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Abstract: Sulfated polysaccharides and other polyanions have been promising candidates in antiviral
research for decades. These substances gained attention as antivirals when they demonstrated a
high inhibitory effect in vitro against human immunodeficiency virus (HIV) and other enveloped
viruses. However, that initial interest was followed by wide skepticism when in vivo assays refuted
the initial results. In this paper we review the use of sulfated polysaccharides, and other polyanions,
in antiviral therapy, focusing on extracellular polymeric substances (EPSs). We maintain that, in spite
of those early difficulties, the use of polyanions and, specifically, the use of EPSs, in antiviral therapy
should be reconsidered. We base our claim in several points. First, early studies showed that the
main disadvantage of sulfated polysaccharides and polyanions is their low bioavailability, but this
difficulty can be overcome by the use of adequate administration strategies, such as nebulization of
aerosols to gain access to respiratory airways. Second, several sulfated polysaccharides and EPSs
have demonstrated to be non-toxic in animals. Finally, these macromolecules are non-specific and
therefore they might be used against different variants or even different viruses.

Keywords: extracellular polymeric substance; sulfated polysaccharides; polyanions; antivirals; coro-
naviruses; herpesviruses; SARS-CoV-2

1. Introduction

Eukaryotic and prokaryotic microorganisms can produce and secrete extracellular
polymeric substances (EPSs) that may mediate many aspects of their biology including
physical resistance, resilience or adaptation to the environment. Bacterial EPSs have
been widely described, but these biopolymers may be also produced by archaea [1-4],
protists [5-7] and fungi [8]. EPSs are the set of organic polymeric compounds released
by microorganisms into the environment. They can, therefore, be made up of different
substances. However, the acronym EPS has also been widely used to designate a specific
category of such substances: the exopolysaccharides. In fact, the term EPS has been
used to define the extracellular polysaccharides secreted from microorganisms into their
surrounding environment in contrast to capsular polysaccharides, which are associated to
cell membrane [9,10], although EPSs contain other major components in addition to these
polymeric carbohydrates.

The main components of EPSs are carbohydrates and proteins, although lipids [11,12],
nucleic acids [13] and humic substances [14] can also be present. However, its chemical
composition is highly heterogeneous and variable [15]. Among biopolymers, polysaccha-
rides are the most abundant and varied group and, indeed, they are the most studied
components of EPSs [16,17]. Several types of monosaccharides may be present in EPSs:
hexoses and deoxy-hexoses, pentoses, uronic acids, or amino sugars such as glucosamine
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or galactosamine. In addition, several substituents such as sulfates, phosphates, acetates or
amino acids, can be linked to the carbohydrate backbone [9]. The negative charge of EPSs is
often imputable to the presence of negatively charged sulfate groups and glucuronic acids
and, in fact, sulfated polysaccharides such as heparins, heparan sulfates, dextran sulfates
or chondroitin sulfates are abundant polysulfates among EPSs [18]. Besides carboxyls,
phosphates and sulfates, the negatively charged groups may also include aspartic and
glutamic acids [19]. Positively charged groups may be found in amino sugars [20]. The
production and chemical composition of EPSs is influenced by several factors, such as
species and strain; nutrients and substrate type—carbon sources and carbon/nitrogen
ratio—; environmental conditions—pH, temperature, dissolved oxygen, shear force and
salinity—; and physiology [21].

On the other hand, the polymeric structure of EPSs gives them properties that single-
molecule drugs lack. Given their high molecular weight and their repetitive structure,
polymers can be adjusted to regulate their pharmacodynamics and pharmacokinetics [22].
Another property of polymers is their “polyvalency”, that is, multiple repeated units
or attached ligands that can simultaneously bind to numerous receptors on the target.
That is an interesting property, since polyvalent interactions are habitually stronger than
monovalent binding, given that multiple individual ligand-receptor interactions can act
synergistically [22].

Here, we have reviewed the antiviral capacity of EPSs, especially of exopolysaccha-
rides, their main carbohydrate fraction. We have also included some general data about the
antiviral activity of non-secreted biopolymers.

1.1. Biological Functions of EPSs

Since the biosynthesis of EPSs is an energy demanding process, they must provide
selective advantages to the microorganisms that secrete them [16,23]. In fact, EPSs may
perform significant adaptive functions, from attachment to surfaces leading to the formation
of biofilms [24,25] to protection against toxic compounds such as antibiotics, bile salts,
lysozyme or metal ions [26-28]. As said before, another important function of EPSs include
protection from environmental stress, such as changes in pH, temperature or osmolarity, as
well as moisture limitation or harmful contaminants [16].

