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Abstract: The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in
addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides
(nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long)
that follows the leader. As a result, each viral mRNA has its own specific 5 UTR in term of length,
RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA
expression. In this study, we have measured and compared translational efficiency of each of the ten
viral transcripts. Our data show that most of them are very efficiently translated in all translational
systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was
also the most efficient to initiate translation. This property is conserved in the 5UTR of SARS-CoV-1
but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the
translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and
the components of the e[F4F complex but showed no dependence in the presence of the poly(A) tail
in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an
unusual cap-dependent mechanism.
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1. Introduction

In eukaryotes, translation is a highly regulated step of gene expression in which
mRNAs are decoded by ribosomes into proteins. This mechanism can be divided into four
steps: initiation, elongation, termination and ribosome recycling. The initiation process is
the rate-limiting step that promotes the formation of ribosomal complexes at the initiation
codon [1]. The majority of the cellular and viral mRNAs use the scanning model to engage
the ribosome on the mRNAs. This starts with the formation of a 43S complex, which is
composed of the 40S small ribosomal subunit associated with several eukaryotic initiation
factors (elFs), notably elF1, eIF1A, elF3 and the ternary complex (TC) [1,2]. This TC results
in the association of eIF2 with a GTP molecule and the Met-tRNA;Met [3]. Most eukaryotic
mRNAs are capped at their 5’ extremity and polyadenylated at their 3’ end in order to
ensure integrity, stability and efficient translation of the mRNA. The cap structure consists
of a 7-methylguanylate residue connected to the mRNA via an unusual 5’ to 5’ triphosphate
linkage [4]. The cap interacts with the eIF4F complex, which is composed of the cap-binding
protein elF4E, the scaffold protein elF4G and the RNA helicase elF4A. The elF4F complex
plays a crucial role during initiation because it establishes a physical and functional link
between the mRNA (through a cap—elIF4E interaction) and the 43S complex (through an
elF4G—-elF3 interaction) [5-7]. Once bound to the 5'end of the mRNA, the 43S complex
scans the 5" untranslated region (UTR) in a 5’ to 3’ direction to reach the cognate AUG start
codon. This is catalyzed by the RNA and ATP-dependent helicase activity of elF4A, which
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unfolds the RNA structures encountered within the 5UTR. Recognition of the translation
initiation site (TIS) is ensured by a perfect base pairing between the AUG codon and the
anticodon of the tRNA;M¢t, which triggers GTP hydrolysis and elFs release, followed by
association of the 40S ribosomal subunit with the 60S ribosomal subunit to form the 80S
ribosome competent for elongation [1,2,8].

The efficiency of translation initiation is largely regulated by both elF2 and elF4F [9-11],
but the intrinsic characteristics of the mRNA, such as length, RNA folding and upstream
AUG codons, can also modulate the flow and quantity of ribosomes on the transcript [12].
In general, initiation on most eukaryotic mRNAs adheres to the first AUG rule, in which
the AUG triplet nearest the 5'end is the beginning of the reading frame [13-16]. It is
noteworthy that the nucleotides that surround the initiation codon are critical for efficient
recognition with the following sequence—GCCA /GCCAUGG—being optimal and defined
as the Kozak context [13,14]. It has been reported that the nucleotides upstream of the
AUG codon, especially the purine at position —3 (according to the position of the AUG
codon), are important for efficient initiation [13,17-19]. UV cross-linking experiments in
the 48S pre-initiation complex (PIC) strongly suggested an interaction between elF2c and
the —3 purine [20]. This was confirmed later by cryo-EM analyses of PIC indicating that
the arginine residues (Arg55 and Arg57) of elF2« are located within close proximity of the
mRNA nucleotides upstream to the AUG codon, including the —3 position [21]. These data
are consistent with the role of eIlF2 in AUG codon recognition [22]. However, the influence
of the nucleotide in the +4 position is rather controversial. Some experiments showed
that mutation of the guanosine reduces translation initiation efficiency [13], but it was
shown by analysis of all possible combinations using a FACS-seq approach that the +4G
was not always the optimum [23]. In addition, an alternative explanation was suggested
and it was based on the amino acid constraint on the second codon that participates in
post-translational modification, such as the N-terminus methionine excision [24,25]. Thus,
according to the robustness of this Kozak context, the AUG codon can be more or less
recognized as a translation initiation site or even completely ignored. In addition to these
features, the presence of short upstream open reading frames (uWORFs) within the 5’UTR
can also have an impact on translational efficiency of the main gene due to the fact that
some ribosomes will translate these uORFs and then dissociate from the mRNA before
reaching the main reading frame [26-28]. This is why the presence of these uORFs is often
associated with a reduction of production of the main protein product. Interestingly, in
some particular physiological conditions, the level of active TC is reduced and this favors
the bypass of these uORFs, resulting in efficient translation of the main ORF [29-31].

Another key feature of the mRNA that can regulate ribosome recruitment is the RNA
structure adopted by the 5’UTR. It is now well known that a thermodynamically stable
hairpin structure at the 5'end can completely block 43S complex attachment to the cap
structure [32-36] and it usually requires additional RNA helicases to overcome the energy
barrier imposed by these structures [37-39]. In some cases, these RNA motifs can serve
as anchors for the binding of specific proteins, creating an RNA-protein complex that can
arrest the scanning of the 43S ribosome. The best-known example remains the mRNA
coding for ferritin, in which the 5'UTR contains an iron-responsive element, which is a
short and conserved stem-loop that is recognized when the endogenous iron concentration
becomes low in order to down-regulate translation of ferritin [40-43]. In RNA positive-
strand viruses, there are often many stable RNA structures that are involved in different
steps of viral replication (dimerization, packaging, export, etc.) [44-46] and can interfere
with viral translation. As such, viruses often develop strategies to council replication and
translation. The best example comes from picornaviruses, which contain uncapped mRNAs
harboring a very long and highly structured 5’'UTR with multiple upstream AUG codons
that are not used for translation [47,48]. Indeed, the RNA folding adopted by the 5UTR has
the capacity to create a functional structure that directly promotes ribosome recruitment
and was defined as internal ribosome entry segment (IRES) [49]. IRESes are not restricted
to picornaviruses and are present in other viral families [50,51] and cellular mRNAs [51-53].



