33]. In brief, after prefixation with 2.5% glutaraldehyde overnight, the cell
pellets were post-fixed in 1% osmium tetroxide for 1 h and then dehydrated in graded
ethanol. After Epon resin embedding, samples were sectioned and double stained with
uranyl acetate and lead citrate. The grids containing ultrathin sections were observed under
a Talos L120C transmission electron microscope (TEM) (Thermo Fisher Scientific, Waltham,
MA, USA) at 120 KV.

2.3. RNA Extraction and Quantitative Polymerase Chain Reaction (qPCR)

At the indicated time points (12, 24, 36, and 48 h postinfection), LMBV-infected
cells were harvested for RNA extraction as described previously [33]. In brief, the total
RNA of infected cells was extracted using a cell total RNA isolation kit according to the
manufacturer’s protocol. The RNA was reverse transcribed using a ReverTra Ace-a kit
(Toyobo, Osaka, Japan). The transcription level of viral genes, including major capsid
protein (MCP), myristoylated membrane protein (MMP), and DNA methytransferase
(DNMT), were examined using qPCR analysis. qPCR was performed using SYBR® Green
Realtime PCR Master Mix (Toyobo, Osaka, Japan) in an Applied Biosystems QuantStudio 5
Real Time detection system (Thermo Fisher Scientific) as described previously. The cycling
conditions for qPCR were as follows: 95 ◦C for 5 min for activation followed by 45 cycles
at 95 ◦C for 5 s, 60 ◦C for 10 s, and 72 ◦C for 15 s. The primers used in this study are
listed in Table 1. All samples were carried out in triplicate, and the expression level of
target genes was normalized to β-actin and calculated using the 2−∆∆CT method. The data
are presented as mean ± SD. Statistics were calculated using SPSS version 20 by one-way
ANOVA. Differences were considered to be statistically significant when p < 0.05 (*).

Table 1. The primers used in this study.

Primer Names Sequence (5’-3’)

LMBV-MCP-F CTCGCCACTTATGACAGCCTTGAC
LMBV-MCP-R AACCCACGGGATAATGCTCTTTGAC
LMBV-MMP-F GCGTATTTCGCACCCTCTG
LMBV-MMP-R TAAGCGTCGCCCTTGTCTG

LMBV-DNMT-F AATGTTTGGGTTTGAGGTAG
LMBV-DNMT-R TCTTTAGCAGGCTGAGGG
MsF-β-actin-F CCACCACAGCCGAGAGGGAA
MsF-β-actin-R TCATGGTGGATGGGGCCAGG
FHM-β-actin-F TACGAGCTGCCTGACGGACA
FHM-β-actin-R GGCTGTGATCTCCTTCTGCA

2.4. Western Blotting

At the indicated time points (12, 24, 36, and 48 h p.i.), mock- and LMBV-infected
cells were harvested for Western blotting assay as described previously [24]. In brief, the
pellets of cells were lysed and solubilized in Pierce IP lysis buffer (Thermo Fisher Scientific),
containing protease/phosphatase inhibitor cocktail. After boiling for 5 min, the equal of
proteins was resolved by 10% sodium dodecyl sulfatepolyacrylmide gel electrophoresis
(SDS-PAGE), and then transferred to a PVDF membrane (Millipore). The membranes were
blocked with 5% skim milk for 2 h, and then incubated with the antibody against LMBV
MCP (1:1500 dilution) and anti-β-tubulin (Abcam, Cambridge, UK; 1:1000 dilution) for
2 h at room temperature, respectively. After washing with TBST, the membrane was then
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incubated with horseradish peroxidase (HRP)-conjugated sheep-mouse IgG at a dilution of
1:5000 (Abcam) for 2 h at room temperature. The immunoblot bands were visualized using
an enhanced HRP-DAB Substrate Chromogenic Kit (Tiangen, Sichuan, China) according to
the manufacturer’s protocol. The experiments were independently carried out three times.
Due to highly similar data, the results presented are from one representative experiment.