EPSs and, in general, polyanions can facilitate evasion of the immune response or, on
the contrary, inhibit viral infections by immunomodulation. On the other hand, EPSs may
enhance the transfer of genetic material between microorganisms, and, in fact, the rates of
natural bacterial transformation and conjugation seem to be higher within biofilms [16].
For instance, Campylobacter jejuni, a naturally competent bacterium for DNA transfor-
mation, may transfer antibiotic resistance genes more frequently when it is engulfed in
biofilms [29]. Regarding bacteriophages, EPSs may inhibit phage adsorption by providing
a physical barrier between the phage and the membrane receptors [30] or, conversely,
facilitate infection [31].

In relation to ecological functions, EPSs released by eukaryotic phytoplankton and
bacteria in marine environments represent a major constituent to the total dissolved organic
carbon (DOC) pool in the oceans. Moreover, the polyanionic nature of EPSs plays important
ecological functions in marine systems, including microbial adhesion and biofilm forma-
tion [19]. In addition, the EPSs molecules form a three-dimensional structure from which
cells may localize extracellular activities and conduct symbiotic interactions that cannot
be undertaken efficiently by free-living cells [19]. EPSs are also involved in horizontal
transfer of genetic information, and, in the water-column, they contribute to the formation
of marine snow, transparent exopolymer particles, sea-surface microlayer biofilm and
marine oil snow [19]. Regarding soil ecosystems, EPSs can improve the aggregation of soil
particles, thus assisting plants by maintaining environmental moisture and entrapping
nutrients [32,33]. This capacity to aggregate soil particles is important for soil moisture,
structure and fertility [16,34]. In addition, EPS may play a significant role in the process of
symbiosis between plants and nitrogen-fixing rhizobia [16,35,36].
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1.2. Applications of EPSs

EPSs have been widely used in the food industry as viscous, stabilizing and emulsi-
fying agents or to improve the rheological properties and texture of bread and fermented
milk products [28,37,38]. In addition, EPSs have been also used for health applications,
given their role as antioxidants or anti-inflammatories [39-41].

Regarding environmental applications, EPSs have been used in several areas, including
bioremediation or wastewater treatment systems. For instance, EPS-producing Bacillus
licheniformis strain KX657843, isolated and identified based on 16S rRNA sequencing
and phylogenetic analysis, showed significant capacity for plant growth promotion and
Cu(Il) and Zn(II) removal. The emulsification index of the EPS, (indicator of biosurfactant
production), as well as the capacity of this strain to remove metals, suggested a role for this
Bacillus in bioremediation [42]. In general, knowledge about EPSs potential in pollution
control applications is not abundant, and the application of EPSs in water, wastewater
and sludge flocculation, dewatering and treatment is still under investigation, so further
research is still required before their potential application in field processes [15]. However,
preliminary studies have suggested that bacterial polymers might be used for interesting
environmental applications in wastewater treatment systems—including the flocculation
of secondary wastewater, or as an adsorbent for heavy metal removal from effluents—, soil
remediation and soil erosion control [15,43-45].

2. Antiviral Activity of Polysaccharides and EPSs

Sulfated polysaccharides and EPSs can exert antimicrobial activity [21,26,46], and
many studies have reported antiviral effects against viruses, such as herpes simplex
type 1 (HSV-1) and 2 (HSV-2) [47-49], pseudorabies virus (PRV) and vesicular stomatitis
virus (VSV) [49], encephalomyocarditis virus (EMCV) [50], influenza virus [51], infectious
hematopoietic necrosis virus (IHNV), rotaviruses [52], African swine fever virus (ASFV) [53]
and infectious pancreatic necrosis virus (IPNV) [54]. In fact, EPSs have been proposed as
new promising therapeutic drugs [17].

The antiviral effects of polysaccharides were reported many decades ago [18]. In
1947, the first report describing the antiviral activity of polysaccharides was published [55]
and several years later, the ability of heparin and other polysaccharides as HSV-1 in-
hibitors was also demonstrated [56-58]. Currently, several sulfated polysaccharides from
algae, cyanobacteria and animals have been described, showing potent inhibitory effects
against several human and animal viruses [59]. Early studies reported antiviral effect of
algal polysaccharides against mumps and influenza B viruses [60,61]. Later, other ma-
rine polysaccharides extracted from Rhodophyta algae were found to be antiviral against
HSV-1 and HSV-2 and coxsackievirus B5 [62]. A sulfated polysaccharide isolated from
Arthrospira platensis inhibited several viruses, including HSV-1, human citomegalovirus
(HCMV), influenza A, coxsackievirus, the human immunodeficiency virus (HIV), measles,
polio and mumps viruses [61]. Later reports showed that extracts of ten other red algae
exerted antiviral effects against HSV-1 and HSV-2, vaccinia virus and VSV [63], although
the antiviral activity was prophylactic but not therapeutic. Sulfated polysaccharides from
the red alga Schizymenia pacifica were also reported to be antiviral against HIV reverse
transcriptase and viral replication in vitro [64]. In addition, several polysaccharides from
algae, bacteria or fungi, including EPSs produced by lactic acid bacteria (LAB), have been
considered as GRAS (generally recognized as safe) by the US FDA, opening interesting
possibilities for therapeutics or food supplements [65].

