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Abstract: Genetic recombination is a major evolutionary mechanism among RNA viruses, and it is
common in coronaviruses, including those infecting humans. A few SARS-CoV-2 recombinants have
been reported to date whose genome harbored combinations of mutations from different mutants
or variants, but only a single patient’s sample was analyzed, and the virus was not isolated. Here,
we report the gradual emergence of a hybrid genome of B.1.160 and Alpha variants in a lymphoma
patient chronically infected for 14 months, and we isolated the recombinant virus. The hybrid genome
was obtained by next-generation sequencing, and the recombination sites were confirmed by PCR.
This consisted of a parental B.1.160 backbone interspersed with two fragments, including the spike
gene, from an Alpha variant. An analysis of seven sequential samples from the patient decoded
the recombination steps, including the initial infection with a B.1.160 variant, then a concurrent
infection with this variant and an Alpha variant, the generation of hybrid genomes, and eventually
the emergence of a predominant recombinant virus isolated at the end of the patient’s follow-up. This
case exemplifies the recombination process of SARS-CoV-2 in real life, and it calls for intensifying the
genomic surveillance in patients coinfected with different SARS-CoV-2 variants, and more generally
with several RNA viruses, as this may lead to the appearance of new viruses.

Keywords: SARS-CoV-2; variant; recombination; chronic infection; immunosuppression

1. Introduction

A major evolutionary mechanism of RNA viruses is genetic recombination [1,2]. Re-
combinations are extremely common in coronaviruses and have been implicated in the
emergence of several genotypes, including endemic human coronaviruses [3–6]. The in-
volvement of genetic recombination in the origin of SARS-CoV-2 is also suspected [7].
Regarding SARS-CoV-2, coinfection in the same patient with distinct variants has been
reported [8–14]. In addition, several studies have described or suspected genetic recombi-
nations for this virus [10,13–25]. However, most of these recombinants have relied solely
on the coexistence of signature mutations of different SARS-CoV-2 variants in genomes
obtained from a single patient’s sample, and they were not isolated in culture. Since
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January 2020, our laboratory has screened more than one million respiratory specimens for
SARS-CoV-2 infection by real-time reverse transcription-PCR (qPCR) without interruption
or limited capacity, including for all patients sampled in our institute and in the Marseille
public hospitals [26,27]. This has provided us with sequential samples from multiple pa-
tients, and enabled us to detect reinfections, and prolonged or even chronic infections in
severely immunocompromised patients [28–30]. Here, we report the gradual emergence
of a recombinant SARS-CoV-2 involving two variants in a lymphoma patient chronically
infected over a period of 14 months, and the isolation of the recombinant virus in culture.

2. Results
2.1. Chronic SARS-CoV-2-Infection in a Severely Immunocompromised Patient

A 56-year-old immunocompromised male had an uncontrolled SARS-CoV-2 infection
for 14 months until death (Supplementary Material: Supplementary Methods and Results).
He was diagnosed in 2017 with mixed Hodgkin and follicular lymphoma and was in
complete remission of the Hodgkin lymphoma following chemotherapy, and on main-
tenance therapy. Follicular lymphoma progression led to the administration of lenalido-
mide plus rituximab in 2021, and pembrolizumab was also administered. Progressive
multifocal leukoencephalitis was diagnosed in May 2021. In August 2020, the patient
developed severe SARS-CoV-2-associated pneumonia, leading to admission in the inten-
sive care unit. He improved clinically but viral clearance did not occur, and SARS-CoV-2
RNA remained detectable by qPCR on most nasopharyngeal samples collected between
September 2020 and December 2021. qPCR was negative in February 2021 but positive
when re-tested in April 2021, and then only transiently negative for ≤3 days. COVID-19
patient convalescent plasma was administered during hospitalization outside our institute
in October 2020 and April 2021, and hydroxychloroquine was administered in July 2021.
The history of SARS-CoV-2 infection did not lead to vaccine administration. The patient
died unfortunately in December 2021 from the complications of his hematological and
neurological diseases.