Viruses 2022, 14, 1505

30f21

Viral IRESes remain the most studied and despite differences in length, sequence and
structures, they usually have the characteristics to directly interact with some components
of the 43S initiation complex to bring the ribosome close to the initiation codon [54—-63].
On the other hand, eukaryotic IRESes concern ~10% of the mammalian mRNAs and they
are generally less structured than viral IRESes [51]. Overall, this mode of initiation is cap-
and elF4E-independent and can become the predominant mode of translation initiation
mechanism during cellular stresses and viral translational escape [51,64-67].

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [68] contains a
long and positive RNA genome (gRNA), which is capped and polyadenylated. Once in
the cytoplasm, the gRNA is immediately translated into two large polyproteins, ORFla
and ORFlab, which generate 16 non-structural proteins (nsp) after proteolytic cleavage.
Expression of these non-structural proteins is essential for replication and this starts with
the transcription of a full-length negative-sense genomic copy that serves as template for the
production of positive-sense genomic RNAs. One of the peculiarities of the coronaviruses
is that they harbor a conserved leader sequence located at the 5’ end of the transcript that
serves as a cis-acting element for the transcription of all sub-genomic mRNAs (sgRNA).
This leader sequence is added to all sgRINAs through a polymerase template switching
that occurs when the viral polymerase encounters the transcriptional regulatory sequence
(TRS). The TRS precedes every single viral gene and is called the body TRS (TRS-B), with a
conserved core sequence that is thought to hybridize with the leader TRS (TRS-L) [69-71].
As a result, all 5UTRs of SARS-CoV-2 mRNAs (sgRNAs and gRNAs) share an absolutely
conserved 75-nucleotide (nt.) stretch, which is called the leader sequence. This leader
sequence is then followed by a variable RNA length (from 0 to 190 nt.) that terminates onto
an AUG start codon (Figure 1). Viral transcription generates up to nine sgRNAs coding
for the structural (S, E, M and N) and accessory (ORF-3a, ORF-6, ORF-7a, ORF-7b and
ORE-8) proteins (Figure 1) [71,72]. The 5’UTRs of ORF-7a and ORF-8 gRNA are identical
and harbor only the leader sequence (Figure 1 and Table 1). The 5’UTRs of ORF-S, ORF-3a,
ORF-E and ORF-N are composed of the leader sequence followed by only a few nucleotides
(from 1 to 8 nt.) (Figure 1 and Table 1). In contrast, the 5’UTR of ORF-M, ORF-6 and ORF-7b
are relatively long, with respective lengths of 119, 230 and 151 nt. including the leader
sequence (Figure 1 and Table 1). Thus, every single sgRNA harbors its own 5'UTR and the
nucleotide surrounding context of each AUG start codon is also unique (Table 1); these
structural features could potentially modulate translational efficiency.
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Figure 1. Scheme of the SARS-CoV-2 gRNA and sgRNAs. The cap and poly(A) tail structures are
indicated. The 5UTR of each viral mRNA is underlined and is composed of the common leader
sequence (black square) and the variable region (orange square). The other different colors correspond
to the different ORFs as indicated on the top.
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Table 1. Length, Kozak context and %GC of the SARS-CoV-2 gRNA and sgRNA 5'UTRs.

5'UTR Length (nt.) Kozak Context ! %GC
ORF-1ab 265 GGU AAG AUG GAG 45
ORF-S 76 CGA ACA AUG UUU 37
ORF-3a 77 GAA CUU AUG GAU 36
ORF-E 77 GAA CUU AUG UAC 36
ORF-M 119 UUA GCC AUG GCA 31
OREF-6 230 CAA CAG AUG UUU 41
ORF-7a 75 ACG AAC AUG AAA 37
ORE-7b 151 GAC AGA AUG AUU 34
OREF-8 75 ACG AAC AUG AAA 37
ORF-N 83 ACU AAA AUG UCU 35

! The AUG codons are represented in bold and the nucleotides at positions —3 and +4 are underlined.

The 5'UTR of the gRNA is the longest (265 nt.) of all the viral mRNAs and contains
five stem-loop structures (SL1 to SL5) that have recently been modelized by chemical
probing analyses (Figure 2) [73,74]. These SL are critical for replication, RNA synthesis and
escape from nspl-mediated translation inhibition [75-81]; however, they could potentially
represent hurdles for translation, notably at the level of ribosome recruitment and scanning.
Although the viral genome of SARS-CoV-2 is capped and polyadenylated, the translation
initiation mechanism used to locate the AUG start codon inside the SL5 remains undeter-
mined. In particular, one can predict that the high level of RNA secondary structures within
the 5'UTR could be a serious hurdle for ribosome scanning and this could suggest another
mechanism for translation initiation. Such a hypothesis is also strengthened by the fact
that the AUG start codon is located at the vicinity and downstream of a four-way junction
structure (Figure 2), a situation that is reminiscent of similar motifs found in some viral
IRESes [49,82-85]. Last but not least, the SARS-CoV-2 5'UTR also contains an uORF starting
at AUG!Y, which is located within the SL4 (Figure 2) and seems to be used as an initiation
site, as suggested by ribosome profiling analyses in infected cells [72,86]. Interestingly
and curiously, ribosome profiling analyses have also highlighted other uORFs initiating at
near-cognate initiation codons [72,86]. One is of particular interest because it is located on
a CUG codon at position 59 just 10 nt. upstream of the TRS leader, which means that it will
be present on all the sgRNAs. However, one should bear in mind that ribosome occupancy
observed in ribosome profiling analysis remains only indicative, as it is often difficult to
distinguish between a real TIS and the pausing of the 48S preinitiation complex [72].
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All these unusual structural features can have a great impact on the translational
efficiency of the genomic and sub-genomic SARS-CoV-2 RNAs and this set the rationale
for this study. By using a series of in vitro and ex vivo functional translational assays
coupled with specific inhibitors of the cap-dependent mechanism, we have investigated
and compared translation of all SARS-CoV-2 transcripts. Our data show some unexpected
characteristics of the genomic RNA, which is extremely efficient to recruit ribosomes for
protein synthesis in all systems assayed despite its length, complex RNA structure and the
presence of a short upstream reading frame; these translational features are conserved with
the SARS-CoV-1 but not with MERS-CoV.