2.5. Immunofluorescence Assay (IFA)

At the indicated time points (12, 24, 36, and 48 h p.i.), mock- and LMBV-infected
cells were harvested for immunofluorescence assay as described previously [24]. In brief,
MsF cells were seeded into 35-mm glass-bottom cell culture dishes overnight, and then
infected with LMBV at an MOI of 2. After fixation with 4% paraformaldehyde, the cells
were permeabilized with 0.2% triton X-100 for 10 min followed by blocking with 2% bovine
serum albumin. The cells were incubated with mouse anti-LMBV MCP serum (1:500) for
2 h and then incubated with secondary antibody anti-mouse IgG Fab2 Alexa Fluor 555
(1:500, Molecular probe). Finally, the cells were stained with 1 µg/mL 4′,6- diamidino-
2-phenylindole (DAPI) (Sigma, St. Louis, MI, USA) and observed under an inverted
fluorescence microscope.

2.6. Virus Titer Assay

The viral titer in the cell lysates was assessed on monolayers of MsF cells using the
50% tissue culture infectious dose (TCID50) assay. At the indicated time points (12, 24,
36, and 48 h p.i.), LMBV-infected cells were collected for virus titer assay. Adherent cells
containing medium were frozen and thawed three times (lysate). Samples were serially
diluted 10-fold, overlaid on 95% confluent monolayers of MsF cells in 96-well plates, and
incubated for 1 h. After removing the non-adsorbed virus, fresh medium was added to the
wells, and the cells were incubated at 28 ◦C for 6 days. The cytopathic effects were observed
under a light microscope (Leica, Wetzlar, Germany) every day. The virus titration of each
sample was measured in triplicate, and the data are presented as the means ± standard
deviation (SD).

2.7. TUNEL Assay

To detect DNA fragmentation in situ, the terminal deoxynucleotidyl transferase-
mediated nicked-end labeling (TUNEL) assay was carried out as described previously [24].
MsF or FHM cells were seeded into a 24-well plate overnight, and then infected with LMBV
at an MOI of 2. Mock- or LMBV-infected cells were fixed with 4% paraformaldehyde
at 48 h p.i. After washing with PBS, the cells were stained with TUNEL reaction buffer.
The emitted green fluorescence of the apoptotic cells was observed under a fluorescence
microscope (Zeiss, Oberkochen, Germany).

2.8. Flow Cytometric Analysis

The proportion of apoptotic cells (cells in the sub-G0/G1 cell cycle fraction) were
determined by flow cytometry analysis as described previously [24]. In brief, mock- and
virus-infected cells were collected and fixed in 70% ice-cold ethanol overnight at −20 ◦C.
After washing with PBS, the cells were centrifuged at 1000 rpm/min for 10 min. The
pellets were resuspended in PBS containing 50 µg/mL propidium iodide (PI, Sigma)
and 50 µg/mL DNase-free RNase A, and stained for 30 min. The PI fluorescence was
measured with a Beckman Coulter flow cytometer (Brea, CA, USA), and 104 cells were
analyzed for each sample, and each sample was measured in triplicate. The obtained
data were analyzed using FlowJo 10.4 software, and the results presented were from one
representative experiment.

2.9. Detection of Caspase Activities

At the indicated time points (12, 18, 24, 36, and 48 h p.i.), mock- and LMBV-infected
cells were harvested for the detection of caspase activities. The activities of caspase-3,
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caspase-8, or caspase-9 were detected using a caspase-3, caspase-8, and caspase-9 multiplex
activity assay kit (Abcam) according to the protocol booklet supplied by the manufacturer.
Briefly, MsF cells inoculated into 96-well plates were incubated with LMBV at the indicated
time points, respectively. Untreated cells were used as a control. Then, loading solution
(mixture of Assay Buffer and caspase-3 substrate, caspase-8 substrate, and caspase-9 sub-
strate) was added to react for 30 min at room temperature in the dark. The caspase activities
were monitored in a fluorescence microplate reader at the specific wavelengths (Casp3:
Ex/Em = 535/620 nm, Casp8: Ex/Em = 490/525 nm, and Casp9: Ex/Em = 370/450 nm).
Caspase activation was evaluated as fold increases by comparing the readings obtained
from treated cells with measurements from control cells. Independent experiments were
performed in triplicate.