Other important characteristics and structural motifs influencing the antiviral activity
of EPSs include molecular weight; aldehyde, carboxyl and methyl groups; uronic acid
content; phosphates and sulfate group per sugar residue; branched-chain length; and
polyanionic nature [66]. In general, enveloped viruses are more sensitive to polyanionic
antivirals than non-enveloped viruses. On the other hand, in general, the higher the molec-
ular weight, the higher the antiviral activity [59,65,67]. However, although the molecular
weight of polysaccharides and EPSs often correlates with their antiviral effect, molecular
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weight can play a dual role, or even have no influence at all. For instance, the antiviral
capacity of several semisynthetic and natural sulfated polysaccharides, including agarans,
carrageenans and fucans, has shown to correlate with their molecular weight [59]. However,
some low-molecular-weight polysaccharides can also generate strong antiviral activity,
especially when their sulfate content is high; in addition, low-molecular-weight compounds
can inhibit cell-to-cell viral spread more efficiently [59]. Low-molecular-weight compounds
can inhibit cell-to-cell spread of viruses more efficiently because polysaccharides with
low molecular weight can pass more easily through target cells to act inside them [59,65].
In addition, low-molecular-weight EPSs can stimulate the immune system more effec-
tively [41]. In some cases, the antiviral activity is not consistently related to its molecular
weight [68,69].

Since negatively charged sulfated groups can be involved in antiviral efficiency, the
degree of sulfation present in EPSs is implicated in their antiviral capacity and, in addition,
the specific position of the sulfate ester group is also important for the antiviral activity of
sulfated polysaccharides [59,65,70-73]. On the other hand, disparities in the viral envelope
glycoproteins may explain the different susceptibility of enveloped viruses to EPSs [18].

2.1. Mechanisms of Action

The antiviral mechanisms of exopolymers can operate in many different ways: they
can inactivate viruses; inhibit viral adsorption, entry or replication; or trigger the activation
of the immune system [74] (Figure 1).

Replication

Figure 1. Mechanisms of antiviral action of microbial exopolymers. EPSs can exert their antiviral
activity via different mechanisms. Virucidal agents act by inactivating viruses. Inactivation can occur
not only by damaging the virions, but also by blocking them and impeding the adsorption of virions
to cells (red cross). Some EPSs can wrap the virions via electrostatic interactions, thus preventing viral
adsorption and, therefore, exerting a virucidal effect (1). Other EPSs exert an antiviral effect allowing
the viral entry but later impeding the viral replication. Therefore, antivirals inhibit replication of
viable viruses in the cells (2). EPSs can also exert antiviral effect by activating immune cells and
inducing them to secrete immunomodulators (IMs) and to kill virus-infected cells (3).
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To date, most EPSs affect viral infections via a virucidal effect by impeding attachment.
Viral entry is the process that follows viral attachment and triggers the delivery of the viral
genome into the cell. Viral receptors are host cell molecules on the plasma membrane,
mostly glycoproteins, that bind virions and are essential for viral entry and subsequent
virus infection. Viral receptors play physiological roles for the cell functions that have
nothing to do with infection, and viruses commonly bind to their cell receptors with
higher affinity than they do to attachment factors, which merely support virus binding.
On the contrary, viral receptors either induce conformational changes in viral proteins
that are required for viral entry and/or result in delivery of virions to cellular domains or
compartments required for entry [75]. This difference explains why receptors are required
for viral infection whereas attachment factors are not. Thus, if the deletion of a host
molecule from an animal model or a cell type prevents infection, then it can be considered
a viral receptor (although, it should be noted that some viruses may use more than one
viral receptor).