2.2. Evidence of Hybrids of Variants

After 14 months of infection, we identified a virus whose genome was a hybrid
of two known variants, B.1.160 (according to PANGOLIN (Phylogenetic Assignment of
Named Global Outbreak Lineages) lineage (https://cov-lineages.org/resources/pangolin.
html; accessed on 20 October 2021) [31]) (a.k.a. Nextstrain clade (https://nextstrain.org/;
accessed on 20 October 2021) [32] 20A.EU2, or Marseille-4 [27]) and Alpha (according to the
WHO denomination (https://www.who.int/fr/activities/tracking-SARS-CoV-2-variants;
accessed on 20 October 2021) (a.k.a. 20I or B.1.1.7)) (Figures 1 and 2).

This hybrid genome was obtained from the respiratory samples by next-generation
sequencing, as previously described [27]. In addition, the hybrid virus was isolated in
culture, as previously described [33]. The hybrid genome sequence consisted of a B.1.160
variant matrix, of which two regions, the first one being located at the 5′ tip of the genome
and containing the synonymous mutation C913U, and the second one spanning from
positions 17,109–18,877 to positions 25,710–27,972, were replaced by those of an Alpha
variant (Figures 1 and 2; Supplementary Material: Figures S1 and S2). All eight signature
mutations of the Alpha variant were detected in the spike gene in the absence of the S477N
mutation that is a signature of the B.1.160 variant. Nucleotide diversity at the 35 positions
harboring signature mutations of the Alpha or B.1.160 variants was low (mean (±standard
deviation) value of 3.1 ± 6.8%) (Figure 2; Supplementary Material: Figures S1 and S2),
indicating that the hybrid content of the genome was not explained by a co-infection from
the two variants or by contamination. These findings indicated that this mosaic genome was
the result of recombinations between parental genomes of the B.1.160 and Alpha variants.

https://cov-lineages.org/resources/pangolin.html
https://cov-lineages.org/resources/pangolin.html
https://nextstrain.org/
https://www.who.int/fr/activities/tracking-SARS-CoV-2-variants
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quences from indeterminate origin. Signature mutations from the B.1.160 and Alpha variants are 
indicated by a blue background and a yellow background, respectively. Signature mutations that 
are absent are indicated by a red font. Δ21,765: -6 nucleotides; Δ21,991: -3 nucleotides. Nsp, non-
structural protein; ORF, open reading frame.  

Figure 1. Schematic representation of the structure of the SARS-CoV-2 genomes obtained from the
nasopharyngeal samples and from the culture supernatants, as well as of the recombination events
over time, in reference to parental genomes of the B.1.160 and Alpha variants. (a) Genome map
and annotation; (b) Genome structure and mutations. Blue color of rectangles indicates sequences
from a B.1.160 variant; yellow color indicates sequences from an Alpha variant; green color indicates
co-detection of sequences from a B.1.160 variant and from an Alpha variant; grey color indicates
sequences from indeterminate origin. Signature mutations from the B.1.160 and Alpha variants
are indicated by a blue background and a yellow background, respectively. Signature mutations
that are absent are indicated by a red font. ∆21,765: -6 nucleotides; ∆21,991: -3 nucleotides. Nsp,
nonstructural protein; ORF, open reading frame.

By analyzing the sequential samples available from this patient, we were able to
determine that he was first infected with the B.1.160 variant, which was epidemic at the
time of diagnosis of his infection in September 2020. This variant predominated in our
region from August 2020 until January 2021 and was replaced by the Alpha variant, which
emerged in December 2020 [27]. SARS-CoV-2 could not be isolated retrospectively from
this sample, but its genome was typical of a B.1.160 variant and displayed no significant
nucleotide diversity (mean, 0.2 ± 0.5%). It was classified by phylogeny as a B.1.160 variant
(Figure 3).