2. Materials and Methods
2.1. DNA Constructs

The pGlo-Renilla, pPEMCV-Renilla, pHCV-Renilla and pMM1-L-protease constructs
have been previously described [87-89]. The leader sequence and the 5'UTR (5'UTRORF1ab)
of SARS-CoV-1 (NC_004718.3), MERS-CoV (NC_038294) and SARS-CoV-2 (NC_045512.2)
gRNA have been generated by consecutive PCRs with specific primers (Table S1). The
resulting PCR products were digested with the BamHI restriction enzyme and inserted
into the pRenilla vector between the BglIl and BamHI restriction sites. The 5'UTRs of
each SARS-CoV-2 sgRNA associated to the coding region of the Renilla luciferase were
produced by consecutive PCRs with specific primers (Table S2), digested with BamHI
and EcoRYV restrictions enzymes and inserted into the pRenilla vector between the BglIl
and EcoRV restriction sites. Mutation of the AUG!?” and AUG!®® in the SARS-CoV-2 and
MERS-CoV gRNA, respectively, and the mutation of the UAA triplet at position 133 in
SARS-CoV-2 have been performed by consecutive PCRs with specific primers (Table S3) to
generate the mut-AUG!'?”, mut-AUG!® and uORF-phase constructs. The resulting PCR
products were digested with the BamHI restriction enzyme and inserted into the pRenilla
vector between the Bglll and BamHI restriction sites. All DNA constructs were verified by
DNA sequencing.

2.2. In Vitro Transcription

The four combinations—capped/polyadenylated (+/+), capped/non-polyadenylated
(+/—), uncapped/polyadenylated (—/+) and uncapped/non-polyadenylated (—/—)—
were obtained by in vitro transcription using the linear template of pRenilla vector by
digestion either at the Xbal (non-polyadenylated RNAs) or at the EcoRI restriction site
(polyadenylated RNAs). RNA transcription was performed from 1 pug of linear DNA
template in transcription buffer (40 mM Tris—-HCl (pH 7.5), 6 mM MgCl,, 2 mM spermidine
and 10 mM NaCl) in the presence of 40U of T7 RNA polymerase (Promega, Madison,
WI, USA), 40 U of RNAsin (Promega), 1.6 mM of each ribonucleotide triphosphate and
10 mM DTT. For capped mRNAs, the rGTP concentration was reduced to 0.32 mM, and m7-
GpppG cap analog (New England Biolabs) was added at a concentration of 1.28 mM. The
transcription reaction was carried out at 37 °C for 1 h 30 min, then treated for 30 min with
the RQ1 DNAse (Promega). mRNAs were isolated using NucleoSpin RNA XS purification
columns (Macherey Nagel, Diiren, Germany). The integrity of RNA was checked by
electrophoresis on non-denaturing 1% agarose gel and the concentration was determined
by reading the absorbance using Nanodrop technology.

2.3. In-Vitro Translation Assays

Nuclease-treated Flexi Rabbit Reticulocytes lysate (RRL) or untreated RRL (Promega),
supplemented as previously described [90,91], were programmed with 5 or 10 fmol of
in vitro synthetized mRNAs in the presence of 75 mM KCl, 0.5 mM MgOAc, 2 mM DDT
and 20uM of each amino acid for 30 min at 30 °C. For radioactive labeling, 0.25 mCi/mL of
[3°S] methionine was added to the reaction mix. Translation products were then stopped
in either Renilla lysis-juice buffer (PJK Biotech, Kleinblittersdorf, Germany) for luciferase
assay or in Laemmli sample buffer (4% SDS, 10% 3-mercaptoethanol, 20% glycerol, 0.004%
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bromophenol Blue, 0.125 M Tris-HCl1 pH 6.8) and resolved by 12% SDS-PAGE. The gel was
dried and quantified with a Molecular Dynamics Phospholmager.

The L-protease from Foot-and-Mouth Disease Virus (FMDV) was prepared in RRL
as previously described [87]. L-protease (0.2 uL and 0.4 uL), hippuristanol (0.15, 0.3 and
0.6 pM) and the cap analog (1 pM) were incubated 10 min in the RRL before RNA addition.

2.4. Renilla Luciferase Activity

Renilla luciferase activity was measured using the Renilla-Juice luciferase assay (PJK
GmbH, Kleinblittersdorf, Germany) following the manufacturer instructions on a LUMIs-
tar apparatus (BMG LABTECH, Champigny-sur-Marne, France) or on a Mithras LB940
(Berthold, Thoiry, France).

2.5. Western-Blot against elF4G

Proteins from mock or L-protease-treated RRL extracts were separated by a 7.5%
SDS-PAGE. The proteins were transferred onto polyvinylidene difluoride membranes
(Boehringer Mannheim, Ingelheim am Rhein, Germany). Blots were incubated first with
antibody against eIF4G (#2617 Cell Signaling Technology, Danvers, MA, USA) for 16 h at
4 °C, then with an anti-Rabbit IgG-Peroxidase antibody (Sigma Aldrich, Saint-Louis, MO,
USA) for 2 h. The chemiluminescence signal was detected using an Pierce ™ ECL reagent
(Thermofisher, Waltham, MA, USA) in the Chemidoc Imager (Biorad, Hercules, CA, USA).

2.6. Cell Culture and RNA Transfection

Jurkat T-cell line, obtained from ATCC, was cultured in RPMI-1640 medium (Life Tech-
nologies), supplemented with 10% fetal calf serum, penicillin, streptomycin, Hepes pH 7.5,
sodium pyruvate and L-glutamine. Cells were incubated at 37 °C in a 5% CO, atmosphere.

For RNA transfection, 5.10(5) cells were resuspended in 10uL of buffer R (Life technol-
ogy) in the presence of 500 fmol of capped and polyadenylated mRNAs, and immediately
transfected using the Neon transfection kit (Life technology, Carlsbad, CA, USA) according
the manufacturer instructions. Cells were incubated in RPMI medium for 90 min at 37 °C,
washed twice in PBS and split in two pools to measure luciferase activities and to extract
cytoplasmic RNAs.