2.1.1. Virucidal Effect

Antiviral agents are chemical compounds, usually drugs, which inhibit the prolifer-
ation of viruses. Virucidal agents, in contrast, are physical or chemical agents, such as
disinfectants, that specifically can irreversibly inactivate or destroy viruses, thus impeding
them to enter host cells [76]. Therefore, virucidal agents act when they are added to viruses
before viral attachment, hindering subsequent viral adsorption and entry. Several EPSs
have a virucidal effect, thus they act by inactivating viruses. For instance, previous exper-
iments carried out in our laboratory demonstrated the capacity of an EPS from Bacillus
licheniformis IDN-EC to inhibit several enveloped viruses infection in a dose-dependent
manner [49]. We demonstrated a dose-dependent virucidal effect when EPS was added to
viruses before viral attachment. Our group found out that EPS produced by this strain of
B. licheniformis exerted a non-specific virucidal effect against HSV-1 and HSV-2, pseudora-
bies virus (PRV) and VSV, whereas the EPS had no affect against non-enveloped minute
virus of mice (MVM). We also demonstrated that the EPS blocked infection before viral
entry. This EPS was also shown to be non-toxic in mice.

Early reports demonstrated that binding of negatively charged polymers with pos-
itively charged groups on the HSV-1 viral membrane inhibited the viral attachment to
the negatively charged cell membrane [77]. In line with these and other reports, our data
suggested that the inhibitory effect of the EPS from Bacillus licheniformis might be due
to non-covalent and non-specific electrostatic interactions between negatively charged
moieties of the EPS and positively charged glycoproteins on the virion surface, blocking
the viral glycoproteins and thus preventing binding and viral entry (Figure 2). Various
evidence supports this hypothesis: first of all, the nature of the interaction between the
EPS and viruses seems to be non-specific, since the polymer is virucidal against several
viruses from different families that use different cell receptors [49]. In addition, previous
studies have established that polyanionic substances such as sulfated polysaccharides may
inhibit enveloped viruses, and that this inhibitory effect may be due to non-covalent inter-
actions [78]. For example, the antiviral effect of the sulfated polysaccharides chondroitin
sulfate and dextran sulfate—which inhibited HSV-1 and HIV even when present only
during adsorption [79]—has been attributed to an interaction between negatively charged
polymers and positive charges on the virions. In fact, the partial inhibition of severe acute
respiratory syndrome coronavirus (SARS-CoV) by heparin suggested that the viral enve-
lope might include positively charged clusters which could interact with the negatively
charged moieties of the polymer [80]. However, electrostatic forces are not the only factor
mediating virus-cell interactions, and, thus, van der Waals forces, hydrophobic effects,
cation bridging or steric interactions, may also play a relevant role in virus interactions with
the surrounding environment [81]. Viral glycoproteins might also interact with H-bond
acceptors on the polymer [78] (Figure 2). In addition, the effect derived from interactions of
the polymer with membrane lipids cannot be ruled out.
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Figure 2. Schematic diagram representing the mechanistic basis of the inhibitory effect of EPSs
and other antiviral polyanions on viral adsorption. The figure represents a prototypical polymer
interacting with a SARS-CoV-2 virion. The main inhibitory mechanisms include non-covalent and
non-specific electrostatic interaction between the negatively charged moieties of the EPSs and the
positively charged viral glycoproteins. Viral glycoproteins might also interact with H-bond acceptors
of the polymer.

Carrageenans, one of the major components of red seaweed cell walls and currently
the most widely investigated red algae-sulfated polysaccharides [82], are also virucidal
against HSV-1 and other enveloped viruses. Carrageenans might inhibit viral infection by
direct interaction with the viral envelope by means of its negative charge [82]. In fact, the
anti-herpetic effect of carrageenans has been widely demonstrated [83-85]. Their direct
virucidal effect may be due to the formation of irreversible stable complexes with virions,
which block the sites on the viral envelope required for virus attachment to cells [86].

Another virucidal polysaccharide, chitosan (a partially deacetylated polymer of N-
acetylglucosamine), can reduce the infectivity of two human enteric viral surrogates: feline
calicivirus F-9 (FCV-F9) and bacteriophage MS2 (MS2) [87,88]. The antimicrobial properties
of chitosan, a biopolymer obtained by N-deacetylation of chitin, have been known for
years [89]. This linear polysaccharide composed of randomly distributed 3-(1 — 4)-linked
D-glucosamine and N-acetyl-D-glucosamine is antimicrobial against fungi (for instance,
Rhizoctonia solani and Candida spp.) and several Gram-positive and Gram-negative bacteria,
including Staphylococcus aureus, Streptococcus spp., Enterobacter faecalis, Bacillus subtilis,
Salmonella Typhimurium or Escherichia coli [90]. The mechanism of action can be explained
by a process of cell membrane disruption, given that chitosan is a cationic polymer that may
interact with the negatively charged cell surface [91]. However, other mechanisms of action
have been proposed, including metal chelation, enzyme denaturation and interaction with
phosphate groups of nucleic acids [89,91].
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Besides this antimicrobial activity, chitosan has been shown to exert antiviral activity
against bacteriophages and plant viruses [92]. Regarding animal viruses, chitosan has been
used for its properties as an immunomodulator, and its antiviral activity against several
human viruses, including HSV-1, H7N9 and HIN1 influenza A viruses; HIV; SARS-CoV-
2; and HCMV and Rift Valley fever virus (RVFV) [90,92]. Chitosan has also been used
in the development of antiviral vaccines due to its adjuvant properties [93] and in the
development of nanoparticle vaccines to treat arboviral infections [94]. Recently, the use of
chitosan as a pharmaceutical excipient has been suggested for SARS-CoV-2 treatment [95].