Unfortunately, although SARS-CoV-2 qPCR was still positive in another laboratory in
January 2021, the sample was unavailable. Therefore, we were not able to confirm whether
Marseille-4 and Alpha variants were co-infecting the patient at this time nor the duration
of co-infection, and we did not obtain the genome nor an isolate of the Alpha variant.
The closest sample in time to the initial one dated from May 2021, 8 months after the first
SARS-CoV-2 diagnosis, and it already demonstrated a mosaicism between genomes of the
B.1.160 and Alpha variants (Figures 1 and 2).
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Figure 2. Majority nucleotides (a) nucleotide diversity (b) and sequencing depth (c) for sequences
obtained from the respiratory samples and the culture supernatant at nucleotide positions of the
SARS-CoV-2 genome that harbor signature mutations of the B.1.160 or Alpha variants. Del, nucleotide
deletion. Nucleotide positions are in reference to the genome of the Wuhan-Hu-1 isolate GenBank
accession no. NC_045512.2. (b) Nucleotide diversity is the proportion of sequence reads that do not
harbor the consensus (majority) nucleotide. (c) Read depth is the number of reads covering a given
nucleotide position.
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Figure 3. Phylogenetic analyses based on SARS-CoV-2 genomes (a) and spike gene sequences (b).
Sequences obtained from the case-patient are indicated by a grey background, and those obtained
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from cultures are underlined. Other sequences from our SARS-CoV-2 sequence database are indicated
by a blue font when classified as of the B.1.160 variant, and by a yellow font when classified as of
the Alpha variant. Sequences are labeled with their GISAID (https://www.gisaid.org/; accessed on
18 May 2022) [34] identifiers. Trees are rooted with the genome of the Wuhan-Hu-1 isolate GenBank
accession no. NC_045512.2.2.3. Genome of the initial virus.

2.3. Steps in Generation of the Recombinant

We used three procedures to characterize the different recombination steps by analyz-
ing seven sequential respiratory samples collected from the patient (Tables 1 and 2). First,
through sequencing from the respiratory samples of the viral genomes; second, sequencing
from the respiratory samples of PCR products overlapping the putative recombination sites;
third, a viral culture with sequencing of the genomes of the isolates. These approaches
allowed us to evidence that several viruses and recombinant forms had coexisted in the
sequential samples, as signature mutations of the two variants were co-detected at multiple
positions, with a nucleotide diversity that reached high levels and that evolved over time
(Figure 2; Supplementary Material: Supplementary Results and Figure S1). We observed
an evolution towards the genome sequence of the recombinant virus that predominated at
the end of the patient’s follow-up, following recombination events at three sites between
parental genomes of B.1.160 and Alpha variants, with a low level of nucleotide diversity
observed at that time at the positions harboring signature mutations of these variants.

Table 1. Genome sequences obtained from the sequential nasopharyngeal samples of the case-patient.

GISAID Identifier Sampling Date Time from Diagnosis (Days) Next-Generation Sequencing
Technology, Instrument

EPI_ISL_6332079 18 September 2020 0 Illumina, NovaSeq
EPI_ISL_10816743 5 May 2021 229 Illumina, NovaSeq
EPI_ISL_11030507 21 June 2021 276 Illumina, NovaSeq
EPI_ISL_10816731 5 July 2021 290 Illumina, NovaSeq
EPI_ISL_10816742 12 August 2021 328 Nanopore, GridION
EPI_ISL_10816744 1 October 2021 378 Illumina, NovaSeq
EPI_ISL_10816733 24 November 2021 432 Illumina, NovaSeq

See also Supplementary Table S3a.

Table 2. Genome sequences obtained from the culture supernatants.

GISAID Identifier Sampling Date of the
Nasopharyngeal Sample

Time to Cytopathic
Effect (Days)

Next-Generation Sequencing
Technology, Instrument

EPI_ISL_10816730 5 May 2021 8 Illumina, NovaSeq
EPI_ISL_10816732 14 June 2021 4 Illumina, NovaSeq
EPI_ISL_10816734 12 August 2021 4 Illumina, NovaSeq
EPI_ISL_10816735 24 November 2021 5 Illumina, NovaSeq
EPI_ISL_10816738 2 December 2021 7 Illumina, NovaSeq

See also Supplementary Table S3b.