2.7. RNA Extraction and RT-gPCR

RNAs were isolated using the NucleoSpin RNA extraction kit according the manufac-
turer instructions (Macherey-Nagel, Diiren, Germany) and quantified using a nanodrop
2000 spectrophotometer (Thermofisher, Waltham, MA, USA). Reverse transcription of
250 ng of cytoplasmic RNAs was performed using qScript kit (Quanta Bio, Beverly, MA,
USA). mRNA quantification was performed by quantitative PCR with the ONEGreen®
FAST QPCR PREMIX (Ozyme, Saint-Cyr-1"Ecole, France) according to the manufacturer
instructions. Renilla luciferase (Renilla forward TGGACAATAACTTCTTCGTGAAAAC/
Renilla reverse GCTGCAAATTCTTCTGGTTCTAA) was amplified in parallel with the
endogenous housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(GAPDH forward (Human) CGACAGTCAGCCGCATCTT/ GAPDH reverse (Human) CC-
CCATGGTGTCTGAGCG). The relative copy numbers of Renilla cDNAs were compared to
GAPDH using x-A® (where x corresponds to the experimentally calculated amplification
efficiency of each primer couple).

2.8. Sequence Alignment
The 5'UTRs of the SARS-CoV-1 (NC_004718.3), MERS-CoV (NC_038294) and SARS-

CoV-2 (NC_045512.2) gRNAs were analyzed with a Multiple Sequence Comparison by
Log-Expectation (MUSCLE) using the default parameters [92].
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3. Results
3.1. Translation Initiation Efficiency Mediated by the SARS-CoV-2 5'UTRs

During infection, SARS-CoV-2 generates at least 10 different mRNAs that harbor
unique 5'UTRs in terms of length, structure and context of their AUG initiation site. In
order to investigate further the role of these 5’'UTRs in translational control, we have cloned
each of the viral 5’UTR upstream of a reporter gene coding for the Renilla luciferase into
the pRenilla vector [88,89,93] (Figure 3A). The nucleotide triplet downstream to the TIS has
been conserved to maintain the SARS-CoV-2 original Kozak context. As a control, we have
used the 5UTR of the globin mRNA, which is known to promote translation initiation in a
very efficient manner. Capped and polyadenylated RNAs have been produced in vitro to
program the rabbit reticulocytes lysate (RRL) in the presence of S3*-methionine. Protein
production was quantified on a phospholmager after an SDS-PAGE resolution (Figure 3B).
For most of the transcripts, expression was as efficient as that generated by the 50 nt. of
the B-globin 5'UTR (NC_000011.10; Figure 3B compare lanes 4-7, 9 and 11 with lane 2).
Interestingly, the 5UTRs derived from ORF1-ab, ORF-6 and ORF-7b promoted a higher
level of expression than from the globin mRNA reporter gene (Figure 3B lanes 3, 8 and
10); this was not expected considering that these viral 5'UTRs are the longest and the
most structured of the series (Figure 2 and Table 1). We were also surprised to find that
translation of ORF-3a, ORF-S, ORF-E and ORF-6 was still very efficient despite the fact that
their AUG start codons are in a poor Kozak context (with a cytosine in -3 and/or an uracil
in +4; Table 1).

Quantification of protein production was also performed by measurement of the lu-
ciferase activity (Figure 3C). It should be remembered that the first amino acid downstream
to the methionine codon was variable for each construct as we conserved the Kozak context
of the original TIS (Figure S1). Thus, this N-terminal modification could have an impact
on the activity of the luciferase; the same samples have also been quantified by luciferase
assay. As the results obtained by reading of the luciferase assays were consistent with 5%-
methionine quantification (compare Figures 3B and 3C), we assumed that this N-terminal
modification did not impact significantly the enzymatic activity of luciferase and the latter
has been used as a readout for protein production for the remainder of this study.

Next, we translated the different mRNAs into the untreated RRL, which represents
an in vitro competitive translation system due to the presence of endogenous mRNAs
that compete for the translational apparatus [89]. In such a system, translation initiation
mediated by the majority of the SARS-CoV-2 5'UTRs was further enhanced in comparison
to the expression mediated by the globin 5 UTR (Figure 3D). Once again, and consistent
with the RRL results, translation from the ORF-1lab 5'UTR was the most efficient. This
very high level of translation of viral RNAs in the untreated RRL suggests that they have
the intrinsic ability to recruit ribosomes in a competitive environment. To go further, the
mRNAs have been electroporated into cells and the protein expression level has been
measured by luciferase assay and normalized to the quantity of RNA by RT-qPCR. The
results showed in Figure 3E are consistent with the data obtained in the RRL systems. Taken
together, our data show that the 5'UTRs of the SARS-CoV-2 have the ability to promote a
high level of translation both in vitro and ex-vivo, with the 5’UTRORFI2b (gRNA) sequence
being the most efficient of all.
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Figure 3. Translation efficiency of the SARS-CoV-2 5'UTRs. (A) Scheme of the gRNA and the different
sgRNAs, with the leader sequence in black and the variable region in orange, which represent each
5'UTR (this panel was obtained from Figure 1). The sequences corresponding to each 5UTR have
been cloned upstream of the Renilla ORFE. (B,C) RRL and (D) untreated RRL have been programmed
with capped and polyadenylated mRNAs harboring specifically the 5UTR of the ORFlab, ORF-S,
ORF-3a, ORF-E, ORF-M, ORF-6, ORE-7a, ORF-7b, ORF-8 or ORF-N. The resulting protein products
have been resolved on (B) an SDS-PAGE and quantified with a phospholmager, or (C,D) analyzed
by luciferase assay. (E) Jurkat cells were electroporated with capped and polyadenylated mRNAs
as indicated. After 90 min of incubation, the cellular extracts were used for RT-qPCR and luciferase
assay. All the results are normalized to the globin 5'UTR expression (set at 100%). Values are the mean
(+/— S.D.) for three independent experiments (panels (B,C)) or (+/— S.E.M.) for four independent
experiments (panels (D,E)).