2.1.2. Adsorption

As we have previously stated, virucidal agents act by inactivating viruses. However,
inactivation can occur not only by damaging the virions, but also by blocking them and
impeding the binding of virions to cells. Therefore, one of the mechanisms by which
virucides inactivate viruses is by inhibiting the viral adsorption. Some EPSs can wrap the
virions via electrostatic interactions, thus preventing binding and, therefore, exerting a
virucidal effect.

Unlike viral receptors, which are essential for infection in vitro and in vivo, viral
attachment factors make viral adsorption and infection more efficient, but they are not
required for infection [75]. Viral attachment receptors are cell surface molecules that assist
virus binding. Interactions between viruses and these attachment factors have low affinity
and are relatively nonspecific [75]. Attachment receptors can also act as entry receptors, but
are often not sufficient to allow viral infection, and entry receptors are also necessary [96].
However, most of the research on viral adsorption has been done in vitro and data about
adsorption in vivo are limited.

To limit random three-dimensional diffusion and promote the attachment process,
many viruses have evolved to attach to the cell glycocalyx, a ubiquitous carbohydrate
covering containing negatively charged moieties in which the charge is predominantly
contributed by proteoglycans with sulfated glycan side chains termed glycosaminoglycans
(GAGsS) [96]. There are notable variations in the number of glycan chains, degrees of sulfa-
tion and composition of the repeating dissacharide units among the different proteoglycans,
resulting in a wide range of charge densities per molecule and giving rise to many different
sulfated proteoglycans [96].

Several viruses (including members of the Herpesviridae, Adenoviridae, Caliciviridae,
Retroviridae, Picornaviridae and Flaviviridae families) as well as other microorganisms, use
proteoglycans, mainly heparan sulfates (HSPGs) and chondroitin sulfates (CSPGs), as viral
attachment factors. For instance, HSV-1 and HSV-2 attach to cells by binding of the viral
proteins gB and gC to the disaccharide repeats of heparan sulfate; foot-and-mouth disease
virus (FMDV) also uses HSPGs for binding; regarding HIV, HSPGs bind the positively
charged sites in the V3 loop of its surface envelope glycoprotein gp120 [18,96].

Moreover, external pH plays a relevant role on viral adsorption. The electrostatic
attraction increases when the viral envelope is oppositely charged to the adsorbent cell sur-
face, but viral proteins in an isoelectric state would not exert strong repulsion or attraction
towards cell surface. However, changes in pH can alter such behaviour and changing the
pH in relation to the virus isoelectric point may alter the process of adsorption [97].

Regarding therapeutics, few drugs targeting viral adsorption are currently avail-
able [96,98,99]. In this context, research on EPSs can open a wide and promising range
of possibilities.

2.1.3. Immunomodulation

Polyanions and EPSs can facilitate evasion of the immune response in animals by
degrading immunoglobulins and components of the complement system [100,101] but, on
the contrary, bacterial polysaccharides may also inhibit viral infections by modulation of
the immune response [65,101]. For instance, EPSs produced by Lactobacillus delbrueckii [102]
or Streptococcus thermophilus [103] can activate the Toll-like receptor 3 (TLR3) and the
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expression of interferon (IFN), which activates other immune cells and may trigger antiviral
responses. Furthermore, EPSs can activate NK cells that kill virus-infected cells non-
specifically via perforins and granzymes [65].