To further support the breakpoints identified between the parental genomes of the
Alpha and Marseille-4 variants, we generated Marseille-4 variant/Alpha variant chimeric
sequences of the regions overlapping the three putative recombination sites by PCR ampli-
fication (Supplementary Material: Figures S3–S5), followed by next-generation sequencing
with Nanopore Technology on a gridION instrument, as previously described [27]. For the
amplicon corresponding to positions 3100–4570 of the genome, 56 and 87% of the reads
were chimeras harboring both Alpha (C3267U) and Marseille-4 (C4543U) signature muta-
tions from the respiratory samples collected in 5 May and in 12 August 2021, respectively
(Supplementary Material: Figures S3 and S4). For the amplicon corresponding to positions
24,880–29,010, 70% of the reads were chimeras harboring the Alpha mutation G24914C
and the Marseille-4 mutations G25563U, C25710U, C26735U, U26876C and G28975C, and
24% were chimeras harboring the Alpha mutation G24914C and the Marseille-4 mutation

https://www.gisaid.org/
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G28975C (Supplementary Material: Figure S5). No PCR amplification was obtained for
the region between positions 21,417–23,901. Next-generation sequencing was also car-
ried out using a metagenomic approach with the Nanopore technology to obtain large
reads and detect additional Marseille-4 variant/Alpha variant chimeras. For the first
previously identified recombination region, four reads with a length ranging between
1855 and 11,979 nucleotides were obtained that harbored signature mutations of the Alpha
(C3267U) and Marseille-4 (C4543U) variants. For the third recombination region, four
reads with a length between 1486–8143 nucleotides were obtained that harbored signature
mutations of the Alpha (G24914C) and Marseille-4 (G25563U) variants (available from
URL: https://www.mediterranee-infection.com/sars-cov-2-recombinant/; accessed on
18 May 2022). No reads were obtained that covered the Marseille-4 mutation C18877U
and the Alpha deletion UACAUG21765. Therefore, several breakpoints between the
parental genomes of Alpha and Marseille-4 variants were supported by the presence of
chimeric reads.

3. Discussion

We highlight here, in an immunocompromised lymphoma patient chronically infected
with SARS-CoV-2 and who received several treatments, the presence of a virus hybrid of
two known variants, B.1.160 and Alpha, which successively predominated in our region
during the follow-up period of this patient [27,35]. The absence of available samples
covering the period between the diagnosis of infection by the B.1.160 variant and first
evidence of a hybrid genome did not allow us to date the superinfection by the Alpha
variant. The signature mutations of the Alpha variant observed in the hybrid genomes
between 8 and 14 months cannot have occurred randomly considering their number,
distribution along the genome, and their majority presence, and their location indicates
recombinations in three regions. In addition, genomic analyses carried out for sequential
respiratory samples and viral cultures demonstrate the successive presence of several
viruses with hybrid genomes, one of them having established itself in this patient and the
one that continued circulating until his death.

We believe that this observation, which sheds light on the recombination mechanism
of RNA viruses, is significant, and to our knowledge, this is the first study describing,
through the analysis of sequential samples over more than a year, the generation of re-
combinant SARS-CoV-2 and its isolation in culture. Sixteen interlineage recombinants
between the Alpha variant and non-Alpha viruses were reported in 2021 in the UK, of
279,000 genomes analyzed [8]. In addition, 1175 (0.2%) putative recombinant genomes
were identified among 537,360 genomes, and it was reported that up to 5% of SARS-CoV-2
that circulated in the USA and UK might be recombinants [18]. Moreover, the number
of cases that capture detection of recombinant genomes is growing [10,13–25], including
with recombinant events involving or between Omicron variants [36–39], which highlights
the importance of recombination in the evolution of SARS-CoV-2. Besides recombination
between SARS-CoV-2 infecting the same human cells, other evolutionary pathways may
exist [39]. For instance, different evolutionary trajectories in distinct cell types of the same
infected host have been reported [40], and coronaviruses have been reported to harbor a
sequence shared with four different families of positive-sense single-stranded RNA viruses
and that is putatively shared with insects [41].

Such natural mosaicisms in these viruses make it possible to understand the emergence
of RNA viruses and should lead to a strengthening of genomic surveillance in patients,
especially in immunocompromised long-term viral carriers, presenting with coinfections
by several RNA viruses, as observed in patients infected with several respiratory viruses in-
cluding SARS-CoV-2, endemic human coronaviruses, influenza viruses, or rhinoviruses [42].
Such infectious episodes could perhaps lead to the emergence of new emerging viruses, as
has been, for instance, reported for enteroviruses of humans and great apes [43].

https://www.mediterranee-infection.com/sars-cov-2-recombinant/
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4. Materials and Methods
4.1. SARS-CoV-2 Genome Sequencing