2.10. Evaluation of the Mitochondrial Membrane Potential (∆Ψm)

At the indicated time points (12, 24, 36, and 48 h p.i.), mock- and LMBV-infected
cells were harvested for the detection of ∆Ψm as described previously [24]. The cells were
washed with the fresh medium, and stained with buffer containing 50 µg/mL JC-1 dye
(Thermo Fisher Scientific) for 20 min. After washing with fresh medium, the fresh medium
was added into wells. The fluorescence of the cells was examined under fluorescent
microscopy.

In order to quantify the percentages of cells with decreased ∆Ψm, after staining with
JC-1, mock- and LMBV-infected cells were harvested for fluorescence spectrometry using
a fluorescence microplate reader. A 488-nm filter was used for excitation of JC-1 and the
emissions at 535 and 595 nm were used to quantify the population of mitochondria with
green (JC-1 monomers) and red (JC-1 aggregates) fluorescence, respectively. The red/green
ratio was used to reflect the mitochondrial membrane potential.

2.11. Reactive Oxygen Species (ROS) Activity

In order to examine the ROS generation during LMBV infection, the redox-sensitive
fluorescent probe CM-H2DCFDA was used for ROS analysis as described previously [24].
MsF or FHM cells were seeded onto a 24-well plate overnight, and then infected with
LMBV at an MOI of 2. At 24 and 48 h p.i., mock- and virus-infected cells were washed with
the fresh medium, and then incubated with medium containing 10 µM CM-H2DCFDA for
1 h. After washing with fresh medium, the fresh medium was added into the wells, and
the samples were observed under a fluorescence microscope.

2.12. Statistical Analysis

The statistical analyses were performed using SPSS version 20. A one-way ANOVA
was used to evaluate the differences between groups. Differences were considered statisti-
cally significant when the p-value was < 0.05.

3. Results
3.1. Primary Culture and Subculture

The cells were migrated from the fin tissue pieces on day 5. Morphologically, the
primary culture cells consisted of both epithelial-like and fibroblast-like cells. A confluent
monolayer formed on about day 25. The cells were subcultured in L-15 medium with 20%
FBS at a ratio of 1:2 every 3–4 days. To date, the cells were subcultured for more than
120 passages, and this was designated as the MsF cell line. After 60 subculture passages,
MsF cell lines were predominantly composed of epithelial-like cells (Figure 1).
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Figure 1. Morphology of MsF cells at different passages. Cells at primary culture (A,B), passage
10 (C), and passage 50 (D) were photographed, respectively. Black and white arrows indicate the
epithelial-like and fibroblast-like cells, respectively.

3.2. Establishment of the In Vitro LMBV Infection Model

To evaluate the susceptibility of MsF cells to virus, LMBV was incubated with MsF
cells and collected for the first blind passage. After three blind passages, the CPE progres-
sion of LMBV-infected cells was observed under phase contrast microscopy. As shown
in Figure 2A, no obviously rounded cells occurred at 48 h after LMBV infection while
numerous “vacuole”-like structures were observed in the cytoplasm in LMBV-infected MsF
cells compared with mock-infected cells. In contrast, no “vacuole”-like structures were
observed in mock-infected cells at 48 h p.i. (Figure 2A).

In order to determine whether LMBV could successfully replicate in MsF cells, viral
gene transcription and expression during LMBV infection was detected by qPCR and
Western blotting. As shown in Figure 2B, the transcription levels of LMBV MCP and
MMP were gradually increased up to 24 h p.i., and then slowly decreased, whereas DMNT
transcription was gradually increased with the time of infection. Similarly, the Western
blotting result showed that the expression of LMBV MCP was gradually increased in
MsF-infected cells (Figure 2C). Furthermore, the virus production in LMBV-infected cells
was determined by virus titer assay. The viral titer increased significantly with infection
time, and the titer increased significantly from 12 to 48 h p.i. (Figure 2D). Taken together,
the results indicate that LMBV successfully replicated in MsF cells, and the in vitro LMBV
infection model is a good potential tool for study of the virus–host cell interaction.
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Figure 2. The susceptibility of MsF cells to fish viruses. (A) The cytopathic effects of MsF cells
induced by LMBV. The red circles indicate the “vacuole”-like structures in LMBV-infected cells.
(B) The transcription levels of viral genes in LMBV-infected MsF cells. (C) The protein synthesis
of MCP in LMBV-infected MsF cells. (D) Virus production in LMBV-infected MsF cells at different
infection time.