2.2. EPSs with Virucidal or Antiviral Activity

Several microbial species, summarized in Table 1, have been demonstrated to secrete
EPSs with antiviral activity. An EPS produced by Bacillus licheniformis strain B3-15 (EPS-
B3-15) was demonstrated to inhibit HSV-2 infection in peripheral blood mononuclear cells
(PBMC) [48]. The antiviral activity seemed to be related to the stimulation of Th1 cytokines
(IFN-y, IFN-«, TNF-o IL-12 and IL-18). A later study [104] analyzed the role of EPS-B3-15
on Th2 cytokine production by PBMC infected or not with HSV-2, finding that EPS-B3-15
treatment was able to control the production of Th2 cytokines, triggering a shift in the
balance of cytokine profiles from Th2-type to a Thl-type. An EPS from another strain
of Bacillus licheniformis [105] was also shown to exert antiviral and immunomodulatory
effects against HSV-2. The antiviral effect seemed to be linked to the immunomodulatory
activity of the biopolymer, since human PBMC treated with EPS1 produced high levels
of Th1 cytokines [106,107]. An EPS from Geobacillus thermodenitrificans has also showed
immunomodulatory and antiviral effects against HSV-2 [108].

Yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (1073R-1)
and the EPS produced by this strain exerted antiviral effects against influenza virus A /PR8
in mice via immunostimulatory effects such as the increase of NK cell activity [109]. The
yogurt and EPS were orally administered to BALB/c mice prior to intranasal infection with
influenza virus A/PR/8/34 (H1N1), resulting in prolonged survival periods in both the
yogurt- and EPS-treated groups compared to controls.

EPSs from the sponge species Celtodoryx girardae (global EPS) and from its symbiotic
Gram-negative bacteria (bacterial EPS) presented antiviral activity against HSV-1 [110].
The protective effect of EPSs was ascribed to the inhibition of viral adsorption. The Gram-
negative genus Pseudoalteromonas is another EPS-producing marine microorganism [10]. An
EPS obtained from Pseudoalteromonas sp., isolated from a sponge, was also demonstrated to
exert antiviral effect against HSV-1 [111].

Two different marine strains of the red alga Porphyridium cruentum were grown in two
different concentrations of sulfate, and the influence of these conditions on the characteris-
tics of the EPS produced was examined, observing that enrichment of the culture medium
with sulfate improved the protein and sulfate content of EPS, which displayed a relevant
activity against VSV [112].

In a recent study, high molecular weight dextrans synthesized by the LAB Lactobacillus
sakei MN1 and Leuconostoc mesenteroides RTF10 were purified and assayed in infected BF-2
and EPC fish cell-lines for antiviral activity [54]. Both dextrans had significant antiviral
activity against the salmonid viruses infectious pancreatic necrosis virus (IPNV) and infec-
tious hematopoietic necrosis virus (IHNV). In vivo assays injecting intraperitoneally the
MN1 polymer in rainbow trouts (Onchorhynchus mykiss) confirmed the in vitro results, and
the increase of IFN-1 and IFN-y expression revealed immunomodulatory activity [54]. An
EPS isolated from Lactobacillus plantarum has also been shown to offer protection against
rotavirus-induced diarrhea [52].
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Table 1. EPS-producing microbial species.
EPS/Species/Strain Inhibited Viruses 2 Mechanism P Ref.
EPS p-KGO03 from Gyrodinium impudicum KGO03 EMCV AA [50]
EPS-B3-15 from Bacillus licheniformis HSV-2 M [48]
EPS from Aphanothece halophytica Influenza A virus IM and IVE [51]
EPS from Serratia sp. Gsm01 CMV-Y AA [113]
EPS from Celtodoryx girardae HSV-1 IVE [110]
EPS from Geobacillus thermodenitrificans HSV-2 M [108]
EPS TK V3 from Arthrospira platensis Vaccinia virus and ECTV IVE [114]
EPS from Porphyridium purpureum Vaccinia virus and ECTV IVE [114]
EPS from Pseudoalteromonas sp. HSV-1 IVE [111]
EPS OLL1073R-1 from Lactobacillus delbrueckii ssp. bulgaricus ~ Influenza A virus ™M [109]
EPS p-KGO03 from Gyrodinium impudicum KG03 Influenza A virus AA [115]
EPS from Bacillus licheniformis HSV-2 M [106]
EPS from Porphyridium cruentum VSsv [112]
EPS from Lactobacillus sakei MN1 IPNV and THNV M [54]
EPS from Leuconostoc mesenteroides RTF10 IPNV and THNV ™M [54]
EPS from Bacillus horneckiae APA HSV-2 IM and AA [116]
EPS from Bacillus horneckine APA HSV-1 IM and AA [47]
EPS from Lactobacillus plantarum LRCC5310 Human rotavirus strain WA IM and IVE [52]
EPSp from Bacillus licheniformis IDN-EC HSV-1, HSV-2, PRV, VSV IVE [49]

2 Inhibited viruses: EMCYV, encephalomyocarditis virus; HSV-2, herpes simplex virus type 2; CMV-Y, yellow
strain of cucumber mosaic virus; HSV-1, herpes simplex virus type 1; ECTV, ectromelia virus; VSV, vesicular
stomatitis virus; IPNV, infectious pancreatic necrosis virus; IHNV, infectious hematopoietic necrosis virus: PRV,
pseudorabies virus. b Mechanism of action: AA, antiviral activity; IM, immunomodulation; IVE, inhibition of
viral entry.