3.2. Translation Efficiency from MERS-CoV gRNA 5'UTR Differs from SARS-CoV gRNA
5'UTRs

We next wondered whether a high level of translation could also be observed with
RNAs derived from closed relative strains, i.e., the SARS-CoV-1 [94-96] and the MERS-
CoV [97-99]. The 5'UTR of the SARS-CoV-1 gRNA is 264 nt. long and shares 90% of its
identity with the sequence of the SARS-CoV-2 (Figure 4A and Figure S2). Once more, the
global RNA structure of the 5’'UTR is also conserved [73,74,77], which could indicate that
expression initiated from the 5'UTR of the gRNA from both SARS-CoV strains could be
similar. In contrast, the MERS-CoV gRNA’s 5'UTR is slightly longer (277 nt.) and more
distant from SARS-CoV sequences as it shares only ~60% of its identity with type 1 and type
2 (Figure 4A and Figure 52), which could also suggest a divergence in translational efficiency.
To directly test this hypothesis, we have used the pRenilla reporter gene harboring either
the leader sequence, which represents the shorter 5’UTR (named leader), or the 5’'UTR of
the SARS- and the MERS-CoV gRNA (named 5’ UTRORFIab jpy the rest of the manuscript)
(Figure 4B). Capped and polyadenylated mRNAs were generated by in vitro transcription
and translated in the RRL (Figure 4C) or electroporated into Jurkat cells (Figure 4D).
The products of expression were quantified by luciferase assays and normalized to the
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expression mediated by the globin 5’'UTR, which served as a positive control. Consistent
with our previous results, the 5’ UTRORF12P of SARS-CoV-2 gRNA promoted strong protein
production (Figure 4C,D). As expected, a similar expression profile was observed when
translation was driven by the 5'UTRORFI2b of the SARS-CoV-1, both in the RRL and in cells
(Figure 4C,D), confirming that the translational characteristics are well conserved between
the two strains. In contrast, although the leader sequence of MERS-CoV was also efficient to
drive translation in the RRL, it still remained lower than that of the SARS-CoV transcripts
(Figure 4C). This difference was even sharper with the 5'UTRORFLab ¢ MERS-CoV, which
showed a decrease of up to 30% when compared to globin expression (Figure 4C). These
differences were also observed when the reporter mRNAs were transfected in cell lines
(Figure 4D). Our data show that the translation characteristics of the 5’ UTRORFlab are
conserved between the two SARS-CoV strains but differ with MERS-CoV. This indicates that
divergences in sequence conservation are also observed in terms of translational efficiency.
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Figure 4. Divergence in translation efficiency between the 5’UTRs of MERS-CoV and SARS-CoV
gRNA. (A) Percentage of identity between the 5'UTRs of MERS-CoV, SARS-CoV-1 and SARS-CoV-2
gRNAs resulting from a MUSCLE alignment (Figure S2). (B) Scheme of capped and polyadenylated
mRNAs coding for the Renilla reporter gene with the leader or the 5’UTRORF12P from SARS-CoV-1/2
and MERS-CoV. (C) RRL was programmed with the corresponding in vitro transcribed reporter
mRNAs. Expression products were quantified by luciferase assays and normalized to globin 5'UTR
expression (set at 100%). (D) Jurkat cells were electroporated with capped and polyadenylated
mRNAs as indicated. After 90 min of incubation, the cellular extracts were used for luciferase assay
and RT-qPCR. All the results are normalized to the globin 5’UTR expression (set at 100%). Values
shown are the mean (+/— S.E.M.) for 6 (C) and 5 (D) independent experiments.

3.3. SARS-CoV-2 Translation Initiation Requires the Cap Structure and the Components of
elF4F Complex

Data obtained so far have pointed out that translation of the gRNA of the SARS-CoV-2
is very efficient, both in vitro and ex vivo, but the molecular mechanism by which this
occurs remains to be determined. Surprisingly, the gRNA is the longest and most struc-
tured transcript, which should, a priori, represent a physical barrier for linear ribosomal
scanning. On the other hand, the viral gRNA is capped and polyadenylated, which is a
strong argument for a cap-dependent mechanism of translation initiation. This is also in
agreement with previous studies showing that addition of cap analog to the RRL resulted
in a strong reduction of translation driven by the 5'UTR of the bovine CoV strain [100,101].
Furthermore, the destabilization of the e[F4F complex also results in the inhibition of viral
replication of MERS-CoV and HCoV-229E [102,103]. Although these studies suggest a
cap-dependent mechanism of translation for coronavirus mRNAs, this has not been ex-
perimentally established. On the other hand, the structural features of the 5'UTRORF1ab
(gRNA), as well as the presence of a uORF and an AUG start codon located in a four-way
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junction RNA structure, could suggest the presence of an active IRES motif within the
5'UTR [49,82-85]. Therefore, in order to distinguish between these two possibilities, we
decided to further investigate the molecular mechanism by which translation initiation
occurs on the SARS-CoV-2 gRNA.

We first looked at the effects of both the cap and the poly(A) tail structures in the
translation of SARS-CoV-2 mRNAs. In order to avoid the bias of RNA stability caused
by the absence of both structures, we performed our study in in vitro translation systems.
For this, we produced different combinations of capped, uncapped, polyadenylated and
non-polyadenylated transcripts harboring the 5’'UTR of the globin, the 5'UTRORF12P or the
leader sequence of SARS-CoV-2. Both RRL (Figure 5A) and untreated RRL (Figure 5B)
were programmed for 30 min and expression of the Renilla was quantified by luciferase
assays. As expected, the synergic effect of the combination of the cap structure and the
poly(A) tail was observed with the RNA control (globin 5'UTR). Enhancement of translation
provided by these two elements was even amplified in the competitive untreated RRL,
which is an experimental system known to recapitulate faithfully cap/poly(A) synergy [89].
Expression initiated by the leader sequence or the 5'UTRORF12 was highly dependent on
the presence of the cap structure with a 10-fold stimulation over the uncapped transcripts
(Figure 5B). In contrast, we were surprised to find that the addition of the poly(A) tail
on the SARS-CoV-2 mRNAs did not add any supplementary translational advantage
over the non-polyadenylated mRNAs. This shows an unambiguous requirement for the
m’GTP cap structure but no significant effect of the poly(A) tail. In addition, this denotes
a major difference with canonical globin translation regarding the requirement for the 3’
poly(A) tail.
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Figure 5. The effects of the cap and poly(A) tail on viral translation. Capped/polyadenylated
(+/+), capped/non-polyadenylated (+/—), uncapped/polyadenylated (—/+) or uncapped/non-
polyadenylated (—/—) Globin Renilla, 5’'UTRORF12b Renilla and leader Renilla RN As were translated
in (A) the RRL or in (B) the untreated RRL. Translational products were analyzed by luciferase assays
and normalized to the (—/—) condition (arbitrary set at 1). Values shown are the mean +/— S.D. for

three independent experiments.