SARS-CoV-2 genome sequencing was performed as previously described. Briefly,
viral RNA was extracted from 200 µL of nasopharyngeal swab fluid using the EZ1 Virus
Mini kit v2.0 on an EZ1 Advanced XL instrument (Qiagen, Courtaboeuf, France) or using
the MagMax Viral/Pathogen Nucleic Acid Isolation kit on the KingFisher Flex system
(Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturer’s instructions.
SARS-CoV-2 genome sequences were obtained by next-generation sequencing with various
procedures with the Illumina COVIDSeq protocol on a NovaSeq 6000 instrument (Illumina
Inc., San Diego, CA, USA), or by multiplex PCR with ARTIC nCoV-2019 V3 Panel primers
(IDT, Coralville, IA, USA) were combined with the Oxford Nanopore technology (ONT) on
a GridION instrument (Oxford Nanopore Technologies Ltd., Oxford, UK), as previously
described [14,27]. After its extraction, viral RNA was reverse-transcribed according to the
COVIDSeq protocol (Illumina Inc., San Diego, CA, USA) or by using the LunaScript RT
SuperMix kit (New England Biolabs, Ipswich, MA, USA) when performing next-generation
sequencing with the Nanopore technology, following the manufacturer’s recommendations.

4.2. Genome Analysis

After using the Nanopore technology combined with the ARTIC protocol, fastq files
were processed using the ARTIC field bioinformatics pipeline (ARTIC-nCoV-bioinformatics-
SOP-v1.1.0, Nick Loman, Will Rowe, Andrew Rambaut, the ZiBRA Project and the AR-
TIC project, University of Birmingham, UK, https://artic.network/ncov-2019/ncov2
019-bioinformatics-sop.html; https://github.com/artic-network/fieldbioinformatics; ac-
cessed on 18 May 2022), as previously described [14,27]. Next-generation sequencing
reads were base-called using Guppy (4.0.14) and were aligned to the genome of the
Wuhan-Hu-1isolate, GenBank accession No. MN908947.3, using minimap2 (v2.17-r941)
(https://github.com/lh3/minimap2; accessed on 18 May 2022, Dana-Farber Cancer Insti-
tute of Boston, USA) [44]. The ARTIC tool align_trim was used to softmask primers
from read alignment and cap sequencing depth at a maximum of 400-fold coverage.
Consensus-level variant candidates were identified using a threshold of 70% and the
Medaka (v.0.11.5) workflow, developed by ARTIC (Nick Loman, Will Rowe, Andrew Ram-
baut, the ZiBRA Project and the ARTIC project, University of Birmingham, UK, https:
//github.com/artic-network/artic-ncov2019; accessed on 18 May 2022). From the unique
sequence obtained with the ARTIC-Nanopore technology, a sorted bam file was loaded
on the CLC Genomics workbench v7 software and a tsv file was then exported. NovaSeq
reads were basecalled using the Dragen Bcl Convert pipeline (v3.9.3; https://emea.support.
illumina.com/sequencing/sequencing_software/bcl-convert.html; accessed on 18 May
2022 (Illumina Inc., San Diego, CA, USA). Mapping was carried out on the Wuhan-Hu-1 iso-
late genome with the bwa-mem2 tool (v2.2.1; https://github.com/bwa-mem2/bwa-mem2;
accessed on 18 May 2022, Heng Li, Harvard, USA) and was cleaned with Samtools (v1.13;
https://www.htslib.org/; accessed on 18 May 2022) [45]. Variant calling was performed
with freebayes (v1.3.5; https://github.com/freebayes/freebayes; accessed on 18 May 2022,
Erik Garrison, Gabor Marth, University of Tennessee and Utah) [46] and consensus genomes
were built with Bcftools (v1.13; https://samtools.github.io/bcftools/bcftools.html; ac-
cessed on 18 May 2022, 2012–2021 Genome Research Ltd.). Freebayes results were filtered
with a threshold of 70% for the majority nucleotide. A tsv file was generated using an
in-house Python script. The clade was designated at the consensus level with the Nextclade
online tool (https://clades.nextstrain.org/; accessed on 18 May 2022, 2020 Nextstrain
developers, Swiss Institute of Bioinformatics) [32,47] and an in-house Python script al-
lowed for the detection of variants and the hybrids of variants. At the sub-consensus
level, variant frequencies that were compared to the Wuhan-Hu-1 isolate genome were
calculated from tsv files. Nucleotide diversity at genomic positions was calculated using
the Microsoft Excel software (https://www.microsoft.com/en-us/microsoft-365/excel; ac-
cessed on 18 May 2022, Microsoft Corporation, Redmond, WA, USA) with an in-house built