3.3. The Characteristics of Replication and Assembly of LMBV in MsF Cells

In order to detect the characteristics of viral replication in LMBV-infected MsF cells,
the synthesis and localization of LMBV MCP protein were determined using immunofluo-
rescence assay. As shown in Figure 3A, a small viral assembly site was observed in partly
infected cells at 12 h p.i., and the green fluorescence signal of MCP was mainly located
at the assembly sites. The numbers of assembly sites increased in some infected cells at
24 h p.i., and punctuated green fluorescence signals were also observed in the cytoplasm.
With the extension of the infection time, although the fluorescence signal of MCP in the
cytoplasm was significantly enhanced, the signals in the virus assembly site were decreased
at 36 h p.i. At the late stage of infection, the intensive green fluorescence was mainly
distributed around the assembly sites.
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1 

 

 

Figure 3. The characteristics of LMBV replication in MsF cells. (A) The intracellular localization
of viral MCP in LMBV-infected MsF cells was detected using immunofluorescence assay. (B) The
ultrastructural characteristics of LMBV assembly in MsF cells. (a,g): Numerous viral particles were
observed in assembly sites (ASs) in LMBV-infected MsF cells. (b,h): Some amorphous or tubular
structures were observed in assembly sites. Black and white arrows showed the amorphous and
tubular structures, respectively. (c–f): The numerous hexagonal virus particles formed paracrystalline
arrays (PAs) or scattered around the assembly sites in LMBV-infected MsF cells. (i): The vacuolized
mitochondria were observed around the assembly sites. M: mitochondria; N: nucleus.
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Furthermore, the ultrastructure of LMBV-infected MsF cells was observed by electron
microscopy. As shown in Figure 3B, a large number of virus particles was observed
at the assembly sites (Figure 3B(a,g)). In addition to viral particles, some amorphous
tubular structures with an ~20-nm diameter and different stages of virus particles were
also observed at the assembly sites (Figure 3B(b,h)). Of note, two or more assembly
sites were observed in some infected cells (Figure 3B(c,d)) and two adjacent assembly
sites were fused into a large one (Figure 3B(e)). At the later stage of infection, numerous
hexagonal virus particles formed paracrystalline arrays or scattered around the assembly
sites in LMBV-infected cells (Figure 3B(c–f)). The nuclear morphology of the infected cells
was severely deformed, and the chromatin of the nuclei was condensed and marginated
(Figure 3B(c,d,f)). In addition, the cristae of mitochondria were faint or disappeared, and
vacuolized mitochondria were observed around the assembly sites (Figure 3B(i)).