We decided to continue our investigation to look at the role of the initiation factors that
are required for SARS-CoV-2 translation with a particular focus on the cap-binding complex
elF4F (Figure 6A). This complex is formed by the association of three initiation factors:
elF4E, elF4A and elF4G and its role is to bind both to the m’ GTP cap structure and to the
ribosome [2]. Addition of cap analog to the RRL chelates elF4F by competitive binding
and sequesters it from binding to the 5" end of the mRNAs (Figure 6A) [104]. As expected,
the addition of the cap analog in our translation assay resulted in a strong repression of
globin translation (Figure 6B) and a similar effect was observed on both the 5'UTRORFIab
and leader of the SARS-CoV-2 transcripts, confirming that the elF4F complex is needed for
their expression.
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Figure 6. Requirement for the e[F4F complex. (A) Schematic cartoon of the elF4F complex, which
is composed of elF4E, elF4G and elF4A. The interactions with the PIC, cap analog, L protease and
hippuristanol are depicted on the figure. (B) RRL was treated with cap analog (1 M) or with water
(ctrl) and then programmed with capped and polyadenylated globin-Renilla and SARS-CoV-2 leader
or 5’UTRORF12b_Renilla mRNAs. Products of expression were quantified by luciferase assays and
normalized to the control condition (set at 100%). (C-F) Untreated RRL was pre-incubated alone
(ctrl) or in presence of different amounts of L protease (uL) as indicated, and then programmed
with (D) globin-Renilla, (E) EMCV IRES-Renilla, (F) SARS-CoV-2 leader or 5'UTRORF12P_Renilla
mRNAs. Translation products were (C) resolved by a 7.5% SDS-PAGE and then transferred to a
PVDF membrane for Western blotting analysis against elF4G, or (D-F) analyzed by luciferase assay
and normalized to the control condition (set at 100%). (G) RRL pre-treated with DMSO or increasing
amounts (uM) of hippuristanol (hipp.) was programmed for 30 min with globin-Renilla, HCV-IRES
Renilla, SARS-CoV-2 leader or ORF-1ab 5'UTR-Renilla mRNAs. Expression products were analyzed
by luciferase assay and normalized to the control condition (set at 100%). Values shown are the mean
(+/— S.D.) for three independent experiments.

Next, in order to distinguish whether the whole elF4F, or parts of it, are needed, we
decided to specifically focus on the independent role of both eIlF4A and elF4G, which
are core subunits of elF4F. e[F4G can be targeted by viral proteases and elF4A can be
specifically inhibited by some chemicals (Figure 6A). We first studied the dependence
on elF4G by using the L protease from the foot-and-mouth-disease virus [105,106]. This
enzyme cleaves elF4G to yield a N-terminal domain able to bind to eIlF4E and a C-terminal
domain (called p100), which harbors the interacting domains with elF4A and eIF3 [107].
Functionally, the cleavage of eIF4G inhibits cap-dependent transcripts but does not affect,
and even stimulates, translation of mRNAs bearing an IRES [108]. We have added in-
vitro-translated L protease to the untreated RRL that resulted in the cleavage of elF4G
(Figure 6C) and we observed different effects on the reporter constructs assayed. As
expected, cap-dependent translation driven by globin 5’UTR was inhibited (Figure 6D),
whereas the encephalomyocarditis virus (EMCV) IRES-mediated protein synthesis was
slightly stimulated (Figure 6E) as previously described [87]. Cleavage of elF4G resulted
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in the inhibition of expression from both SARS-CoV-2 5'UTRORF12b and leader sequence
mRNAs (Figure 6F) and to a similar magnitude as that for globin, suggesting that translation
initiation from SARS-CoV-2 5’UTRs depends on a mechanism that requires the integrity
of eIF4G.

Finally, we evaluated the requirement for the DEAD box RNA helicase elF4A, which
is the third partner of the elF4F complex and is involved in RNA unwinding and scan-
ning [109]. Indeed, chemical and enzymatic probing analysis of the SARS-CoV-
2 5'UTRORF1ab [73 74] has revealed a high level of RNA secondary structures (Figure 2) that
may interfere with ribosome scanning. To test this hypothesis, we used a natural chemical
inhibitor of the elF4A RNA-binding activity called hippuristanol (Figure 6A) [110]. Addi-
tion of increasing amounts of hippuristanol in the RRL inhibited globin cap-dependent
translation in a dose-dependent manner, whereas it did not interfere with expression of a
mRNA driven by the Hepatitis C Virus (HCV) IRES (Figure 6G), which does not require
elF4A [111]. The RRL was then programmed with reporter genes containing SARS-CoV-2
5'UTRORF12b or Jeader sequence RNA constructs and this showed that initiation on both of
these RN As was repressed upon addition of hippuristanol (Figure 6G) and the extent of
translation repression was comparable to that obtained for globin mRNAs.

Taken together, our data indicate that translation from the SARS-CoV-2 5'UTRORFIab
requires the activity of each component of the elF4F complex, namely elF4E, elF4G and
elF4A, which is consistent with a cap-dependent initiation mechanism.