A halophilous cyanobacterium, Aphanothece halophytica, was another microorganism
capable of producing an EPS with antiviral activity. That EPS, a sulfated exopolysaccharide,
inhibited pneumonia in influenza virus A FM (H1N1)-infected mice. The mechanism of
action seemed to be mediated by two main processes. First, by the modulation of the
host immune system: enhancement on lymphocyte proliferation, release of IL-1 and IL-2,
potentiation of the phagocytic activity of the reticuloendothelial system and improvement
of the cytolytic activity of NK cells; and, second, via the interaction of negative charges
in EPS with positive charges in the viral envelope [51]. The anti-vaccinia virus activities
of the exopolysaccharides isolated from the cyanobacterium Arthrospira platensis and the
Rhodophyta alga Porphyridium purpureum have also been demonstrated [114].

An exopolymer produced by the marine thermotolerant Bacillus horneckiae strain APA,
of shallow marine vent origin, was also shown to possess antiviral activity. This EPS exerted
antiviral and immunomodulatory activities against HSV-2 [116]. A posterior report showed
that the EPS also inhibited HSV-1 infection in the very early phase of viral replication,
produced low cytotoxicity and activated innate immune response, stimulating both TNF-«
and IL-1 gene transcription via NF-kB activation [47].

A sulfated exopolysaccharide, named p-KGO03, secreted by the dinoflagellate Gy-
rodinium impudicum strain KGO03, also exhibited notable antiviral activity in vitro against
EMCYV [50]. In a subsequent report, this sulfated EPS demonstrated antiviral activity against
influenza A virus, by interfering with viral adsorption and internalization steps [115].

Regarding plant viruses, an EPS from a Serratia sp. strain Gsm01 showed antiviral ac-
tivity against a yellow strain of cucumber mosaic virus (CMV-Y). Thus, the spray treatment
of tobacco plants using that EPS induced systemic protection against CMV-Y [113].

3. The Decline of Sulfated Polysaccharides in Antiviral Research
3.1. HIV

It has been known for a long time that heparin and other sulfated polysaccharides
are potent and selective inhibitors of HIV replication in cell cultures [18]. Other enveloped
viruses, including HSV-1, HSV-2 and HCMY, can also be inhibited by these polysaccharides.
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When this was initially demonstrated, sulfated polysaccharides appeared as promising can-
didates in antiviral research. Early inhibitors such as suramin, a polysulfonated compound,
were shown to block viral adsorption nonspecifically [117,118]. Later polyanionic com-
pounds effective against HIV were dextran sulfate and heparin [117,119]. Polyanionic HIV
inhibitors are generally considered entry inhibitors [117]. These polysaccharides interfered
with the fusion process, being the inhibition of virus—cell fusion, the cause of the antiviral
activity. On the other hand, antiviral activity of sulfated polysaccharides increased with
increasing molecular weight and degree of sulfation [18]. In addition, sulfated polysac-
charides displayed interesting properties: they were able to block HIV replication in cell
cultures at low concentrations without cytotoxicity; prevented HIV-induced syncytium
formation between HIV-infected and normal CD4 T lymphocytes, a mechanism that can
drastically enhance HIV infectivity; showed a broad-spectrum antiviral activity against
enveloped viruses; and induced low viral drug-resistance [18].

However, the use of polyanionic compounds as systemic agents to combat HIV infec-
tion seems to be currently an unfeasible option, although this type of antiviral is still being
considered for topical uses [117]. What led to this abandon? An undesirable side-effect of
anionic polymers is their recognized anticoagulant activity that would limit therapeutically
administrable doses in clinics [120]. However, the major problem of sulfated polysaccha-
rides as antivirals is related to their poor bioavailability. Although the in vitro inhibition of
viral infections was confirmed when polyanions were added to the cell cultures, inhibition
of enveloped viruses by polyanions was not corroborated in vivo, a failure probably due
to complexation of polyanion molecules by cationic blood elements [121]. This fact led
virologists to abandon the research of polyanions as antivirals against enveloped viruses,
including coronaviruses and currently, in particular, SARS-CoV-2.