3.4. LMBV Infection Induced Nonapoptotic Cell Death in MsF Cells

Our previous study showed that LMBV infection in EPC cells induced typical apopto-
sis [31]. Given the obvious difference in CPE induced by LMBV in host cells (MsF cells) and
non-host cells (EPC cells), it is speculated that the cell death induced by LMBV infection
in MsF cells was different from typical apoptosis. The biochemical features of cell death
induced by LMBV in MsF cells were investigated by fluorescent microscopy and flow
cytometry analysis. The nuclear morphological changes during LMBV infection were
determined after staining with DAPI. As shown in Figure 4B, in LMBV-infected FHM cells,
apoptotic bodies were observed at 24 h p.i., and a large number of cells underwent nuclear
condensation and fragmentation. With the infection time, increasingly more cells became
rounded, which was accompanied by an increase in apoptotic bodies. Differently, although
the morphology of nuclei was abnormal, taking the shape of a crescent, and viral assembly
sites were observed adjacent to the nucleus in LMBV-infected MsF cells, no apoptotic bodies
were observed until 48 h p.i. (Figure 4A). Furthermore, the DNA content in LMBV-infected
MsF cells and FHM cells was analyzed by flow cytometry. In LMBV-infected FHM cells,
a prominent sub-G0/G1 peak representing detection of the apoptotic cells was observed
and the percentage of the sub-G0/G1 phase increased from 37.3% at 24 h p.i. to 60.1% at
48 h p.i. However, LMBV infection induced changes in the cell populations at different
phase of the cell cycle except the sub-G0/G1 phase in MsF cells. The cell percentage in the
sub-G0/G1 phase was not significantly affected during LMBV infection compared to mock
cells (Figure 4C,D). In order to determine the detailed characteristics of cell death induced
by LMBV, DNA fragmentation was evaluated by TUNEL staining. As shown in Figure 5,
the obvious TUNEL-positive cells were observed in LMBV-infected FHM cells. In contrast,
even in the late stage of infection, few LMBV-infected MsF cells were positive for TUNEL
staining. No TUNEL-positive signals were observed in both mock-infected MsF and FHM
cells. Taken together, LMBV infection induced nonapoptotic cell death in MsF cells, which
was cell-type dependent.
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Figure 4. LMBV infection induced non-apoptotic cell death in MsF cells. (A) The nuclear morphology
of mock- or LMBV-infected MsF cells. Few apoptotic bodies were observed in LMBV-infected MsF
cells. Circles indicate the assembly sites. (B) The nuclear morphology of mock- or LMBV-infected
FHM cells. Numerous apoptotic bodies were observed in LMBV-infected FHM cells. Head arrows
indicate apoptotic bodies. (C) DNA content analysis in LMBV-infected MsF and FHM cells. (D) The
percentages of the sub-G0/G1 phase (apoptotic cells) in LMBV-infected MsF and FHM cells.
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Figure 5. TUNEL staining of LMBV-infected cells. LMBV infected FHM (A) and MsF (B) cells were
stained with TUNEL and DAPI, and the fluorescence was observed under fluorescence microscopy.

3.5. Caspase-3 and Caspase-8 Were Activated in LMBV-Infected MsF Cells

Caspase is a family of cysteine proteases that play essential roles in apoptosis, necro-
sis, and inflammation [34]. Our previous study revealed that caspase-3, -8, and -9 were
activated in LMBV-infected EPC cells [31]. To determine whether LMBV infection could
activate caspase activation in MsF cells, the activities of different caspases, including
caspase-3, -8, and -9, were examined using a caspase-3, caspase-8, and caspase-9 multiplex
activity assay kit. As shown in Figure 6, the activities of caspase-3 and caspase-8 gradually
increased from 12 h p.i. and reached a peak level of about 5.8-fold and 2.9-fold at 24 h p.i.
in LMBV-infected MsF cells compared to that in mock-infected cells, respectively, and then
their activity level gradually decreased. Differently, no significant increase in caspase-9
activation was detected during LMBV infection in MsF cells compared to mock cells.

Figure 6. Caspase activation by LMBV infection in MsF cells. The activities of caspase-3, -8, and -9
were examined in LMBV-infected MsF cells using a caspase-3, caspase-8, and caspase-9 multiplex
activity assay kit. * indicates p < 0.05.
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3.6. LMBV Induced ∆Ψm Depolarization and ROS Production

The ultrastructure of LMBV-infected MsF cells showed that the morphology of mito-
chondria was altered (Figure 3B(i)), indicating that LMBV infection might affect mitochon-
drial function. JC-1, a lipophilic and cationic dye, selectively accumulates in mitochondria
and reversibly changes the color from green to red as the membrane potential increases.
To determine whether LMBV infection induced depolarization of the mitochondria, mock-
and LMBV-infected MsF and FHM cells were stained with JC-1, and the alteration of ∆Ψm
was determined by the conversion from red fluorescence to green fluorescence. As shown
in Figure 7, only bright red fluorescence was detected in mock cells. In virus-infected
MsF cells, at 12 and 24 h p.i., bright red fluorescence was detected while limited green
fluorescence was observed. The red fluorescence gradually weakened while the green
fluorescence signals were enhanced in some virus-infected MsF cells at 36 h p.i. With
the infection time, the minority of cells emitted red fluorescence and the number of cells
emitting green fluorescence gradually increased at 48 h p.i. Consistently, the quantitative
results show that the ratio of Rhod/FITC remained unchanged in LMBV-infected MsF cells
24 h after LMBV. However, the ratio of Rhod/FITC in LMBV-infected MsF cells signifi-
cantly decreased from 16.2% up to 7.1% at 36 h (Figure 7B). At 12 h p.i., enhanced green
fluorescence was observed in a few LMBV-infected FHM cells, accompanied by a decrease
in red fluorescence. With the infection time, the number of cells emitting green fluorescence
gradually increased. The ratio of Rhod/FITC decreased from 18.6% to 12.3% and 6.4% in
LMBV-infected FHM cells at 12 h and 48 h, respectively. Thus, our results show that LMBV
infection induced a disruption of ∆Ψm in both MsF and FHM cells.