3.4. uORF Downregulates the Translation Efficiency of gRNA

The 5'UTRORF12P of the SARS-CoV-2 (gRNA) harbors a potential uORF of nine amino
acids that starts at the AUG!" triplet and finishes at the UAA triplet located at position
134 (Figures 2 and 7A). uORFs are cis-acting elements located in the 5UTR that impact
on the translation efficiency of the mRNA. When these uORFs are translated by incoming
ribosomes from the 5’ end, this often results in the decrease of translation initiation from
the main downstream ORF [27,112-115]. However, in some particular cases, the presence
of uORFs can also act as enhancers of protein production, as it was described with some
stress-related mRINAs [29,114,116,117].

In the case of the SARS-CoV-2 gRNA, ribosomal profiling data have suggested that
some ribosomes recognize and pause at the AUG!?” codon [86]. However, formal proof
that this uOREF is translated and the level at which it is expressed remain to be determined.
To test this hypothesis, we introduced two mutations in the pSARS-CoV-2 5'UTRORF1ab.
Renilla to change the AUG!Y triplet into an UAA triplet (Mut-AUG!%) and to delete the
stop codon (UAA'™) in order to align AUG!? in the same reading frame as the Renilla
ORF (uORF phase). The resulting RNAs have been synthesized by in vitro transcription
and translated into the RRL in the presence of S**-methionine. Data are presented in
Figure 7 and show that mutation of the AUG!?” triplet resulted in a slight stimulation of
expression of the main ORF (Renilla) (Figure 7B lane 3), confirming that this AUG triplet
was recognized as an initiation site by the scanning ribosome. This was confirmed by the
second mutation (deletion of the UAA), which resulted in an increased expression of Renilla
(Figure 7B lane 4, denoted by the star). Altogether, our data unambiguously show that
the uORF located in the 5’'UTRORF12b was translated in the RRL, but the effect on protein
expression, i.e., both production of the short peptide and increased production of Renilla,
remained relatively modest. In order to better appreciate the magnitude of this effect, we
have performed similar experiments on the 5 UTRORF1P of the MERS-CoV gRNA as it also
contains an uORF starting at the AUG!S triplet, which is located closer to the AUG start
codon of ORF-1ab (Figure 7A). To evaluate its role on mRNA translation, we have also
mutated the AUG!® triplet. The resulting mRNA was translated in the RRL and protein
products were analyzed on SDS-PAGE and quantified with a phospholmager. We observed
that mutation of the AUG!®® triplet induced a strong expression of the main ORF, which
was stimulated by up to three times when compared to the parental 5’UTR (Figure 7C).
This stimulation was also observed when the reporter mRNAs were transfected in cell
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lines (Figure 7D). These results confirmed important differences in translational control
exerted by the uORFs in the coronavirus family with a moderate attenuation of translation
in SARS-CoV-2 compared to a more pronounced impact on the MERS-CoV 5'UTR.
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Figure 7. The 5’'UTR uOREF differentially regulates translation from SARS-CoV-2 and MERS-CoV.
(A) Scheme of the reporter mRNA with the 5'UTRORFIab of SARS-CoV-2 or MERS-CoV gRNA
with their respective uORF and positions. (B) Capped and polyadenylated mRNA harboring the
SARS-CoV-2 5UTR gRNA WT or the Mut-AUG!'?” or uORF-phase mutations were translated in
the RRL. Translation products were resolved by 12% SDS-PAGE and quantified with a phospho-
Imager. (C) Capped and polyadenylated mRNA harboring the MERS-CoV 5'UTR gRNA WT or
the Mut-AUG!®® mutation, were translated in the RRL. Translation products were resolved by
12% SDS-PAGE and quantified with a phospholmager. (D) Jurkat cells were electroporated with
capped and polyadenylated mRNAs as indicated. After 90 min of incubation, the cellular extracts
were used for luciferase assay and RT-qPCR. Values shown are the mean (+/— S.D.) for three
independent experiments.

4. Discussion

Infection by SARS-CoV-2 generates a gRNA and at least nine sgRNAs, which all
start with a 75 nt. common leader sequence [71]. Each of these transcripts harbor a
unique 5'UTR, which is composed of the shared leader sequence followed by an RNA
region that varies in length (between 0 to 190 nt. (Table 1)). Thus, the resulting viral
5'UTRs have different degrees of RNA structures and some of them contain cis-acting
elements, such as an uORF, which is known to have an impact on translation initiation
efficiency. This set the rationale for this study aimed at investigating the translational
properties of all virally encoded mRNAs. To answer to this question, we showed that viral
5'UTRs show significant variations of expression although they all exhibit a high level of
activity compared to globin 5UTR control. Importantly, the high and relative levels of
expression between viral mRNAs were maintained regardless of the experimental systems
used (RRL, competitive RRL and cells) (Figure 3), with the 5 UTRORFlab (gRNA) being
the most efficient of all. This is rather surprising considering that the 5 UTRORFI2b js the
longest of the series (265 nt.), with multiple stable hairpin RNA structures and, above all,
the presence of the uORF (Figure 2). A priori, these structural features should represent
hurdles for ribosomal binding and scanning and one would predict a poor level of protein
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expression. However, this is clearly not the case as expression was revealed to be very
efficient and conserved between the two SARS-CoV strains (Figure 4). This suggested to us
that the SARS-CoV-2 5'UTRORF12P could use an alternative cap-independent mechanism;
such an assumption was also strengthened by the presence of the AUG start codon in a
four-way junction, which is a structural conformation that was previously described for
HCV IRES [118]. This prompted us to look for the requirement of the viral gRNA in the
initiation factors involved in cap-driven translation initiation. We showed that both the
cap structure and the elF4F complex are necessary to initiate translation, which strongly
suggest a cap-dependent mechanism (Figures 5 and 6). We can assume that, after ribosomal
attachment to the cap structure, the PIC scans the viral 5UTR to reach the initiation codon
as elF4A is required (Figure 6G) and, above all, the uORF is translated (Figure 7). However,
we cannot rule out that ribosomal shunting could occur through the 5’'UTR to bypass some
hairpin RNA structures [119-121] and contribute to this high level of translation. This
mechanism usually needs additional proteins [121] and this will require further studies to
determine its implication in SARS-CoV-2 translation initiation.