https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
https://github.com/artic-network/fieldbioinformatics
https://github.com/lh3/minimap2
https://github.com/artic-network/artic-ncov2019
https://github.com/artic-network/artic-ncov2019
https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html
https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html
https://github.com/bwa-mem2/bwa-mem2
https://www.htslib.org/
https://github.com/freebayes/freebayes
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file. It corresponded to the proportion of sequence reads that do not harbor the consensus
(majority) nucleotide. Genome sequences obtained in the present study were submitted
to the GISAID sequence database (https://www.gisaid.org/; accessed on 18 May 2022,
2008–2022, Freunde von GISAID e.V. Munich, Germany) [34] (see Supplementary Material:
Supplementary Table S1).

4.3. Generation of Additional Sequence Reads

Sequencing of reverse-transcription-PCR-targeted regions: extraction of the RNA
samples was carried out using the EZ1 Virus kit with the EZ1 Advanced XL instrument
(Qiagen) following the manufacturer’s recommendations. PCR amplification of the 3 re-
gions was amplified in a 25 µL total volume using the SuperScript III One-Step RT-PCR
Kit (Invitrogen, Carlsbad, CA, USA), using primer concentrations of 200 nM per reaction.
PCR were performed with following conditions: 50 ◦C for 25 min, 95 ◦C for 2 min, then 40
cycles including 15 s at 95 ◦C, 45 s at 60 ◦C, and 2 min at 68 ◦C. Sequences of PCR primers
are provided in the Supplementary Material. Amplicons were sequenced with Nanopore
technology on a GridION instrument (Oxford Nanopore Technologies Ltd., Oxford, UK),
following the manufacturer’s instructions. Fastq files were processed as described above.
Continuous reads overlapping signature mutations of distinct variants were filtered us-
ing SAMtools (v1.13; https://github.com/samtools/2008-2022 Genome Research Ltd.,
accessed on 18 May 2022) [45] combined with an in-house awk script. Reads were then
filtered according to variant-specific nucleotide patterns using SAMtools combined with an
in-house awk script. Groups of reads with same patterns of mutations were then visualized
using the IGV software (https://software.broadinstitute.org/software/igv/; accessed on
18 May 2022, Broad Institute and the Regents of the University of California, USA) [48].

Metagenomic sequencing: nucleic acid extraction was performed with the EZ1 Virus
kit with the EZ1 Advanced XL instrument (Qiagen) following the manufacturer’s rec-
ommendations, using 200 µL of sample and eluting in 60 µL of elution buffer. Reverse
transcription was performed with all 60 µL of this solution using the TaqMan Reverse
Transcription Reagent kit (Applied-Biosystems, Foster City, CA, USA), according to the
manufacturer’s protocol under the following conditions: 10 min at 25 ◦C, 30 min at 48 ◦C,
and 5 min at 95 ◦C. Then, 300 µL of obtained cDNA was transferred to a 1.5 mL Eppendorf
LoBind tube (Eppendorf, Le Pecq, France). Second DNA strand was synthesized by adding
a mix of 24 µL of Klenow Fragment DNA polymerase (New England Biolabs, Beverly, MA,
USA), 66 µL of nuclease-free water, 45 µL of NEB Buffer 2 (New England Biolabs, Ipswich,
MA, USA), and 15 µL of dNTPs working solution produced with 10 µL of each dNTP at a
100 mM concentration, and 60 µL of nuclease-free water (New England Biolabs, Ipswich,
MA, USA). This mix was kept at 37 ◦C for one hour. A purification step consisted of adding
450 µL of magnetic CleanNGS beads for a 1:1 volume ratio (CleanNA, Waddinxveen,
the Netherlands) then incubating them for 5 min in a magnetic support, and washing with
1000 µL of ethanol at 70%, before elution of the beads was performed in 50 µL of Tris EDTA
1X with centrifugation for 10 min at 300 rpm at room temperature. Subsequently, a DNA
library was prepared with the DNA ligation sequencing kit SQK-LSK109 (Oxford Nanopore
Technologies Ltd., Oxford, UK), and next-generation sequencing was performed with the
Nanopore technology on a PromethION instrument (Oxford Nanopore Technologies Ltd.,
Oxford, UK). Each sample was sequenced on a different PromethION Flow cell R10.4
(Oxford Nanopore Technologies Ltd., Oxford, UK).