Figure 7. The changes in ∆Ψm in LMBV-infected MsF and FHM cells. (A,C) Fluorescent microscopy
observation of the changes in ∆Ψm in LMBV-infected cells. (B,D) Quantitative analysis of the
changes in ∆Ψm in LMBV-infected cells by a microplate reader. After staining with JC-1, mock- or
LMBV-infected cells were analyzed by fluorescence microscopy and a microplate reader.
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Furthermore, the effect of LMBV infection in MsF cells on intracellular ROS was
determined using a redox-sensitive fluorescence probe, CM-H2DCFDA, and then DCF
fluorescence was observed under a fluorescent microscope. As shown in Figure 8, no
green fluorescence signals were observed in mock-infected cells. Few cells labeled with
green fluorescence were observed at 24 h p.i. while the number of cells emitting green
fluorescence was obviously increased at 48 h p.i. (Figure 8). Differently, an increase in ROS
production was detected in FHM cells during LMBV infection and this was time dependent.

Figure 8. LMBV infection induced ROS generation in MsF cells or FHM cells. After staining with
CM-H2DCFDA, mock- or LMBV-infected cells were observed under fluorescence microscopy.

4. Discussion

Largemouth bass (Micropterus salmoides) is one of the most important economic
fishes for freshwater aquaculture. Iridovirus and rhabdovirus are two important vi-
ral pathogens of largemouth bass, which cause high mortality of juvenile and larval
fish, respectively [28,35]. However, few cell lines originating from largemouth bass have
been established until now, and limited literature has focused on the pathogenic mechanism
of these viruses in host cells. Here, a new cell line, designated as MsF, was developed
from the fin of largemouth bass, and its sensitivity to LMBV was evaluated. Our results
revealed that MsF cells are susceptible to LMBV, as evidenced by the increase in viral gene
transcription and viral titers. Furthermore, a large number of virus particles were observed
in LMBV-infected MsF cells, indicating that LMBV replicated well in MsF cells. Thus, the
established in vitro LMBV infection model will provide a suitable platform to study the
LMBV pathogenesis in host cells.

It has been reported that iridoviruses assemble into assembly sites, also known as
viral factories or viromatrix [36]. The microscopic and ultrastructural observations showed
that two or more viral assembly sites were observed in LMBV-infected MsF cells. Similarly,
two assembly sites could be observed in RGV-infected cells and African swine fever virus
(ASFV)-infected cells [36,37]. Differently, our previous study showed that only one assembly
site was observed in SGIV-infected cells [33]. In addition to virus particles assembled at
different stages, the amorphous structures, including tubules and some membranous
materials, were observed within the assembly sites in RGV-, ASFV-, and SGIV-infected
cells [33,36]. Of note, tubular structures with an ~20-nm diameter were also observed
within the assembly sites in LMBV-infected cells.
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Upon virus infection, the manifestation of cell death by viruses or hosts determines the
distinct consequences in the progression of viral pathogenesis, such as abortive, productive,
and destructive infections. Increased evidence has demonstrated that virus infection
evokes programmed cell death (PCD) in a cell-type-dependent fashion. For example, SGIV
infection in GS cells induced nonapoptotic cell death while it evoked typical apoptosis in
FHM, BM (barramundi muscle), and BSB (barramundi swim bladder) cells [24,25]. As a
member of the genus Ranavirus, does LMBV also induce non-apoptotic cell death in host
cells? To ascertain this point, we investigated the characteristics of cell death induced
by LMBV in MsF cells. Interestingly, our results showed that LMBV infection induced
obviously different CPE features in MsF and FHM cells, and no apoptotic bodies were
observed in LMBV-infected MsF cells, suggesting that the cell death induced by LMBV
infection in MsF cells was different from apoptosis. However, a large number of apoptotic
bodies were observed in LMBV-infected FHM cells, similar to other non-host cells (EPC
cells) in our previous study [31]. Consistently, other ranaviruses, including FV3, RGV, and
EHNV, all evoked typical apoptosis after infection in non-host cells [19–22].