In the canonical translation initiation mechanism, the interaction between the poly(A)
binding protein (PABP) and eIF4G [122,123] brings the 5'- and 3’-ends of the mRNA
together and forms a mRNA’s circularization called the closed-loop model [124,125], which
promotes translation [89,126]. Interestingly, in our system, which is able to recapitulate the
cap/poly(A) synergy [89], the poly(A) tail did not provide any translational advantage to
the mRNAs that harbor the SARS-CoV-2 5'UTRORFI2 when compared to globin 5'UTR,
which uses a strict canonical cap-dependent translation initiation mechanism (Figure 5).
This particularity is quite unusual in the eukaryotic kingdom and this raises the question
of whether this closed-loop conformation takes place on mRNAs that harbor the SARS-
CoV-2 5'UTR. The poly(A) tail requirement should be further investigated in the future
to determine if the PAPB is necessary to promote initiation and still interacts with eIF4G.
To our knowledge, a neutral influence of the poly(A) tail, in translation, has never been
reported before. Viral and cellular mRNAs without a poly(A) tail have been described
but they use alternative and specific cis-acting elements to bring the 5'- and 3’-ends of
the mRNA together [127-132]. Analyses of the formation of 48S PIC in RRL through a
sucrose gradient have indicated that it is almost absent on mRNAs harboring the SARS-
CoV-2 5’UTR but not with the EMCV IRES [80], suggesting that the initiation process on
SARS-CoV-2 is not canonical. In SARS-CoV-2 infected cells, the size of the poly(A) tail is
quite short (47 nt. for median length) and is longer on the gRNA than on the sgRNAs [71].
Interestingly, during bovine CoV infection, the length of the poly(A) tail changes from ~45
nt. immediately after virus entry to ~65 nt. at 6 to 9 h post-infection [133]. These quick
modifications of the length are reminiscent of the translational control that takes place
during early oocyte/embryo development [134]. Although we did not notice a requirement
for the poly(A) tail in SARS-CoV-2 translation in the RRL, this does not exclude that the
poly(A) tail of SARS-CoV-2 mRNAs may regulate translation efficiency, mRNA stability
and/or mRNA localization in infected cells.

The exact mechanism by which the SARS-CoV-2 5'UTRs drive the high levels of
expression is puzzling considering the structural features of the gRNA; nevertheless, this
characteristic could turn out to be a real benefit for viral replication in infected cells. Indeed,
in the early phases of infection, the viral nsp1 interacts with the 185 ribosomal RNA in
the mRNA entry channel of the ribosome and imposes a blockage by steric hindrance,
leading to a global inhibition of mRNA translation [135-137]. However, viral mRNAs can
escape this nspl-mediated repression via a complex interplay between the leader sequence,
especially the SL1 RNA structure [78,80,81,137], which is able to interact with nsp1 [80,138].
It has been shown that, at low concentrations, nsp1 is able to stimulate the expression of
mRNA reporters that harbor the SL1 sequence in cells [81] but not in the RRL [80], which
is not a competitive system. This, along with our data, suggests that SARS viral RNAs
have the ability to compete very efficiently with cellular transcripts for the translational
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apparatus. Thus, it would be very interesting to assay the role of nsp1 in the untreated RRL
as well as in infected cells.

Finally, the expression of the gRNA is also regulated by an uORF localized within
its 5’UTR, some 120 nucleotides upstream from the authentic AUG initiation codon. We
first showed that this uORF was recognized by scanning ribosomes and translated into a
short peptide whose role remains to be determined. In addition, mutation of the start AUG
codon of the uORF induced only a mild stimulation of the expression of the main reading
frame. This contrasts with the situation obtained with the MERS-CoV, in which we showed
that this uORF exerts a strong control on translation (Figure 7C,D). This is puzzling as
the uORF is conserved, suggesting its importance in the control and regulation of protein
synthesis despite having different effects on the flux of incoming ribosomes.

Genome-wide sequencing of 5'UTR has revealed that uORFs are much more pervasive
in the genome than initially described, with an occurrence of about 50% in mammalian
mRNAs [139,140]. These uORFs can be located within non-coding RNAs, within the 5" and
3’ UTRs or they can also be overlapping with the main OREF, either in-frame or out-of-frame
with the main protein product [141]. According to their localization, these uORFs regulate
gene expression in at least three different ways: (i) by imposing a sharp translational
control on the main OREF; (ii) by producing functional micro-peptides and (iii) generating
truncated /extended isoforms of the main protein product.

In the case of the uORF present in the SARS/MERS coronavirus, it is clearly located
within the 5’UTRORF13P and encodes a putative short peptide of 9-11 amino acids, which
does not appear conserved amongst the different members (Figure S3). Thus, it suggests
that this uORF regulates expression of the main protein product by throttling down the
flux of incoming ribosomes. This can happen by either stalling the 80S ribosomal complex
that forms on the encoded short reading frame, thus creating a roadblock for scanning
ribosomes or, alternatively, the short reading frame can also be a waylay for scanning pre-
initiation complexes [22]. As the same conserved uORF has a different impact on expression
from the SARS-CoV-1 and -2 compared to the MERS-CoV, this could reflect the fact that
two distinct mechanisms are at play. This is an important point that will be addressed
in the future. In any case, this uUORF must be a key regulator of viral translation and
replication as it is widely conserved. Indeed, this uORF is highly conserved from different
coronaviruses [142] and recent ribosome profiling analyses have confirmed that its AUG
injtiation codon is recognized by ribosomal complexes during both Mouse Hepatitis Virus
(MHYV) and SARS-CoV-2 infection [86,143]. One study has focused on the physiological
function of the peptide issued by this uORF in MHYV infection. For that, the authors
mutated the AUG-initiated uORF in the viral genome, showing that the virus was viable in
cell culture. However, serial passage of this mutant variant resulted in a reversion to an
intact uORF, indicating that this uORF must play a beneficial role in virus survival in cell
culture [142].

To summarize, our data strongly suggest that translation of the SARS-CoV-2 mRNAs
involves an unconventional cap-dependent mechanism that involves cis-acting RNA ele-
ments such as the structure of the leader, the length of the poly(A) tail and the role of the
uORE Taken together, these elements must probably functionally interact with each other
in order to regulate the flow of ribosomes on the viral mRNAs.
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