4.4. Phylogenetic Analysis Based on Whole and Partial Genome Sequences

Phylogenetic analyses were performed separately for the twelve genome sequences
and the twelve spike gene sequences obtained from the nasopharyngeal samples or the
culture supernatants. Sequences were aligned using MAFFT v.7 (Kazutaka Katoh and
Daron M Standley, Osaka University, Japan) [49] with their 20 most similar hits identi-
fied with the BLAST tool (National Library of Medicine, Rockville Pike, MD, USA) [50]
among SARS-CoV-2 genomes from our database, which contains sequences obtained

https://www.gisaid.org/
https://github.com/samtools/2008-2022
https://software.broadinstitute.org/software/igv/
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from clinical samples collected between February 2020 and February 2022 [14,27]. Phy-
logeny reconstruction was performed using the IQ-TREE software with the GTR Model
and 1000 ultrafast bootstrap repetitions (http://www.iqtree.org, Free Software Founda-
tion, Boston, MA, USA) [51], and trees were visualized with iTOL (Interactive Tree of
Life) (https://itol.embl.de/; accessed on 18 May 2022, EMBL 2022) [52] and MEGA X
(v10.2.6; https://www.megasoftware.net/; accessed on 18 May 2022, 2007 Free Software
Foundation) [53] softwares.

4.5. Virus Culture Isolation

Culture isolation was performed on Vero E6 cells, as previously described [33]. Briefly,
500 µL of nasopharyngeal swab fluid was passed through a centrifugal filter with a pore
size of 0.22-µm (Merck Millipore, Darmstadt, Germany) before the inoculation of 100 µL of
filtrate was performed in 4 wells of culture microplates with 96 wells that contained Vero
E6 cells (ATCC CRL-1586) in Minimum Essential Medium culture medium, comprising
4% fetal calf serum and 1% glutamine. After a centrifugation step at 4000× g, culture
microplates were incubated at 37 ◦C and were observed daily with an inverted microscope
for evidence of cytopathogenic effect. We attempted, without success, to isolate the parental
Alpha variant from respiratory samples collected in 2021 from the case-patient by selecting
this virus through inoculating the respiratory samples with neutralizing serum from a con-
valescent individual previously infected by the B.1.160 variant, as previously reported [54],
at equal volumes (50 µL of filtered respiratory sample and 50 µL of serum).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061266/s1. Additional Methods, Results, Figure S1: Viro-
logical follow-up by real-time reverse transcription PCR (qPCR) targeting SARS-CoV-2 RNA for the
patient, Figure S2: Majority nucleotides and nucleotide diversity for sequences obtained from the
respiratory samples and the culture supernatant at nucleotide positions of the SARS-CoV-2 genome
that harbor signature mutations of the B.1.160 or Alpha variants and at any other positions that
harbor mutations (a), and sequencing depth at nucleotide positions (b), Figure S3: Detailed content
of amplicons corresponding to positions 3100–4570 of the SARS-CoV-2 genome and retrieved from
respiratory samples collected on 5 May 2021, Figure S4: Detailed content of amplicons corresponding
to positions 3100–4570 of the SARS-CoV-2 genome and retrieved from respiratory samples collected
on 12 August 2021, Figure S5: Detailed content of amplicons corresponding to positions 24,880–29,010
of the SARS-CoV-2 genome and retrieved from respiratory samples collected on 12 August 2021,
Table S1: List of GISAID identifiers for sequences used in the present study, and Table S2: Sampling
time and location for sequences used in the present study, Table S3: Identifiers of raw data deposited
in the European Bioinformatics Institute (EMBL-EBI) sequence database (https://www.ebi.ac.uk/;
accessed on 18 May 2022), and References, are provided in the Supplementary Material.
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