An increasing number of studies have demonstrated that caspases exert critical func-
tion both in apoptotic and non-apoptotic cell death [38]. Here, our results showed that
caspase-3 and caspase-8 were activated in LMBV-infected MsF cells, and no significant
increase in caspase-9 activation was detected during LMBV infection. Differently, the
activities of caspase-3, -8, and -9 were increased in apoptotic cells induced by LMBV infec-
tion [31]. In general, the intrinsic apoptosis pathway is triggered when the mitochondrial
integrity is impaired in response to stressors, such as DNA damage, endoplasmic reticulum
stress, and ROS stress, and caspase-3 and caspase-9 were activated. The extrinsic apoptosis
pathway is initiated through the binding of death ligands to their corresponding receptors,
and caspase-8 and caspase-3 are activated successively [38]. In addition, caspase-8 was also
found to be involved in pyroptosis induced by the cleavage of gasdermin (GSDM) family
proteins [39]. Thus, caspase-8 has been considered as a key protein of crosstalk signaling
for apoptosis, necroptosis, and pyroptosis [14,40]. Although caspase-8 and caspase-3 were
significantly activated in LMBV-infected MsF cells, their detailed roles in this form of cell
death need further investigation.

Mitochondria are highly dynamic organelles, and their structure and distribution are
crucial for the cellular functions. In LMBV-infected MsF cells, we found that the cristae
of mitochondria were faint or disappeared, and vacuolized mitochondria were observed
around the assembly sites. Moreover, disruption of ∆Ψm and ROS generation was detected
in both LMBV-infected MsF cell and FHM cells. Differently, although ROS production was
increased in both SGIV-infected host cells and non-host cells while disruption of ∆Ψm was
not detected in SGIV-infected host cells [24], suggesting that the types of cell death induced
by these two ranaviruses are different. Except for apoptosis, ROS stress could induce
multiple forms of cell death, including inflammasome-driven pyroptosis, necroptosis,
ferroptosis, and autophagic cell death [41,42]. Recently, a highly interconnected PCD,
termed PANoptosis, has been defined. PANoptosis is considered as an inflammatory PCD
pathway regulated by the PANoptosome complex, which includes the mixture features
of pyroptosis, apoptosis, and/or necroptosis [1]. Combined with our previous study, we
propose that LMBV infection induces different forms of cell death in host and non-host cells.
Although LMBV-infected MsF cells showed the characteristics of non-apoptosis cell death,
the involved signal pathways might crosstalk and interconnect between apoptosis and other
PCD during LMBV infection. It will be helpful to clarify the potential molecular mechanism
underlying LMBV-induced non-apoptotic cell death in host cells in a further study.

5. Conclusions

In the present study, a new cell line, designated as MsF, was established from the
fin of largemouth bass, and was applied to study the potential mechanism underlying
LMBV infection-induced cell death in host cells. Our results showed that LMBV replicated
well in MsF cells and induced non-apoptotic cell death, which was different from typical



Viruses 2022, 14, 1568 15 of 16

apoptosis in non-host cells. Moreover, only caspase-8 and caspase-3 were significantly
activated in LMBV-infected MsF cells. In addition, disruption of ∆Ψm and ROS generation
was detected in LMBV-infected MsF cells. Thus, our data not only provides new evidence
that ranavirus infection induces non-apoptotic cell death in host cells but also provides
new insights regarding the mechanisms of LMBV pathogenesis.
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