3.2. SARS-CoV-2

The early success of polyanions in antiviral research in vitro was followed by a later
abandonment when in vivo assays disproved the initial in vitro results. However, under
our point of view, this rejection should be reconsidered, since this human coronavirus
might be attacked directly in the airways, given that initial infection starts mostly there.
For that reason, it has been claimed that polysulfates might be used against SARS-CoV-2
before they reach the lungs and other target cells present in the respiratory airways [121].

Inhibition of viruses by polyanions in the respiratory tract is not based on the immune
system machinery located in blood and mucosas, but on chemical and physicochemical
processes. The antiviral inhibitory interaction is electrostatic, non-specific and fast and leads
to polyelectrolyte complexes between oppositely charged macromolecules that are difficult
to destabilize [121,122]. The first step in viral infection is the interaction of attachment
factors, such as sialic acids or HSPGs polyanions, with viral envelope proteins by long
distance electrostatic interactions, before interacting with viral entry receptors via short
distance contacts. This moment, prior to attachment, is ideal for polysulfates to trap aerial
coronaviruses at the level of airways on the basis of the physical-chemistry of polyelectrolyte
complexes [121]. The main disadvantage of sulfated polysaccharides and other polyanions,
their low bioavailability, can be circumvented by using adequate administration strategies
(Figure 3), such as gargling and spraying of an aqueous solution to access oral and nasal
cavities, or nebulization of aerosols to access pulmonary alveoli [121]. In addition to these
new administration routes, new drug delivery systems by alternative approaches should
be assayed. To become therapeutically useful, antiviral agents could be also tested in
combination with drug delivery systems such as nanoparticles, liposomes, lipophilic drug
derivatives or polymeric lipo-polyethylenimines.
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Figure 3. Alternative routes of administration of EPSs and other polyanions. (A) To overcome the

low bioavailability of EPSs, new routes of administration should be tested, especially nebulization of
aerosols to access pulmonary alveoli. (B) Aerial virions can be trapped by EPSs before attachment
in the respiratory epithelium. To enter cells, viral glycoproteins must first attach to the host cell
receptors. EPSs may block the viral glycoproteins and prevent viral entry (red cross).

Among the potential concerns regarding the use of polyanions—including sulfated
polysaccharides and EPSs—to trap aerial viruses, two can be highlighted [121]. The first one
might be the lack of biocompatibility. However, most of the tested polysulfates including
heparins, heparan, dextran or chondroitin sulfates, fucoidans, etc. have demonstrated
to be very well tolerated after intramuscular, intravenous [121] or intraperitoneal [49]
administration. The second one involves the possible interaction of the biopolymers with
components of nasal, oral and bronchial secretions, especially with mucins, which must stay
neutral and under a gel state [121,123,124]. In this respect, although the risk of inhibition
by polysulfates is expected to be low, compatibility and retention of activity must be tested
using aerial secretions [121].

The use of polyanions including sulfated polysaccharides as therapeutical tools have
been investigated and proposed for SARS-CoV-2 treatment [66,90,125,126]. A recent study
demonstrated that heparin has an excellent binding affinity to the spike protein (S-protein)
of SARS-CoV-2 and, in fact, the S-protein of SARS-CoV-2 attached more strongly to im-
mobilized heparin than the S-proteins of either SARS-CoV or Middle East respiratory
syndrome coronavirus (MERS-CoV) [127]. After that, the in vitro antiviral properties of
heparin and other related polysaccharides by infecting Vero cells with SARS-CoV-2 in the
presence of variable doses of polysaccharides were demonstrated. Results revealed that
specific sulfated polysaccharides can bind tightly to the S-protein, suggesting that they can
interfere with S-protein binding to the heparan sulfate in host tissues, thus inhibiting viral
infection [128].
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4. Conclusions

Sulfated polysaccharides and other polyanions, including EPSs, have been promising
candidates in antiviral research for decades. They have demonstrated to be strong antivirals
in vitro, they are non-toxic in animals and they are non-specific, which opens the possi-
bility to fight against different pathogens. However, these macromolecules have a major
disadvantage: their low bioavailability. This fact led virologists to abandon the research of
polyanions as antivirals, but this difficulty can be overcome by using adequate adminis-
tration strategies, such as nebulization of aerosols to access respiratory airways. Antiviral
research on EPSs should consider new routes of administration by alternative approaches,
as well as their use in combination with drug delivery systems (such as nanoparticles,
liposomes, lipophilic drug derivatives or polymeric lipo-polyethylenimines) to become
therapeutically useful antiviral agents.
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